Polyspace® Bug Finder™
Reference

<4

MATLAB&SIMULINK?

R2018b >) MathWorks:

X B

How to Contact MathWorks

Latest news: www .mathworks. com

Sales and services: www.mathworks.com/sales_and_services
User community: www .mathworks.com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Polyspace® Bug Finder™ Reference
© COPYRIGHT 2013-2018 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www .mathworks . com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www . mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History

September 2013
March 2014
October 2014
March 2015
September 2015
October 2015

March 2016
September 2016
March 2017
September 2017
March 2018
September 2018

Online Only
Online Only
Online Only
Online Only
Online Only
Online Only

Online Only
Online Only
Online Only
Online Only
Online Only
Online Only

New for Version 1.0 (Release 2013b)
Revised for Version 1.1 (Release 2014a)
Revised for Version 1.2 (Release 2014b)
Revised for Version 1.3 (Release 2015a)
Revised for Version 2.0 (Release 2015b)
Rereleased for Version 1.3.1 (Release
2015aSP1)

Revised for Version 2.1
Revised for Version 2.2
Revised for Version 2.3
Revised for Version 2.4
Revised for Version 2.5
Revised for Version 2.6

Release 2016a)
Release 2016b)
Release 2017a)
Release 2017b)
Release 2018a)
Release 2018b)

Py

Option Descriptions

1]

Polyspace Command-Line Options

2|

Defects

3|

Functions, Properties, Classes, and Apps

4

MISRA C 2012

S|

MISRA C++: 2008

6|

Custom Coding Rules

7
Group 1: Files e 7-2

Group 2: Preprocessing 7-3

vi Contents

Group 3: Type definitions 7-4

Group 4: Structures 7-5
Group 5: Classes (C++) 7-6
Group 6: Enumerations 7-7
Group 7: Functions 7-8
Group 8:Constants 7-9
Group 9: Variables 7-10
Group 10: Name spaces (C++) 7-11
Group 11: Class templates (C++) 7-12
Group 12: Function templates (C++) 7-13
Group 20: Style 7-14

Code Metrics

8|

Polyspace Report Components — Alphabetical List

9

Configuration Parameters

10|

Productmode 10-2
Settings 10-2
Dependencyt 10-2

viii

Contents

Command-Line Information

Settingsfrom (C)
Settings
Dependencyovvi it
Command-Line Information

Settings from (C++)
Settings
Dependencyvvi ittt
Command-Line Information

Use custom projectfile
Settings
Dependencyvvvi it
Command-Line Information

Project configuration
Settings
Dependencyttt e
Command-Line Information

Enable additional filelist
Settings
Command-Line Information

Stub lookup tables
Settings
TIPS oo
Command-Line Information

Input
Settings
Command-Line Information

Tunable parameters
Settings
Command-Line Information

Output e
Settings
Command-Line Information

Model reference verificationdepth 10-15

Settings i 10-15
Command-Line Information 10-15
Model by model verification 10-17
Settings 10-17
Command-Line Information 10-17
Outputfolder 10-18
Settings 10-18
Command-Line Information 10-18
Make output folder name unique by adding a suffix 10-19
Settings 10-19
Command-Line Information 10-19
Add results to current Simulink project 10-20
Settings 10-20
Dependencies i 10-20
Command-Line Information 10-20
Open results automatically after verification 10-21
Setfings i 10-21
Command-Line Information 10-21
Check configuration before verification 10-22
Settings 10-22
Command-Line Information 10-22
Verify all occurrences 10-23
Settings 10-23
Command-Line Information 10-23

Approximations Used During Bug Finder Analysis

11|

Inputs in Polyspace Bug Finder 11-2

Global Variables in Polyspace Bug Finder 11-3

ix

Option Descriptions

1 Option Descriptions

Source code language (-1lang)

Specify language of source files

Description

Specify the language of your source files. Before specifying other configuration options,
choose this option because other options change depending on your language selection.

If you add files during project setup, the language selection can change from the default.

Files Added Source Code Language
Only files with extension . c C

Only files with extension . cpp or .cc CPP

Files with extension .c, .cpp, and .cc C-CPP

Set Option

User interface: In your project configuration, the option is on the Target & Compiler
node. See “Dependencies” on page 1-3 for ways in which the source code language can
be automatically determined.

Command line: Use the option - lang. See “Command-Line Information” on page 1-3.

Settings
Default: C-CPP for hand code and C for model-generated code

C

If your project contains only C files, choose this setting. This value restricts the
verification to C language conventions. All files are interpreted as C files, regardless
of their file extension.

1-2

Source code language (-1lang)

CPP

If your project contains only C++ files, choose this setting. This value restricts the
verification to C++ language conventions. All files are interpreted as C++ files,
regardless of their file extension.

C-CPP

If your project contains C and C++ source files, choose this setting. This value allows
for C and C++ language conventions. . c files are interpreted as C files. Other file
extensions are interpreted as C++ files.

Dependencies

» The language option allows and disallows many options and option values. Some
options change depending on your language selection. For more information, see the
individual analysis option pages.

» Ifyou create a Polyspace project or options file from your build system using the
polyspace-configure command or polyspaceConfigure function, the value of
this option is determined by the file extensions.

For a project with both . c and . cpp files, the language option C-CPP is used. In the
subsequent analysis, each file is compiled based on the language standard determined
by the file extensions.

Command-Line Information

Parameter: - lang

Value: ¢ | cpp | c-cpp

Default: c-cpp

Example: polyspace-bug-finder-nodesktop -lang c-cpp -sources
"filel.c,file2.cpp"

Example: polyspace-bug-finder-nodesktop -lang c -sources
"filel.c,file2.c"

See Also

C standard version (-c-version) | C++ standard version (-cpp-version)

1-3

1 Option Descriptions

Topics
“Specify Polyspace Analysis Options”
“Specify Target Environment and Compiler Behavior”

1-4

C standard version (-c-version)

C standard version (-c-version)

Specify C language standard followed in source code

Description

Specify the C language standard that you follow in your source code.

Set Option

User interface: In your project configuration, the option is on the Target & Compiler
node. See “Dependencies” on page 1-6 for other options that you must enable.

Command line: Use the option -c-version. See “Command-Line Information” on page
1-6.

Why Use This Option

Use this option so that Polyspace can allow features specific to a C standard version
during compilation. For instance, if you compile with GCC using the flag -ansi or -
std=c90, specify c90 for this option. If you are not sure of the language standard, specify
defined-by-compiler.

For instance, suppose you use the boolean data type Bool in your code. This type is
defined in the C99 standard but unknown in prior standards such as C90. If the Polyspace
compilation follows the C90 standard, you can see compilation errors.

Some MISRA C® rules are different based on whether you use the C90 or C99 standard.
For instance, MISRA C:2012 Rule 5.2 requires that identifiers in the same scope and
name space shall be distinct. If you use the C90 standard, different identifiers that have
the same first 31 characters violate this rule. If you use the C99 standard, the number of
characters increase to 63.

Settings

Default: defined-by-compiler

1-5

1 Option Descriptions

1-6

defined-by-compiler
The analysis uses a standard based on your specification for Compiler (-
compiler).
See “C/C++ Language Standard Used in Polyspace Analysis”.

c90
The analysis uses the C90 Standard (ISO®/IEC 9899:1990).

c99
The analysis uses the C99 Standard (ISO/IEC 9899:1999).

cll
The analysis uses the C11 Standard (ISO/IEC 9899:2011).

Dependencies

» This option is available only if you set Source code language (-lang) toCorC-
CPP.

* Ifyou create a project or options file from your build system using the polyspace-
configure command or polyspaceConfigure function, the value of this option is
automatically determined from your build system.

If the build system uses different standards for different files, the subsequent
Polyspace analysis can emulate your build system and use different standards for
compiling those files. If you open such a project in the Polyspace user interface, the
option value is shown as defined-by-compiler. However, instead of one standard,
Polyspace uses the hidden option -options-for-sources to associate different
standards with different files.

Command-Line Information

Parameter: -c-version

Value: defined-by-compiler | c90 | c99 | cll

Default: defined-by-compiler

Example: polyspace-bug-finder-nodesktop -lang c -sources
"filel.c,file2.c" -c-version c90

C standard version (-c-version)

See Also

C++ standard version (-cpp-version) | Source code language (-lang)

Topics
“C/C++ Language Standard Used in Polyspace Analysis”
“C11 Language Elements Supported in Polyspace”

1-7

1 Option Descriptions

1-8

C++ standard version (-cpp-version)

Specify C++ language standard followed in source code

Description

Specify the C++ language standard that you follow in your source code.

Set Option

User interface: In your project configuration, the option is on the Target & Compiler
node. See “Dependencies” on page 1-9 for other options that you must enable.

Command line: Use the option -cpp-version. See “Command-Line Information” on
page 1-10.

Why Use This Option

Use this option so that Polyspace can allow features from a specific version of the C++
language standard during compilation. For instance, if you compile with GCC using the
flag - std=c++11 or -std=gnu++11, specify cppll for this option. If you are not sure of
the language standard, specify defined-by-compiler.

For instance, suppose you use range-based for loops. This type of for loop is defined in
the C++11 standard but unrecognized in prior standards such as C++03. If the Polyspace
compilation uses the C++03 standard, you can see compilation errors.

To check if your compiler allows features specific to a standard, compile code with macros
specific to the standard using compiler settings that you typically use. For instance, to
check for C++11-specific features, compile this code. The code contains a C++11-specific
keyword nullptr. If the macro cplusplus is not 201103L (indicating C++11), this
keyword is used and causes a compilation error.

#if defined(_ cplusplus) && cplusplus >= 201103L
/* C++11 compiler */

#else
void* ptr = nullptr;

#endif

C++ standard version (-cpp-version)

If the code compiles, use cppll for this option.

Settings

Default: defined-by-compiler

defined-by-compiler
The analysis uses a standard based on your specification for Compiler (-
compiler).
See “C/C++ Language Standard Used in Polyspace Analysis”.

cppo3
The analysis uses the C++03 Standard (ISO/IEC 14882:2003).

cppll
The analysis uses the C++11 Standard (ISO/IEC 14882:2011).

cppls
The analysis uses the C++14 Standard (ISO/IEC 14882:2014).

Dependencies

» This option is available only if you set Source code language (-lang) to CPPor
C-CPP.

» If you create a project or options file from your build system using the polyspace-
configure command or polyspaceConfigure function, the value of this option is
automatically determined from your build system.

If the build system uses different standards for different files, the subsequent
Polyspace analysis can emulate your build system and use different standards for
compiling those files. If you open such a project in the Polyspace user interface, the
option value is shown as defined-by-compiler. However, instead of one standard,
Polyspace uses multiple standards for compiling the files. However, instead of one
standard, Polyspace uses the hidden option -options-for-sources to associate
different standards with different files.

1-9

1 Option Descriptions

1-10

Command-Line Information

Parameter: -cpp-version

Value: defined-by-compiler | cpp03 | cppll | cppl4d

Default: defined-by-compiler

Example: polyspace-bug-finder-nodesktop -lang c -sources
"filel.c,file2.c" -cpp-version cppll

See Also

C standard version (-c-version) | Source code language (-lang)

Topics

“C/C++ Language Standard Used in Polyspace Analysis”
“C++11 Language Elements Supported in Polyspace”
“C++14 Language Elements Supported in Polyspace”

Compiler (-compiler)

Compiler (-compiler)

Specify the compiler that you use to build your source code

Description

Specify the compiler that you use to build your source code.

Polyspace fully supports the most common compilers used to develop embedded
applications. See the list below. For these compilers, you can run analysis simply by
specifying your compiler and target processor. For other compilers, specify generic as

compiler name. If you face compilation errors, explicitly define compiler-specific
extensions to work around the errors.

Set Option

User interface: In your project configuration, the option is on the Target & Compiler
node.

Command line: Use the option - compiler. See “Command-Line Information” on page
1-17.

Why Use This Option

Polyspace uses this information to interpret syntax that is not part of the C/C++
Standard, but comes from language extensions.

For example, the option allows additional language keywords, such as sfr, sbit, and
bit. If you do not specify your compiler, these additional keywords can cause compilation
errors during Polyspace analysis.

Settings

Default: generic

1-11

1 Option Descriptions

generic
Analysis allows only standard syntax.

The language standard is determined by your choice for the following options:

* (C standard version (-c-version)
* (++ standard version (-cpp-version)

If you do not specify a standard explicitly, the standard depends on your choice of
compiler.

gnu3.4
Analysis allows GCC 3.4 syntax.

gnu4.6
Analysis allows GCC 4.6 syntax.

gnu4.7
Analysis allows GCC 4.7 syntax.

For more information, see “Limitations” on page 1-15.
gnu4.8
Analysis allows GCC 4.8 syntax.

For more information, see “Limitations” on page 1-15.
gnu4.9
Analysis allows GCC 4.9 syntax.

For more information, see “Limitations” on page 1-15.
gnu5.x
Analysis allows GCC 5.1, 5.2, 5.3, and 5.4 syntax.

For more information, see “Limitations” on page 1-15.
gnuo. x
Analysis allows GCC 6.1, 6.2, and 6.3 syntax.

For more information, see “Limitations” on page 1-15.
clang3.x
Analysis allows Clang 3.5, 3.6, 3.7, 3.8, and 3.9 syntax.

1-12

Compiler (-compiler)

visual9.0

Analysis allows Microsoft® Visual C++® 2008 syntax.
visuall0.0

Analysis allows Microsoft Visual C++ 2010 syntax.

This option implicitly enables the option -no-stl-stubs.
visualll.o
Analysis allows Microsoft Visual C++ 2012 syntax.

This option implicitly enables the option -no-st1l-stubs.
visuall2.0
Analysis allows Microsoft Visual C++ 2013 syntax.

This option implicitly enables the option -no-stl-stubs.
visuall4.o

Analysis allows Microsoft Visual C++ 2015 syntax (supports Microsoft Visual
Studio®update 2).

This option implicitly enables the option -no-st1l-stubs.

keil
Analysis allows non-ANSI® C syntax and semantics associated with the Keil products
from ARM (www.keil.com).

iar
Analysis allows non-ANSI C syntax and semantics associated with the compilers from
IAR Systems (www.iar.com).

codewarrior

Analysis allows non-ANSI C syntax and semantics associated with the NXP
CodeWarrior® compiler.

If you select codewarrior, the option Target processor type (-target)
shows only the targets that are allowed for the NXP CodeWarrior compiler. See NXP
CodeWarrior Compiler (-compiler codewarrior)

diab
Analysis allows non-ANSI C syntax and semantics associated with the Wind River®
Diab compiler.

1-13

https://www.keil.com/
https://www.iar.com/

1 Option Descriptions

1-14

If you select diab, the option Target processor type (-target) shows only the
targets that are allowed for the NXP CodeWarrior compiler. See Diab Compiler (-
compiler diab).

greenhills

Analysis allows non-ANSI C syntax and semantics associated with a Green Hills®
compiler.

If you select greenhills, the option Target processor type (-target) shows
only the targets that are allowed for a Green Hills compiler. See Green Hills
Compiler (-compiler greenhills).

iar-ew

Analysis allows non-ANSI C syntax and semantics associated with the IAR Embedded
Workbench compiler.

If you select iar-ew, the option Target processor type (-target) shows only
the targets that are allowed for the IAR Embedded Workbench compiler. See IAR
Embedded Workbench Compiler (-compiler iar-ew).

renesas

Analysis allows non-ANSI C syntax and semantics associated with the Renesas®
compiler.

If you select renesas, the option Target processor type (-target) shows only
the targets that are allowed for the Renesas compiler. See Renesas Compiler (-
compiler renesas).

tasking

ti

Analysis allows non-ANSI C syntax and semantics associated with the TASKING
compiler.

If you select tasking, the option Target processor type (-target) shows only
the targets that are allowed for the TASKING compiler. See TASKING Compiler (-
compiler tasking).

Analysis allows non-ANSI C syntax and semantics associated with the Texas
Instruments™ compiler.

If you select ti, the option Target processor type (-target) shows only the
targets that are allowed for the Texas Instruments compiler. See Texas
Instruments Compiler (-compiler ti).

Compiler (-compiler)

Tips

» Ifyou use a Visual Studio compiler, you must use a Target processor type (-
target) option that sets Llong long to 64 bits. Compatible targets include: 1386,
sparc, m68k, powerpc, tms320c3x, sharc21x61, mpc5xx, x86 64, or mcpu with
long long set to 64 (-long-long-is-64bits at the command line).

* Ifyou enable Check JSF C++ rules (-jsf-coding-rules), select the compiler
generic. If you use another compiler, Polyspace cannot check the JSF® coding rules
that require conforming to the ISO standard. For example, AV Rule 8: “All code shall
conform to ISO/IEC 14882:2002(E) standard C++.”

Limitations

Polyspace does not support certain features of these compilers:

¢ GNU® compilers (version 4.7 or later):

Nested functions.

For instance, the function bar is nested in function foo:

int foo (int a, int b)

{

int bar (int c¢) { return c * c; }

return bar (a) + bar (b);

}

Forward declaration of function parameters.

For instance, the parameter len is forward declared:

void func (int len; char data[len]l[len], int 1len)

{

}
Complex integer data types.

/* . */

However, complex floating point data types are supported.
Initialization of structures with flexible array members using an initialization list.

1-15

1 Option Descriptions

1-16

For instance, the structure S has a flexible array member tab. A variable of type S
is directly initialized with an initialization list.

struct S {

int x;

int tab[]; /* flexible array member - not supported */
}s

struct Ss=4{0, 1, 2} ;

You see a warning during analysis and a red check in the results when you
dereference, for instance, s.tab[1].

128-bit variables.

Polyspace cannot analyze this data type semantically. Bug Finder allows use of 128-

bit data types, but Code Prover shows a compilation error if you use such a data
type, for instance, the GCC extension float128.

* Visual Studio compilers:

C++ Accelerated Massive Parallelism (AMP).

C++ AMP is a Visual Studio feature that accelerates your C++ code execution for
certain types of data-parallel hardware on specific targets. You typically use the
restrict keyword to enable this feature.

void Buffer() restrict(amp)
{

}
__assume statements.

You typically use _assume with a condition that is false. The statement indicates
that the optimizer must assume the condition to be henceforth true. Code Prover
cannot reconcile this contradiction. You get the error:

Asked for compulsory presence of absent entity : assert

Managed Extensions for C++ (required for the .NET Framework), or its successor,
C++/CLI (C++ modified for Common Language Infrastructure)

__declspec keyword with attributes other than noreturn, nothrow, selectany
or thread.

Compiler (-compiler)

Command-Line Information

Parameter: -compiler

Value: generic | gnu3.4 | gnu4.6 | gnu4.7 | gnu4.8 | gnud.9 | gnu5.x |
gnu6.x | clang3.x | visual9.0 | visuall0.0 | visualll.® | visuall2.0
| visuall4.0 | keil | iar | codewarrior | diab | greenhills | iar-ew
| renesas | tasking | ti

Default: generic

Example: polyspace-bug-finder-nodesktop -lang c -sources
"filel.c,file2.c" -compiler gnu4.6

Example: polyspace-bug-finder-nodesktop -lang cpp -sources
"filel.cpp, file2.cpp" -compiler visual9.0

See Also

C standard version (-c-version) | C++ standard version (-cpp-version) |
Target processor type (-target)

Topics
“Troubleshoot Compilation Errors”
“Supported Keil or IAR Language Extensions”

1-17

1 Option Descriptions

1-18

Target processor type (-target)

Specify size of data types and endianness by using predefined target processor list

Description

Specify the processor on which you deploy your code.

The target processor determines the sizes of fundamental data types and the endianness
of the target machine. You can analyze code intended for an unlisted processor type by
using one of the other processor types, if they share common data properties.

Set Option

User interface: In your project configuration, the option is on the Target & Compiler
node. To see the sizes of types, click the Edit button to the right of the Target processor
type drop-down list.

For some compilers, in the user interface, you see only the processors allowed for that
compiler. For these compilers, you also cannot see the data type sizes in the user
interface. See the links in the table below for the data type sizes.

Command line: Use the option -target. See “Command-Line Information” on page 1-
21.

Why Use This Option

You specify a target processor so that some of the Polyspace run-time checks are tailored
to the data type sizes and other properties of that processor.

For instance, a variable can overflow for smaller values on a 32-bit processor such as i386
compared to a 64-bit processor such as x86 64. If you select x86 64 for your Polyspace
analysis, but deploy your code to the i386 processor, your Polyspace results are not
always applicable.

Once you select a target processor, you can specify if the default sign of char is signed or
unsigned. To determine which signedness to specify, compile this code using the compiler
settings that you typically use:

Target processor type (-target)

#include <limits.h>
int array[(char)UCHAR MAX]; /* If char is signed, the array size is -1

If the code compiles, the default sign of char is unsigned. For instance, on a GCC
compiler, the code compiles with the - fsigned-char flag and fails to compile with the -
funsigned-char flag.

Settings
Default: 1386

This table shows the size of each fundamental data type that Polyspace considers. For
some targets, you can modify the default size by clicking the Edit button to the right of
the Target processor type drop-down list. The optional values for those targets are
shown in [brackets] in the table.

Target chashort|int |lon |long |flo |doubl |long ptr [Default (endian |Align
r g |long |at |e double® sign of ment
char
i386 8 |16 32 (32 |64 32 |64 96 32 |signed |Little 32
sparc 8 |16 32 (32 |64 32 |64 128 32 |signed |Big 64
m68kP 8 |16 32 (32 |64 32 |64 96 32 |signed |Big 64
powerpc 8 |16 32 (32 |64 32 |64 128 32 |unsigne |Big 64
d
c-167 8 |16 16 |32 |32 32 |64 64 16 |signed |Little 64
tms320c3x |32 |32 32 (32 |64 32 |32 64 32 |signed |Little 32
sharc21x61 (32 |32 32 (32 |64 32 |32 32[64] |32 |signed |Little 32
[64]
necv850 8 |16 32 |32 |32 32 |32 64 32 |signed |Little 32
[16,
8]
hco8¢ 8 |16 16 |32 |32 32 |32 32 [64] |16¢ |unsigne |Big 32
[32] [64] d [16]
hcl12 8 |16 16 |32 |32 32 |32 32 [64] |32° |signed |Big 32
[32] [64] [16]

1-19

1 Option Descriptions

Target chashort|int |lon |long |flo |doubl |long ptr [Default (endian |Align
r g |long |at |e double? sign of ment
char
mpc5xx 8 |16 32 (32 |64 32 |32 32 [64] |32 |signed |Big 32
[64] [16]
c18 8 |16 16 (32 |32 32 (32 32 16 |signed |Little 8
[24] [24]
x86 64 8 |16 32 |64 |64 32 |64 128 64 |signed |Little 64
[32] [32]
f
mcpu. . . 8 |[8[16]{16 |32 (32 32 |32 32[64] |16 |signed |Little 32
(Advanced)9|[16] [32] [64] [64] [32] [16,
8]

Targets for
NPX
CodeWarrior
compiler

See NXP CodeWarrior Compiler (-compiler codewarrior).

Targets for
Diab compiler

See Diab Compiler (-compiler diab).

Targets for
Green Hills
compiler

See Green Hills Compiler (-compiler greenhills).

Targets for
IAR
Embedded
Workbench
compiler

See IAR Embedded Workbench Compiler (-compiler iar-ew).

Targets for
Renesas
compiler

See Renesas Compiler (-compiler renesas).

Targets for
TASKING
compiler

See TASKING Compiler (-compiler tasking).

1-20

Target processor type (-target)

Target chashort|int |lon |long |flo |doubl |long ptr [Default (endian |Align

r g |long |at |e double? sign of ment
char

Targets for See Texas Instruments Compiler (-compiler ti).

Texas

Instruments

compiler

a. For targets where the size of Llong double is greater than 64 bits, the size used for computations is not always the

same as the size listed in this table. The exceptions are:

» For targets 1386, x86_64 and m68k, 80 bits are used for computations, following the practice in common
compilers.

* For the target tms320c3x, 40 bits are used for computation, following the TMS320C3x specifications.

e If you use a Visual compiler, the size of Llong double used for computations is the same as size of double,
following the specification of Visual C++ compilers.

The M68k family (68000, 68020, and so on) includes the “ColdFire” processor

Non-ANSI C specified keywords and compiler implementation-dependent pragmas and interrupt facilities are not taken

into account by this support

All kinds of pointers (near or far pointer) have 2 bytes (hc08) or 4 bytes (hc12) of width physically.

The c18 target supports the type short long as 24 bits in size.

Use option -long-is-32bits to support Microsoft C/C++ Win64 target.

mcpu is a reconfigurable Micro Controller/Processor Unit target. You can use this type to configure one or more

generic targets. For more information, see Generic target options.

oo

aQmo o

Tips

If your processor is not listed, use a similar processor that shares the same
characteristics, or create an mcpu generic target processor. If your target processor does
not match the characteristics of a predefined processor, contact MathWorks® technical

support.

Command-Line Information

Parameter: -target

Value: 1386 | sparc | m68k | powerpc | c-167 | tms320c¢3x | sharc21x61
| necv850 | hcO8 | hcl2 | mpc5xx | c18 | x86 64 | mcpu

Default: 1386

Example: polyspace-bug-finder-nodesktop -target m68k

You can override the default values for some targets by using specific command-line
options. See the section Command-Line Options in Generic target options.

1-21

1 Option Descriptions

See Also

Polyspace Results
Lower Estimate of Local Variable Size|Higher Estimate of Local
Variable Size

Topics
“Specify Polyspace Analysis Options”
“Specify Target Environment and Compiler Behavior”

1-22

NXP CodeWarrior Compiler (-compiler codewarrior)

NXP CodeWarrior Compiler (-compiler
codewarrior)

Specify NXP CodeWarrior compiler

Description

Specify codewarrior for Compiler (-compiler) if you compile your code using a
NXP CodeWarrior compiler. By specifying your compiler, you can avoid compilation errors
from syntax that is not part of the Standard but comes from language extensions.

Then, specify your target processor type. If you select codewarrior for Compiler, in the
user interface, you see only the processors allowed for a NXP CodeWarrior compiler. Your
choice of target processor determines the size of fundamental data types, the endianness

of the target machine and certain keyword definitions.

If you specify the codewarrior compiler, you must specify the path to your compiler
header files. See “Provide Standard Library Headers for Polyspace Analysis”.

Settings

To see the default sizes in bits for the fundamental types that the targets use, see the
contextual help.

Command-Line Information

Parameter: -compiler codewarrior -target

Value: s12z | powerpc

Default: s12z

Example: polyspace-bug-finder-nodesktop -compiler codewarrior -target
powerpc

See Also

Compiler (-compiler) |Target processor type (-target)

1-23

1 Option Descriptions

Topics
“Specify Target Environment and Compiler Behavior”

Introduced in R2018a

1-24

Diab Compiler (-compiler diab)

Diab Compiler (-compiler diab)

Specify the Wind River Diab compiler

Description

Specify diab for Compiler (-compiler) if you compile your code using the Wind River
Diab compiler. By specifying your compiler, you can avoid compilation errors from syntax
that is not part of the Standard but comes from language extensions.

Then, specify your target processor type. If you select diab for Compiler, in the user
interface, you see only the processors allowed for the Diab compiler. Your choice of target

processor determines the size of fundamental data types, the endianness of the target
machine and certain keyword definitions.

If you specify the diab compiler, you must specify the path to your compiler header files.
See “Provide Standard Library Headers for Polyspace Analysis”.

The software supports version 5.9.6 and older versions of the Diab compiler.

Settings

To see the default sizes in bits for the fundamental types that the targets use, see the
contextual help.

Tips

If you encounter errors during Polyspace analysis, see “Errors Related to Diab Compiler”.

Command-Line Information

Parameter: -compiler diab -target
Value: 1386 | powerpc | arm | coldfire | mips | mcore | rh850 | superh
| tricore

1-25

1 Option Descriptions

Default: powerpc
Example: polyspace-bug-finder-nodesktop -compiler diab -target
tricore

See Also

Compiler (-compiler) |Target processor type (-target)

Topics
“Specify Target Environment and Compiler Behavior”

Introduced in R2016b

1-26

Green Hills Compiler (-compiler greenhills)

Green Hills Compiler (-compiler
greenhills)

Specify Green Hills compiler

Description

Specify greenhills for Compiler (-compiler) if you compile your code using a
Green Hills compiler. By specifying your compiler, you can avoid compilation errors from
syntax that is not part of the Standard but comes from language extensions.

Then, specify your target processor type. If you select greenhills for Compiler, in the
user interface, you see only the processors allowed for a Green Hills compiler. Your choice
of target processor determines the size of fundamental data types, the endianness of the
target machine and certain keyword definitions.

If you specify the greenhills compiler, you must specify the path to your compiler
header files. See “Provide Standard Library Headers for Polyspace Analysis”.

Settings

To see the default sizes in bits for the fundamental types that the targets use, see the
contextual help.

Tips
» Ifyou encounter errors during a Polyspace analysis, see “Errors Related to Green Hills
Compiler”

* Polyspace supports the embedded configuration for the i386 target. If your x86 Green
Hills compiler is configured for native Windows® development, you can see
compilation errors or incorrect analysis results with Code Prover. Contact Technical
Support.

1-27

1 Option Descriptions

1-28

For instance, Green Hills compilers consider a size of 12 bytes for long double for
embedded targets, but 8 bytes for native Windows. Polyspace considers 12 bytes by
default.

» Ifyou create a Polyspace project from a build command that uses a Green Hills
compiler, the compiler options - filetype and -0s_dir are not implemented in the
project. To emulate the -0s_dir option, you can explicitly add the path argument of
the option as an include folder to your Polyspace project.

Command-Line Information

Parameter: -compiler greenhills -target

Value: powerpc | powerpc64 | arm | arm64 | tricore | rh850 | arm |
i386 | x86 64

Default: powerpc

Example: polyspace-bug-finder-nodesktop -compiler greenhills -target
arm

See Also

Compiler (-compiler) |Target processor type (-target)

Topics
“Specify Target Environment and Compiler Behavior”

Introduced in R2017b

IAR Embedded Workbench Compiler (-compiler iar-ew)

IAR Embedded Workbench Compiler (-
compiler iar-ew)

Specify IAR Embedded Workbench compiler

Description

Specify iar-ew for Compiler (-compiler) if you compile your code using a IAR
Embedded Workbench compiler. By specifying your compiler, you can avoid compilation
errors from syntax that is not part of the Standard but comes from language extensions.

Then, specify your target processor type. If you select iar-ew for Compiler, in the user
interface, you see only the processors allowed for a IAR Embedded Workbench compiler.
Your choice of target processor determines the size of fundamental data types, the
endianness of the target machine and certain keyword definitions.

If you specify the iar-ew compiler, you must specify the path to your compiler header
files. See “Provide Standard Library Headers for Polyspace Analysis”.

Settings

To see the default sizes in bits for the fundamental types that the targets use, see the
contextual help.

Tips

Polyspace does not support some constructs specific to the IAR compiler.

For the list of unsupported constructs, see codeprover limitations.pdf in
matlabroot\polyspace\verifier\code prover. Here, matlabroot is the
MATLAB® installation folder, for instance, C:\Program Files\MATLAB\R2017b.

1-29

1 Option Descriptions

Command-Line Information

Parameter: -compiler iar-ew -target

Value: arm | avr | msp430 | rh850 | rl78

Default: arm

Example: polyspace-bug-finder-nodesktop -compiler iar-ew -target rl78

See Also

Compiler (-compiler) |Target processor type (-target)

Topics
“Specify Target Environment and Compiler Behavior”

Introduced in R2018a

1-30

Renesas Compiler (-compiler renesas)

Renesas Compiler (-compiler renesas)

Specify Renesas compiler

Description

Specify renesas for the Compiler (-compiler) option if you compile your code with a
Renesas compiler. By specifying your compiler, you can avoid compilation errors from
syntax that is not part of the Standard but comes from language extensions.

Then, specify your target processor type. If you select renesas for Compiler, in the user
interface, you see only the processors allowed for a Renesas compiler. Your choice of
target processor determines the size of fundamental data types, the endianness of the
target machine, and certain keyword definitions.

If you specify the renesas compiler, you must specify the path to your compiler header
files. See “Provide Standard Library Headers for Polyspace Analysis”.

Settings

To see the default sizes in bits for the fundamental types that the targets use, see the
contextual help.

Command-Line Information

Parameter: -compiler renesas -target

Value: r178 | rh850 | rx

Default: r178

Example: polyspace-bug-finder-nodesktop -compiler renesas -target rx

See Also

Compiler (-compiler) |Target processor type (-target)

1-31

1 Option Descriptions

Topics
“Specify Target Environment and Compiler Behavior”

Introduced in R2018b

1-32

TASKING Compiler (-compiler tasking)

TASKING Compiler (-compiler tasking)

Specify the Altium TASKING compiler

Description

Specify tasking for Compiler (-compiler) if you compile your code using the
Altium® TASKING compiler. By specifying your compiler, you can avoid compilation errors
from syntax that is not part of the Standard but comes from language extensions.

Then, specify your target processor type. If you select tasking for Compiler, in the user
interface, you see only the processors allowed for the TASKING compiler. Your choice of
target processor determines the size of fundamental data types, the endianness of the
target machine and certain keyword definitions.

If you specify the tasking compiler, you must specify the path to your compiler header
files. See “Provide Standard Library Headers for Polyspace Analysis”.

The software supports different versions of the TASKING compiler, depending on the
target:

* TriCore: 6.0 and older versions
* (C166: 4.0 and older versions
* ARM: 5.2 and older versions
* RH850: 2.2 and older versions

Settings

To see the default sizes in bits for the fundamental types that the targets use, see the
contextual help.

Tips

* Polyspace does not support some constructs specific to the TASKING compiler.

1-33

1 Option Descriptions

1-34

For the list of unsupported constructs, see codeprover limitations.pdf in
matlabroot\polyspace\verifier\code prover. Here, matlabroot is the
MATLAB installation folder, for instance, C:\Program Files\MATLAB\R2017b.

* The CPU used is TC1793. If you use a different CPU, set the following analysis options
in your project:

* Disabled preprocessor definitions (-U): Undefine the macro
~ CPU TC1793B .

* Preprocessor definitions (-D): Define the macro CPU_ . Enter
_ CPU__ =xxx, where xxx is the name of your CPU.

Additionally, define the equivalent of the macro CPU TC1793B for your CPU.
For instance, enter CPU TC1793A .

Instead of manually specifying your compiler, if you trace your build command
(makefile), Polyspace can detect your CPU and add the required definitions in your
project.

» For some errors related to TASKING compiler-specific constructs, see solutions in
“Errors Related to TASKING Compiler”.

Command-Line Information

Parameter: -compiler tasking -target

Value: tricore | c166 | rh850 | arm

Default: tricore

Example: polyspace-bug-finder-nodesktop -compiler tasking -target
tricore

See Also

Compiler (-compiler) | Target processor type (-target)

Topics
“Specify Target Environment and Compiler Behavior”

Introduced in R2017a

Texas Instruments Compiler (-compiler ti)

Texas Instruments Compiler (-compiler ti)

Specify Texas Instruments compiler

Description

Specify ti for Compiler (-compiler) if you compile your code using a Texas
Instruments compiler. By specifying your compiler, you can avoid compilation errors from
syntax that is not part of the Standard but comes from language extensions.

Then, specify your target processor type. If you select ti for Compiler, in the user
interface, you see only the processors allowed for a Texas Instruments compiler. Your
choice of target processor determines the size of fundamental data types, the endianness
of the target machine and certain keyword definitions.

If you specify the ti compiler, you must specify the path to your compiler header files.
See “Provide Standard Library Headers for Polyspace Analysis”.

Settings

To see the default sizes in bits for the fundamental types that the targets use, see the
contextual help.

Tips
Polyspace does not support some constructs specific to the Texas Instruments compiler.
For the list of unsupported constructs, see codeprover limitations.pdfin

matlabroot\polyspace\verifier\code prover. Here, matlabroot is the MATLAB
installation folder, for instance, C:\Program Files\MATLAB\R2017b.

Command-Line Information

Parameter: -compiler ti -target

1-35

1 Option Descriptions

Value: c28x | c6000 | arm | msp430
Default: c28x
Example: polyspace-bug-finder-nodesktop -compiler ti -target msp430

See Also

Compiler (-compiler) |Target processor type (-target)

Topics
“Specify Target Environment and Compiler Behavior”

Introduced in R2018a

1-36

Generic target options

Generic target options

Specify size of data types and endianness by creating your own target processor

Description

The Generic target options dialog box opens when you set the Target processor type
to mcpu.

Allows the specification of a generic “Micro Controller/Processor Unit" target. Use the
dialog box to specify the name of a new mcpu target, for example MyTarget. That new
target is added to the Target processor type option list.

Changing the genetic target has consequences for:

* Detection of overflow
* Computation of sizeof objects

The Target processor type option is available on the Target & Compiler node in the
Configuration pane.

Settings

Default characteristics of a new target: listed as type [size]

e char [8]

* short [16]

e int [16]

* long [32]

* longlong [32]

* float [32]

* double [32]

* long double [32]

1-37

1 Option Descriptions

* pointer [16]
* charis signed

* endianness is little-endian

Dependency

A custom target can only be created when Target processor type (-target) isset

to mcpu.

A custom target is not available when Compiler (-compiler) is setto one of the

visual* options.

Command-Line Options

When using the command line, specify your target with the other target specification

options.
Option Description Available |Example
With
-little-endian Little-endian mcpu polyspace-bug-finder-

architectures are
Less Significant byte
First (LSF). For
example: i386.

Specifies that the
less significant byte
of a short integer
(e.g. 0x00FF) is
stored at the first
byte (0xFF) and the
most significant byte
(0x00) at the second
byte.

nodesktop -target mcpu -
little-endian

1-38

Generic target options

Option Description Available |Example
With
-big-endian Big-endian mcpu polyspace-bug-finder-

architectures are
Most Significant
byte First (MSF). For
example: SPARC,
m68k.

Specifies that the
most significant byte
of a short integer
(e.g. 0x00FF) is
stored at the first
byte (0x00) and the
less significant byte
(OxFF) at the second
byte.

nodesktop -target mcpu -
big-endian

-default-sign-of-char
[signed | unsigned]

Specify default sign
of char.

signed: Specifies
that char is signed,
overriding target’s
default.

unsigned: Specifies
that char is
unsigned, overriding
target’s default.

All targets

polyspace-bug-finder-
nodesktop -default-sign-
of-char unsigned -target
mcpu

-char-is-16bits

char defined as 16
bits and all objects
have a minimum
alignment of 16 bits

Incompatible with -
short-is-8bits
and -align 8

mcpu

polyspace-bug-finder-
nodesktop -target mcpu -
char-is-16bits

1-39

1 Option Descriptions

Option Description Available |Example
With

-short-is-8bits Define shortas 8 |mcpu polyspace-bug-finder-
bits, regardless of nodesktop -target mcpu
sign short-is-8bits

-int-is-32bits Define int as 32 mcpu, hc08, |polyspace-bug-finder-
bits, regardless of |hcl2, nodesktop -target mcpu
sign. Alignment is mpc5xx int-is-32bits
also set to 32 bits.

-long-is-32bits Define long as 32 |All targets |polyspace-bug-finder-
bits, regardless of nodesktop -target mcpu
sign. Alignment is long-is-32bits
also set to 32 bhits.

If your project sets
int to 64 bits, you
cannot use this
option.
-long-long-is-64bits |Define long long [mcpu polyspace-bug-finder-

as 64 bits,
regardless of sign.
Alignment is also set
to 64 bits.

nodesktop -target mcpu
long-long-is-64bits

-double-is-64bits Define double and |mcpu, polyspace-bug-finder-
long double as 64 |sharc21x6 |nodesktop -target mcpu
bits, regardless of 1, hc08, double-is-64bits
sign. hcl2,

mpc5xx

-pointer-is-24bits Define pointer as 24 |c18 polyspace-bug-finder-
bits, regardless of nodesktop -target c18 -
sign. pointer-is-24bits

-pointer-is-32bits Define pointer as 32 |mcpu polyspace-bug-finder-

bits, regardless of
sign.

nodesktop -target mcpu
pointer-is-32bits

1-40

Generic target options

Option

Description

Available
With

Example

-align [32]16]8]

Specifies the largest
alignment of struct
or array objects to
the 32, 16 or 8 bit
boundaries.

Consequently, the
array or struct
storage is strictly
determined by the
size of the individual
data objects without
member and end
padding.

mcpu, hcos,
hcl2,
mpc5xx.

Other than
mcpu, all
targets
support only
16 or 32
bits.

polyspace-bug-finder-
nodesktop -target mcpu -
align 16

Common Generic Targets

The following tables describe the characteristics of common generic targets.

ST7 (Hiware C compiler : HiCross for ST7)

ST7 char |short |i long long float |doubl |long |ptr char is |endia
long e doubl n
e
size 8 16 32 32 32 32 32 16/32 |unsigne |Big
d
alignment |8 16/8 |16/8 |32/16/8 |32/16/8 |32/16/8 |32/16/ |32/16/ |32/16/ |N/A N/A
8 8 8

1-41

1 Option Descriptions

ST9 (GNU C compiler : gcc9 for ST9)

size 8 16 16 |32 32 32 64 64 16/64 |unsigne |Big
d
alignment |8 8 8 8 8 8 8 8 8 N/A N/A

Hitachi H8/300, H8/300L

size 8 16 16/3 |32 64 32 654 64 16 unsigne |Big
2 d
alignment |8 16 16 |16 16 16 16 16 16 N/A N/A

Hitachi H8/300H, H8S, H8C, H8/Tiny

size 8 16 16/ |32 64 32 64 64 32 unsigne |Big
32 d
alignment |8 16 32/ |32/16 |32/16 |32/16 |32/16 |(32/16 |32/16 |N/A N/A
16
See Also

Target processor type (-target)

Topics
“Specify Target Environment and Compiler Behavior”

Sfr type support (-sfr-types)

Sfr type support (-sfr-types)

Specify sizes of sfr types for code developed with Keil or IAR compilers

Description

Specify sizes of sfr types (types that define special function registers).

Set Option

User interface: In your project configuration, the option is on the Target & Compiler
node. See “Dependency” on page 1-43 for other options you must also enable.

Command line: Use the option -sfr-types. See “Command-Line Information” on page
1-44.

Why Use This Option

Use this option if you have statements such as sfr addr = 0x80; in your code. sfr
types are not standard C types. Therefore, you must specify their sizes explicitly for the
Polyspace analysis.

Settings
No Default

List each sfr name and its size in bits.

Dependency

This option is available only when Compiler (-compiler) issetto keil or iar.

1-43

1 Option Descriptions

Command-Line Information

Syntax: -sfr-types sfr _name=size in bits,...

No Default

Name Value: an sfr name such as sfrl6.

Size Value: 8 | 16 | 32

Example: polyspace-bug-finder-nodesktop -lang c -compiler iar -sfr-
types sfr=8,sfrl6=16 ...

See Also

Topics

“Specify Polyspace Analysis Options”

“Specify Target Environment and Compiler Behavior”
“Supported Keil or IAR Language Extensions”

1-44

Division round down (-div-round-down)

Division round down (-div-round-down)
Round down quotients from division or modulus of negative numbers instead of rounding

up

Description

Specify whether quotients from division and modulus of negative numbers are rounded up
or down.

Note a = (a / b) * b + a % b isalways true.

Set Option

User interface: In your project configuration, the option is on the Target & Compiler
node.

Command line: Use the option -div-round-down. See “Command-Line Information” on
page 1-46.

Why Use This Option
Use this option to emulate your compiler.

The option is relevant only for compilers following C90 standard (ISO/IEC 9899:1990).
The standard stipulates that "if either operand of / or % is negative, whether the result of
the / operator, is the largest integer less or equal than the algebraic quotient or the
smallest integer greater or equal than the quotient, is implementation defined, same for
the sign of the % operator". The standard allows compilers to choose their own
implementation.

For compilers following the C99 standard ((ISO/IEC 9899:1999), this option is not
required. The standard enforces division with rounding towards zero (section 6.5.5).

1-45

1 Option Descriptions

1-46

Settings

¥ On
If either operand / or % is negative, the result of the / operator is the largest integer
less than or equal to the algebraic quotient. The result of the % operator is deduced
froma % b=a - (a/ b) * b.
Example: assert(-5/3 == -2 && -5%3 == 1); istrue.

Off (default)

If either operand of / or % is negative, the result of the / operator is the smallest
integer greater than or equal to the algebraic quotient. The result of the % operator is
deduced froma % b =a - (a / b) * b.

This behavior is also known as rounding towards zero.

Example: assert(-5/3 == -1 && -5%3 == -2); istrue.

Command-Line Information

Parameter: -div-round-down
Default: Off
Example: polyspace-bug-finder-nodesktop -div-round-down

See Also

Topics
“Specify Polyspace Analysis Options”
“Specify Target Environment and Compiler Behavior”

Enum type definition (-enum-type-definition)

Enum type definition (-enum-type-
definition)

Specify how to represent an enum with a base type

Description

Allow the analysis to use different base types to represent an enumerated type, depending
on the enumerator values and the selected definition. When using this option, each enum
type is represented by the smallest integral type that can hold its enumeration values.

This option is available on the Target & Compiler node in the Configuration pane.

Set Option

User interface: In your project configuration, the option is on the Target & Compiler
node.

Command line: Use the option -enum-type-definition. See “Command-Line
Information” on page 1-49.

Why Use This Option

Your compiler represents enum variables as constants of a base integer type. Use this
option so that you can emulate your compiler.

To check your compiler settings, compile this code using the compiler settings that you
typically use:

#include <assert.h>
#include <limits.h>

enum { MAXSIGNEDBYTE=127 } mysmallenum t;
int dummy[(int)sizeof(mysmallenum t) - (int)sizeof(int)]; /* Breakpoint 1 */

enum { MYMAXINT = INT MAX } myintenum t;
int main(void) {

1-47

1 Option Descriptions

assert((MYMAXINT + 1) < 0); /* Breakpoint 2 */
assert((MYMAXINT + 1) >= 0); /* Breakpoint 3 */
assert(0); /* Breakpoint 4 */

return 0;

}

If compilation does not fail even at breakpoint 4, your assert statements do not behave
as expected. Check your compiler documentation and change your compiler settings. If
compilation fails at:

* Breakpoint 1: Use defined-by-compiler for this option.

* Breakpoint 2: Use auto-signed- first for this option.

* Breakpoint 3: Use auto-unsigned-first for this option.

Settings

Default: defined-by-compiler

defined-by-compiler
Uses the signed integer type for all compilers except gnu, clang and tasking.
For the gnu and clang compilers, it uses the first type that can hold all of the

enumerator values from this list: signed int, unsigned int, signed long,
unsigned long, signed long long, and unsigned long long.

For the tasking compiler, it uses the first type that can hold all of the enumerator
values from this list: char, unsigned char, short, unsigned short, int, and
unsigned int.

auto-signed-first

Uses the first type that can hold all of the enumerator values from this list: signed
char, unsigned char, signed short, unsigned short, signed int, unsigned
int, signed long, unsigned long, signed long long, and unsigned long
long.

auto-unsigned-first

Uses the first type that can hold all of the enumerator values from these lists:

1-48

Enum type definition (-enum-type-definition)

» If enumerator values are positive: unsigned char, unsigned short, unsigned
int, unsigned long, and unsigned long long.

* If one or more enumerator values are negative: signed char, signed short,
signed isnt, signed long, and signed long long.

Command-Line Information

Parameter: -enum-type-definition

Value: defined-by-compiler | auto-signed-first | auto-unsigned-first
Default: defined-by-compiler

Example: polyspace-bug-finder-nodesktop -enum-type-definition auto-
signed-first

See Also

Topics
“Specity Polyspace Analysis Options”
“Specify Target Environment and Compiler Behavior”

1-49

1 Option Descriptions

Signed right shift (-logical-signed-right-
shift)

Specify how to treat the sign bit for logical right shifts on signed variables

Description

Choose between arithmetic and logical shift for right shift operations on negative values.

This option does not modify compile-time expressions. For more details, see “Limitation”
on page 1-51.

Set Option

User interface: In your project configuration, the option is on the Target & Compiler
node.

Command line: Use the option -logical-signed-right-shift. See “Command-Line
Information” on page 1-51.

Why Use This Option

The C99 Standard (sec 6.5.7) states that for a right-shift operation x1>>x2, if x1 is signed
and has negative values, the behavior is implementation-defined. Different compilers
choose between arithmetic and logical shift. Use this option to emulate your compiler.

Settings
Default: Arithmetical

Arithmetical
The sign bit remains:

(-4) > 1= -2
(-7) > 1= -4
7 >1=3

Signed right shift (-logical-signed-right-shift)

Logical
0 replaces the sign bit:

(-4) >> 1 = (-4U) >> 1 = 2147483646
(-7) >> 1 = (-7U) >> 1 = 2147483644
7 > 1=3
Limitation

In compile-time expressions, this Polyspace option does not change the standard behavior
for right shifts.

For example, consider this right shift expression:
int arr[((-4) >> 20) 1;

The compiler computes array sizes, so the expression (-4) >> 20 is evaluated at
compilation time. Logically, this expression is equivalent to 4095. However, arithmetically,
the result is -1. This statement causes a compilation error (arrays cannot have negative
size) because the standard right-shift behavior for signed integers is arithmetic.

Command-Line Information

When using the command line, arithmetic is the default computation mode. When this
option is set, logical computation is performed.

Parameter: -logical-signed-right-shift

Default: Arithmetic signed right shifts

Example: polyspace-bug-finder-nodesktop -logical-signed-right-shift

See Also

Topics
“Specify Polyspace Analysis Options”
“Specify Target Environment and Compiler Behavior”

1-51

1 Option Descriptions

Block charl6/32_t types (-no-uliterals)

Disable Polyspace definitions for charl6 tor char32 t

Description

Specify that the analysis must not define charl6 t or char32 t types.

Set Option

User interface: In your project configuration, the option is on the Target & Compiler
node. See “Dependencies” on page 1-53 for other options you must also enable.

Command line: Use the option -no-uliterals. See “Command-Line Information” on

page 1-53.

Why Use This Option

If your compiler defines charl6 t and/or char32 t through a typedef statement or by
using includes, use this option to turn off the standard Polyspace definition of charl6 t
and char32_t.

To check if your compiler defines these types, compile this code using the compiler
settings that you typically use:

typedef unsigned short charl6 t;
typedef unsigned long char32 t;

If the file compiles, it means that your compiler has already defined charl6 t and
char32 t. Enable this Polyspace option.

Settings

41 0n
The analysis does not allow charl6 t and char32 t types.

1-52

Block charl6/32_t types (-no-uliterals)

Off (default)
The analysis allows charl6 t and char32 t types.

Dependencies

You can select this option only when these conditions are true:

* Source code language (-lang) is CPP or C-CPP.
* Compiler (-compiler) iseither generic or a gnu version.

Command-Line Information

Parameter: -no-uliterals

Default: off

Example: polyspace-bug-finder-nodesktop -lang cpp -compiler gnu4.7 -
cpp-version cppll -no-uliterals

See Also

C++ standard version (-cpp-version) | Compiler (-compiler)

Topics
“Specity Polyspace Analysis Options”
“Specity Target Environment and Compiler Behavior”

1-53

1 Option Descriptions

Pack alignment value (-pack-alignment-
value)

Specify default structure packing alignment for code developed in Visual C++

Description

Specify the default packing alignment (in bytes) for structures, unions, and class
members.

Set Option

User interface: In your project configuration, the option is on the Target & Compiler
node.

Command line: Use the option -pack-alignment-value. See “Command-Line
Information” on page 1-55.

Why Use This Option

If you use compiler options to specify how members of a structure are packed into
memory, use this option to emulate your compiler.

For instance, if you use the Visual Studio option /Zp to specify an alignment, use this
option for your Polyspace analysis.

If you use #pragma pack directives in your code to specify alignment, and also specify

this option for analysis, the #pragma pack directives take precedence. See “#pragma
Directives” (Polyspace Code Prover).

Settings
Default: 8

You can enter one of these values:

https://msdn.microsoft.com/en-us/library/xh3e3fd0.aspx

Pack alignment value (-pack-alignment-value)

.
coO B N -

+ 16

Command-Line Information

Parameter: -pack-alignment-value

Value:1 | 2 | 4| 8 | 16

Default: 8

Example: polyspace-bug-finder-nodesktop -compiler visuall@ -pack-
alignment-value 4

See Also

Topics
“Specify Polyspace Analysis Options”
“Specify Target Environment and Compiler Behavior”

1-55

1 Option Descriptions

1-56

Ignore pragma pack directives (-ignore-
pragma-pack)

Ignore #pragma pack directives

Description

Specify that the analysis must ignore #pragma pack directives in the code.

Set Option

User interface: In your project configuration, the option is on the Target & Compiler
node.

Command line: Use the option -ignore-pragma-pack. See “Command-Line
Information” on page 1-57.

Why Use This Option

Use this option if #pragma pack directives in your code cause linking errors.

For instance, you have two structures with the same name in your code, but one
declaration follows a #pragma pack(2) statement. Because the default alignment is 8
bytes, the different packing for the two structures causes a linking error. Use this option
to avoid such errors. See also “#pragma Directives” (Polyspace Code Prover).

Settings

¥/ On
The analysis ignores the #pragma directives.
Off (default)
The analysis takes into account specifications in the #pragma directives.

Ignore pragma pack directives (-ignore-pragma-pack)

Command-Line Information

Parameter: -ignore-pragma-pack
Default: Off
Example: polyspace-bug-finder-nodesktop -ignore-pragma-pack

See Also

1-57

1 Option Descriptions

1-58

Management of size t (-size-t-type-1is)

Specify the underlying data type of size t

Description

Specify the underlying data type of size t explicitly: unsigned int, unsigned long
or unsigned long long. If you do not specify this option, your choice of compiler
determines the underlying type.

Set Option

User interface: In your project configuration, the option is on the Target & Compiler
node.

Command line: Use the option -size-t-type-is. See “Command-Line Information” on
page 1-59.

Why Use This Option

The analysis associates a data type with size t when you specify your compiler. If you
use a compiler option that changes this default type, emulate your compiler option by
using this analysis option.

If you run into compilation errors during Polyspace analysis and trace the error to the
definition of size t, it is possible that you use a compiler option and change your
compiler default. To probe further, compile this code with your compiler using the options
that you typically use:

/* Header defines malloc as void* malloc (size t size)
#include <stdio.h>

void* malloc (unsigned int size);

If the file does not compile, your compiler options cause size t to be defined as
unsigned longor unsigned long long. Replace unsigned int with unsigned
long and try again.

Management of size_t (-size-t-type-is)

Settings

Default: defined-by-compiler

defined-by-compiler

Your specification for Compiler (-compiler) determines the underlying type of
size t.

unsigned-int

The analysis considers unsigned int as the underlying type of size t
unsigned-long

The analysis considers unsigned long as the underlying type of size t.
unsigned-long-long

The analysis considers unsigned long long as the underlying type of size t.

Command-Line Information

Parameter: -size-t-type-is

Value: defined-by-compiler | unsigned-int | unsigned-long | unsigned-long-
long

Default: defined-by-compiler

Example: polyspace-bug-finder-nodesktop -size-t-type-is unsigned-long

See Also

Topics
“Specify Polyspace Analysis Options”
“Specify Target Environment and Compiler Behavior”

1-59

1 Option Descriptions

1-60

Management of wchar t (-wchar-t-type-is)

Specify the underlying data type of wchar t

Description

Specify the underlying data type of wchar_t explicitly. If you do not specify this option,
your choice of compiler determines the underlying type.

Set Option

User interface: In your project configuration, the option is on the Target & Compiler
node.

Command line: Use the option -wchar-t-type-is. See “Command-Line Information”
on page 1-61.

Why Use This Option

The analysis associates a data type with wchar_ t when you specify your compiler. If you
use a compiler option that changes this default type, emulate your compiler option by
using this analysis option.

Settings

Default: defined-by-compiler

defined-by-compiler

Your specification for Compiler (-compiler) determines the underlying type of
wchar_t.

signed-short

The analysis considers signed short as the underlying type of wchar_t.
unsigned-short

The analysis considers unsigned short as the underlying type of wchar_t.

Management of wchar_t (-wchar-t-type-1is)

signed-int

The analysis considers signed int as the underlying type of wchar_t.
unsigned-int

The analysis considers unsigned int as the underlying type of wchar_t.
signed-long

The analysis considers signed long as the underlying type of wchar t.
unsigned-long

The analysis considers unsigned long as the underlying type of wchar_t.

Command-Line Information

Parameter: -wchar-t-type-is

Value: defined-by-compiler | signed-short | unsigned-short | signed-
int | unsigned-int | signed-long | unsigned-long

Default: defined-by-compiler

Example: polyspace-bug-finder-nodesktop -wchar-t-type-is signed-int

See Also

Topics
“Specify Polyspace Analysis Options”
“Specify Target Environment and Compiler Behavior”

1-61

1 Option Descriptions

1-62

Ignore link errors (-no-extern-c)

Ignore certain linking errors

Description

Specify that the analysis must ignore certain linking errors.

Set Option

User interface: In your project configuration, the option is on the Environment
Settings node. See “Dependency” on page 1-63 for other options that you must also
enable.

Command line: Use the option -no-extern-C. See “Command-Line Information” on
page 1-63.

Why Use This Option

Some functions may be declared inside an extern "C" { } block in some files and not
in others. Then, their linkage is not the same and it causes a link error according to the
ANSI standard.

Applying this option will cause Polyspace to ignore this error. This permissive option may
not resolve all the extern C linkage errors.

Settings

+| On

Ignore linking errors if possible.

Off (default)
Stop analysis for linkage errors.

Ignore link errors (-no-extern-c)

Dependency

This option is available only if you set Source code language (-lang) to CPPor C-
CPP.

Command-Line Information

Parameter: -no-extern-C
Default: off
Example: polyspace-bug-finder-nodesktop -lang cpp -no-extern-C

See Also

Topics
“Specify Polyspace Analysis Options”

1-63

1 Option Descriptions

1-64

Preprocessor definitions (-D)

Replace macros in preprocessed code

Description

Replace macros with their definitions in preprocessed code.

Set Option

User interface: In your project configuration, the option is on the Macros node.

Command line: Use the option -D. See “Command-Line Information” on page 1-66.

Why Use This Option

Use this option to emulate your compiler behavior. For instance, if your compiler
considers a macro WIN32 as defined when you build your code, it executes code in a
#ifdef WIN32 statement. If Polyspace does not consider that macro as defined, you
must use this option to replace the macro with 1.

Depending on your settings for Compiler (-compiler), some macros are defined by
default. Use this option to define macros that are not implicitly defined.

Typically, you recognize from compilation errors that a certain macro is not defined. For
instance, the following code does not compile if the macro WIN32 is not defined.

#ifdef WIN32
int env _var;
#endif

void set() {
env_var=l;

}

The error message states that env_var is undefined. However, the definition of env_var
isin the #ifdef WIN32 statement. The underlying cause for the error is that the macro
_WIN32 is not defined. You must define WIN32.

Preprocessor definitions (-D)

Settings

No Default

Using the I:II_II:I button, add a row for the macro you want to define. The definition must be
in the format Macro=Value. If you want Polyspace to ignore the macro, leave the Value
blank.

For example:

namel=name2 replaces all instances of namel by name2.
name= instructs the software to ignore name.

name with no equals sign or value replaces all instances of name by 1. To define a
macro to execute code in a #ifdef macro name statement, use this syntax.

Tips

If Polyspace does not support a non-ANSI keyword and shows a compilation error, use
this option to replace all occurrences of the keyword with a blank string in
preprocessed code. The replacement occurs only for the purposes of the analysis. Your
original source code remains intact.

For instance, if your compiler supports the far keyword, to avoid compilation
errors:

* Inthe user interface, enter far=.
* On the command line, use the flag -D far=.

The software replaces the far keyword with a blank string during preprocessing.
For example:

int far* pValue;
is converted to:

int * pValue;

Polyspace recognizes keywords such as restrict and does not allow their use as
identifiers. If you use those keywords as identifiers (because your compiler does not
recognize them as keywords), replace the disallowed name with another name using

1-65

1 Option Descriptions

this option. The replacement occurs only for the purposes of the analysis. Your original
source code remains intact.

For instance, to allow use of restrict as identifier:

* In the user interface, enter restrict=my restrict.
* On the command line, use the flag -D restrict=my restrict.

Command-Line Information

You can specify only one flag with each -D option. However, you can specify the option
multiple times.

Parameter: -D

No Default

Value: flag=value

Example: polyspace-bug-finder-nodesktop -D HAVE MYLIB -D int32 t=int

See Also

Disabled preprocessor definitions (-U)

Topics
“Specify Polyspace Analysis Options”

1-66

Disabled preprocessor definitions (-U)

Disabled preprocessor definitions (-U)

Undefine macros in preprocessed code

Description

Undefine macros in preprocessed code.

Set Option

User interface: In your project configuration, the option is on the Macros node.

Command line: Use the option -U. See “Command-Line Information” on page 1-68.

Why Use This Option

Use this option to emulate your compiler behavior. For instance, if your compiler
considers a macro WIN32 as undefined when you build your code, it executes code in a
#ifndef WIN32 statement. If Polyspace considers that macro as defined, you must
explicitly undefine the macro.

Some settings for Compiler (-compiler) enable certain macros by default. This option
allows you undefine the macros.

Typically, you recognize from compilation errors that a certain macro must be undefined.
For instance, the following code does not compile if the macro WIN32 is defined.

#ifndef WIN32
int env var;
#endif

void set() {
env_var=l;

}

The error message states that env_var is undefined. However, the definition of env_var
isin the #ifndef WIN32 statement. The underlying cause for the error is that the
macro WIN32 is defined. You must undefine WIN32.

1-67

1 Option Descriptions

Settings

No Default

Using the I:II_II:I button, add a new row for each macro being undefined.

Command-Line Information

You can specify only one flag with each -U option. However, you can specify the option
multiple times.

Parameter: -U

No Default

Value: macro

Example: polyspace-bug-finder-nodesktop -U HAVE MYLIB -U USE COM1

See Also

Preprocessor definitions (-D)

Topics
“Specify Polyspace Analysis Options”

1-68

Code from DOS or Windows file system (-dos)

Code from DOS or Windows file system (-
dos)

Consider that file paths are in MS-DOS style

Description

Specify that DOS or Windows files are provided for analysis.

Set Option

User interface: In your project configuration, the option is on the Environment
Settings node.

Command line: Use the option -dos. See “Command-Line Information” on page 1-70.

Why Use This Option

Use this option if the contents of the Include or Source folder come from a DOS or
Windows file system. The option helps you resolve case sensitivity and control character
issues.

Settings

¥| On (default)
Analysis understands file names and include paths for Windows/DOS files

For example, with this option,
#include "..\mY _TEst.h""M
#include "..\mY _other FILE.H""M

resolves to:

1-69

1 Option Descriptions

#include "../my test.h"
#include "../my other file.h"

In this mode, you see an error if your include folder has header files whose names
differ only in case.

Off
Characters are not controlled for files names or paths.

Command-Line Information

Parameter: -dos

Default: Off

Example: polyspace-bug-finder-nodesktop -dos -I ./
my copied include dir -D test=1

See Also

Topics
“Specify Polyspace Analysis Options”

Stop analysis if a file does not compile (-stop-if-compile-error)

Stop analysis if a file does not compile (-
stop-if-compile-error)

Specify that a compilation error must stop the analysis

Description

Specify that even a single compilation error must stop the analysis.

Set Option

User interface: In the Configuration pane, the option is on the Environment Settings
node.

Command line: Use the option -stop-if-compile-error. See “Command-Line
Information” on page 1-72.

Why Use This Option

Use this option to first resolve all compilation errors and then perform the Polyspace
analysis. This sequence ensures that all files are analyzed.

Otherwise, only files without compilation errors are fully analyzed. The analysis might
return some results for files that do not compile. If a file with compilation errors contains
a function definition, the analysis considers the function undefined. This assumption can
sometimes make the analysis less precise.

The option is more useful for a Code Prover analysis because the Code Prover run-time
checks rely more heavily on range propagation across functions.

Settings

4/ On
The analysis stops even if a single compilation error occurs.

1-71

1 Option Descriptions

1-72

Type

0O OCE

You see the compilation errors on the Qutput Summary pane.

Message File Lire Cof
 werification skarts at Thu Dec 17 22:26:17 2015
& coreds) detecked buk the verification uses 4 coreis),
identifier "x" is undefined my_file.c 1
Failed compilation, my_file.c
verifier has detected compilation errors) in the code.
Exiting because of previous error

For information on how to resolve the errors, see “Troubleshoot Compilation and
Linking Errors” (Polyspace Code Prover).

Despite compilation errors, you can see some analysis results, for instance, coding
rule violations.

Off (default)

The analysis does not stop because of compilation errors, but only files without
compilation errors are analyzed. The analysis does not consider files that do not
compile. If a file with compilation errors contains a function definition, the analysis
considers the function undefined. If the analysis needs the definition of such a
function, it makes broad assumptions about the function.

* The function return value can take any value in the range allowed by its data type.
* The function can modify arguments passed by reference so that they can take any
value in the range allowed by their data types.

If the assumptions are too broad, the analysis can be less precise. For instance, a run-
time check can flag an operation in orange even though it does not fail in practice.

If compilation errors occur, the Dashboard pane has a link, which shows that some
files failed to compile. You can click the link and see the compilation errors on the
Output Summary pane.

Command-Line Information
Parameter:-stop-if-compile-error
Default: Off

Example: polyspace-bug-finder-nodesktop -sources filename -stop-if-
compile-error

Stop analysis if a file does not compile (-stop-if-compile-error)

See Also

Topics
“Specify Polyspace Analysis Options”

Introduced in R2017a

1-73

1 Option Descriptions

Command/script to apply to preprocessed
files (-post-preprocessing-command)

Specify command or script to run on source files after preprocessing phase of analysis

Description

Specify a command or script to run on each source file after preprocessing.

Set Option

User interface: In your project configuration, the option is on the Environment
Settings node.

Command line: Use the option -post-preprocessing-command. See “Command-Line
Information” on page 1-76.

Why Use This Option

You can run scripts on preprocessed files to work around compilation errors or
imprecisions of the analysis while keeping your original source files untouched. For
instance, suppose Polyspace does not recognize a compiler-specific keyword. If you are
certain that the keyword is not relevant for the analysis, you can run a Perl script to
remove all instances of the keyword. When you use this option, the software removes the
keyword from your preprocessed code but keeps your original code untouched.

Use a script only if the existing analysis options do not meet your requirements. For
instance:

* For direct replacement of one keyword with another, use the option Preprocessor
definitions (-D).

However, the option does not allow search and replacement involving regular
expressions. For regular expressions, use a script.

» For mapping your library function to a standard library function, use the option -
function-behavior-specifications.

Command/script to apply to preprocessed files (-post-preprocessing-command)

However, the option supports mapping to only a subset of standard library functions.
To map to an unsupported function, use a script.

If you are unsure about removing or replacing an unsupported construct, do not use this
option. Contact MathWorks Support for guidance.

Settings

No Default

Enter full path to the command or script or click . navigate to the location of the
command or script. This script is executed before verification.

Tips

Your script must be designed to process the standard output from preprocessing and
produce its results in accordance with that standard output.

Your script must preserve the number of lines in the preprocessed file. In other words,
it must not add or remove entire lines to or from the file.

Adding a line or removing one can potentially result in some unpredictable behavior
on the location of checks and macros in the Polyspace user interface.

For a Perl script, in Windows, specify the full path to the Perl executable followed by
the full path to the script.
For example:

» To specify a Perl command that replaces all instances of the far keyword, enter
matlabroot\sys\perl\win32\bin\perl.exe -p -e "s/far//g".

* To specify a Perl script replace keyword.pl that replaces all instances of a
keyword, enter matlabroot\sys\perl\win32\bin\perl.exe
absolute path\replace keyword.pl.

Here, matlabroot is the location of the current MATLAB installation such as C:
\Program Files\MATLAB\R2015b\ and absolute path is the location of the Perl
script. If the paths contain spaces, use quotes to enclose the full path names.

1-75

1 Option Descriptions

1-76

Use this Perl script as template. The script removes all instances of the far keyword.
#!/usr/bin/perl
binmode STDOUT;

Process every line from STDIN until EOF
while ($line = <STDIN>)
{

Remove far keyword
$line =~ s/far//g;

Print the current processed line to STDOUT
print $line;

}

You can use Perl regular expressions to perform substitutions. For instance, you can
use the following expressions.

Expression Meaning

. Matches any single character except newline

[a-z0-9] Matches any single letter in the set a-z, or digit in the set
0-9

[a-e] Matches any single letter not in the set a-e

\d Matches any single digit

\w Matches any single alphanumeric character or

x? Matches 0 or 1 occurrence of x

X* Matches 0 or more occurrences of X

X+ Matches 1 or more occurrences of x

For complete list of regular expressions, see Perl documentation.
When you specify this option, the Compilation Assistant is automatically disabled.

Command-Line Information

Parameter: -post-preprocessing-command
Value: Path to executable file or command in quotes

https://perldoc.perl.org/perlre.html#Regular-Expressions

Command/script to apply to preprocessed files (-post-preprocessing-command)

No Default

Example in Linux®: polyspace-bug-finder-nodesktop -sources file name -
post-preprocessing-command "pwd'/replace keyword.pl

Example in Windows: polyspace-bug-finder-nodesktop -sources file name
-post-preprocessing-command "C:\Program Files\MATLAB\R2015b\sys\perl
\win32\bin\perl.exe" "C:\My Scripts\replace keyword.pl"

See Also

-regex-replace-rgx -regex-replace-fmt | Command/script to apply after
the end of the code verification (-post-analysis-command)

Topics
“Specify Polyspace Analysis Options”

1-77

1 Option Descriptions

1-78

Include (-include)

Specify files to be #include-ed by each C file in analysis

Description

Specify files to be #include-ed by each C file involved in the analysis. The software
enters the #include statements in the preprocessed code used for analysis, but does not
modify the original source code.

Set Option

User interface: In your project configuration, the option is on the Environment
Settings node.

Command line: Use the option -include. See “Command-Line Information” on page 1-
79.

Why Use This Option

There can be many reasons why you want to #include a file in all your source files.

For instance, you can collect in one header file all workarounds for compilation errors.
Use this option to provide the header file for analysis. Suppose you have compilation
issues because Polyspace does not recognize certain compiler-specific keywords. To work

around the issues, #define the keywords in a header file and provide the header file with
this option.

Settings
No Default

Specify the file name to be included in every file involved in the analysis.

Polyspace still acts on other directives such as #include <include file.h>.

Include (-include)

Command-Line Information

Parameter: -include

Default: None

Value: file (Use -include multiple times for multiple files)

Example: polyspace-bug-finder-nodesktop -include “pwd /sources/
a _file.h -include /inc/inc_file.h

See Also

Topics
“Gather Compilation Options Efficiently”
“Specify Polyspace Analysis Options”

1-79

1 Option Descriptions

1-80

Include folders (-I)

View include folders used for analysis

Description

View the include folders used for analysis.

Set Option

This is not an option that you set in your project configuration. You can only view the
include folders in the configuration associated with a result. For instance, in the user
interface:

* To add include folders, on the Project Browser, right-click your project. Select Add
Source.

* To view the include folders that you used, with your results open, select Window >
Show/Hide View > Configuration. Under the node Environment Settings, you see
the folders listed under Include folders.

Settings

This is a read-only option available only when viewing results. Unlike other options, you
do not specify include folders on the Configuration pane. Instead, you add your include
folders on the Project Browser pane.

Command-Line Information

Parameter: -1
Value: Folder name
Example: polyspace-bug-finder-nodesktop -I /coml/inc -I /coml/sys/inc

Include folders (-1I)

See Also
-I|Include (-include)

1-81

1 Option Descriptions

1-82

Constraint setup (-data-range-
specifications)

Constrain global variables, function inputs and return values of stubbed functions

Description

This option applies primarily to a Code Prover analysis. In Bug Finder, you can only
specify external constraints on global variables.

Specify constraints (also known as data range specifications or DRS) for global variables,
function inputs and return values of stubbed functions using a Constraint Specification
template file. The template file is an XML file that you can generate in the Polyspace user
interface.

Set Option

User interface: In your project configuration, the option is on the Inputs & Stubbing
node.

Command line: Use the option -data-range-specifications. See “Command-Line
Information” on page 1-83.

Why Use This Option

Use this option for specifying constraints outside your code.

Polyspace uses the code that you provide to make assumptions about items such as
variable ranges and allowed buffer size for pointers. Sometimes the assumptions are
broader than what you expect because:

* You have not provided the complete code. For example, you did not provide some of
the function definitions.

* Some of the information about variables is available only at run time. For example,
some variables in your code obtain values from the user at run time.

Because of these broad assumptions:

Constraint setup (-data-range-specifications)

* Code Prover can consider more execution paths than those paths that occur at run
time. If an operation fails along one of the execution paths, Polyspace places an orange
check on the operation. If that execution path does not occur at run time, the orange
check indicates a false positive.

* Bug Finder can sometimes produce false positives.

To reduce the number of such false positives, you can specify additional constraints on
global variables, function inputs, and return values of stubbed functions.

After you specify your constraints, you can save them as an XML file to use them for

subsequent analyses. If your source code changes, you can update the previous
constraints. You do not have to create a new constraint template.

Settings

No Default

Enter full path to the template file. Alternately, click Edit to open a Constraint

Specification wizard. This wizard allows you to generate a template file or navigate to an
existing template file.

For more information, see “Specify External Constraints”.

Command-Line Information

Parameter: -data-range-specifications

Value: file

No Default

Example: polyspace-bug-finder-nodesktop -sources file name -data-
range-specifications "C:\DRS\range.xml"

See Also

Functions to stub (-functions-to-stub)

Topics
“Specify Polyspace Analysis Options”

1-83

1 Option Descriptions

“Specify External Constraints”

1-84

Ignore default initialization of global variables (-no-def-init-glob)

Ignore default initialization of global
variables (-no-def-init-glob)

Consider global variables as uninitialized

Description

This option applies to Code Prover only. It does not affect a Bug Finder analysis.

Specify that Polyspace must not consider global and static variables as initialized.

Set Option

User interface: In your project configuration, the option is on the Inputs & Stubbing
node.

Command line: Use the option -no-def-init-glob. See “Command-Line Information”
on page 1-86.

Why Use This Option

The C99 Standard specifies that global variables are implicitly initialized. The default
analysis follows the Standard and considers this implicit initialization.

If you want to initialize specific global variables explicitly, use this option to find the
instances where global variables are not explicitly initialized.

Settings

¥ On

Polyspace ignores implicit initialization of global and static variables. The verification
generates a red Non-initialized variable error if your code reads a global or static
variable before writing to it.

1-85

1 Option Descriptions

Off (default)
Polyspace considers global variables and static variables to be initialized according to
C99 or ISO C++ standards. For instance, the default values are:
e Oforint
* 0 forchar
* 0.0 for float

Tips
+ Ifyou initialize a global variable using the generated main:
* Polyspace does not produce a red Non-initialized variable error if your code

reads the variable before writing to it. The error is not produced even if you turn
on the option Ignore default initialization of global variables.

* Polyspace considers that before the first write operation on the variable in a
function, the variable can take any value allowed by its type.

For more information on initializing global variables using the generated main, see

Variables to initialize (-main-generator-writes-variables).

+ Static local variables have the same lifetime as global variables even though their
visibility is limited to the function where they are defined. Therefore, the option
applies to static local variables.

Command-Line Information

Parameter: -no-def-init-glob
Default: Off

See Also

Topics
“Specify Polyspace Analysis Options”

1-86

No STL stubs (-no-stl-stubs)

No STL stubs (-no-stl-stubs)

Do not use Polyspace implementations of functions in the Standard Template Library

Description

This option applies to Code Prover only. It does not affect a Bug Finder analysis.

Specify that the verification must not use Polyspace implementations of the Standard
Template Library.

Set Option

User interface: In your project configuration, the option is on the Inputs & Stubbing
node. See “Dependency” on page 1-88 for other options that you must also enable.

Command line: Use the option -no-stl-stubs. See “Command-Line Information” on
page 1-88.

Why Use This Option

The analysis uses an efficient implementation of all class templates from the Standard
Template Library (STL). If your compiler redefines the templates, in some cases, your
compiler implementation can conflict with the Polyspace implementation.

Use this option to prevent Polyspace from using its implementations of STL templates.

You must also explicitly provide the path to your compiler includes. See “C++ Standard
Template Library Stubbing Errors” (Polyspace Code Prover).

Settings

¥ On

The verification does not use Polyspace implementations of the Standard Template
Library.

1-87

1 Option Descriptions

Off (default)

The verification uses efficient Polyspace implementations of the Standard Template
Library.

Dependency

This option is available only if you set Source code language (-lang) to CPPor C-
CPP.

Command-Line Information

Parameter: -no-stl-stubs
Default: Off

See Also

1-88

Functions to stub (- functions-to-stub)

Functions to stub (-functions-to-stub)

Specify functions to stub during analysis

Description

This option applies primarily to a Code Prover analysis.
Specify functions to stub during analysis.

For specified functions, Polyspace :

* Ignores the function definition even if it exists.

* Assumes that the function inputs and outputs have full range of values allowed by
their type.

Set Option

User interface: In your project configuration, the option is on the Inputs & Stubbing
node.

Command line: Use the option - functions-to-stub. See “Command-Line

Information” on page 1-91.

Why Use This Option

If you want the analysis to ignore the code in a function body, you can stub the function.

For instance:

* Suppose you have not completed writing the function and do not want the analysis to
consider the function body. You can use this option to stub the function and then
specify constraints on its return value and modifiable arguments.

* Suppose the analysis of a function body is imprecise. The analysis assumes that the
function returns all possible values that the function return type allows. You can use
this option to stub the function and then specify constraints on its return value.

1-89

1 Option Descriptions

1-90

Settings
No Default

Enter function names or choose from a list.

Click I:IIZII:I to add a field and enter the function name.
Click o to list functions in your code. Choose functions from the list.

When entering function names, use either the basic syntax or, to differentiate overloaded
functions, the argument syntax. For the argument syntax, separate function arguments
with semicolons. See the following code and table for examples.

//simple function
void test(int a, int b);
//C++ template function

Template <class myType>
myType test(myType a, myType b);

//C++ class method
class A {
public:
int test(int varl, int var2);
3
//C++ template class method

template <class myType> class A

{
public:
myType test(myType varl, myType var2);
}
Function Type Basic Syntax Argument Syntax
Simple function test test(int; int)

Functions to stub (- functions-to-stub)

Function Type Basic Syntax Argument Syntax

C++ template function |test test (myType; myType)

C++ class method A::test A::test(int;int)

C++ template class A<myType>: :test A<myType>: :test(myType;my
method Type)

Command-Line Information

Parameter: - functions-to-stub

No Default

Value: functionl[, function2[,...]]

Example: polyspace-bug-finder-nodesktop -sources file name -
functions-to-stub function 1, function_ 2

See Also

Constraint setup (-data-range-specifications)

Topics
“Specify Polyspace Analysis Options”

1-91

1 Option Descriptions

1-92

Generate stubs for Embedded Coder lookup
tables (-stub-embedded-coder-lookup-
table-functions)

Stub autogenerated functions that use lookup tables and model them more precisely

Description

This option is available only for model-generated code. The option is relevant only if you
generate code from a Simulink® model that uses Lookup Table blocks using MathWorks
code generation products.

Specify that the verification must stub autogenerated functions that use certain kinds of
lookup tables in their body. The lookup tables in these functions use linear interpolation
and do not allow extrapolation. That is, the result of using the lookup table always lies
between the lower and upper bounds of the table.

Set Option

If you are running verification from Simulink, use the option “Stub lookup tables”
(Polyspace Code Prover) in Simulink Configuration Parameters, which performs the same
task.

User interface: In your Polyspace project configuration, the option is on the Inputs &
Stubbing node.

Command line: Use the option -stub-embedded-coder-lookup-table-functions.
See “Command-Line Information” on page 1-94.

Why Use This Option

If you use this option, the verification is more precise and has fewer orange checks. The
verification of lookup table functions is usually imprecise. The software has to make
certain assumptions about these functions. To avoid missing a run-time error, the
verification assumes that the result of using the lookup table is within the full range

Generate stubs for Embedded Coder lookup tables (-stub-embedded-coder-lookup-table-functions)

allowed by the result data type. This assumption can cause many unproven results
(orange checks) when a lookup table function is called. By using this option, you narrow
down the assumption. For functions that use lookup tables with linear interpolation and
no extrapolation, the result is at least within the bounds of the table.

The option is relevant only if your model has Lookup Table blocks. In the generated code,
the functions corresponding to Lookup Table blocks also use lookup tables. The function
names follow specific conventions. The verification uses the naming conventions to
identify if the lookup tables in the functions use linear interpolation and no extrapolation.
The verification then replaces such functions with stubs for more precise verification.

Settings

#| On (default)

For autogenerated functions that use lookup tables with linear interpolation and no
extrapolation, the verification:

* Does not check for run-time errors in the function body.

e Calls a function stub instead of the actual function at the function call sites. The
stub ensures that the result of using the lookup table is within the bounds of the
table.

To identify if the lookup table in the function uses linear interpolation and no
extrapolation, the verification uses the function name. In your analysis results, you
see that the function is not analyzed. If you place your cursor on the function name,
you see the following message:

Function has been recognized as an Embedded Coder Lookup-Table function.
It was stubbed by Polyspace to increase precision.
Unset the -stub-embedded-coder-lookup-table-functions option to analyze
the code below.
Off

The verification does not stub autogenerated functions that use lookup tables.

1-93

1 Option Descriptions

1-94

Tips

* The option applies to only autogenerated functions. If you integrate your own C/C++
S-Function using lookup tables with the model, these functions do not follow the
naming conventions for autogenerated functions. The option does not cause them to
be stubbed. If you want the same behavior for your handwritten lookup table functions
as the autogenerated functions, use the option - function-behavior-
specifications and map your function to the ps lookup table clip function.

» Ifyou run verification from Simulink, the option is on by default. For certification
purposes, if you want your verification tool to be independent of the code generation
tool, turn off the option.

Command-Line Information

Parameter: -stub-embedded-coder-lookup-table-functions

Default: On

Example: polyspace-code-prover-nodesktop -sources file name -stub-
embedded-coder-lookup-table-functions

See Also

Introduced in R2016b

Generate results for sources and (-generate-results-for)

Generate results for sources and (-
generate-results-for)

Specify files on which you want analysis results

Description

Specify files on which you want analysis results.

Set Option

User interface: In your project configuration, the option is on the Inputs & Stubbing
node.

Command line: Use the option -generate-results-for. See “Command-Line
Information” on page 1-97.

Why Use This Option

Use this option to see results in header files that are most relevant to you.

For instance, by default, results are generated on header files that are located in the same
folder as the source files. Often, other header files belong to a third-party library. Though
these header files are required for a precise analysis, you are not interested in reviewing
findings in those headers. Therefore, by default, results are not generated for those
headers. If you are interested in certain headers from third-party libraries, change the
default value of this option.

Settings
Default: source-headers

source-headers

Results appear on source files and header files in the same folder as the source files
or in subfolders of source file folders.

1-95

1 Option Descriptions

The source files are the files that you add to the Source folder of your Polyspace
project (or use with the argument - sources at the command line).

all-headers

Results appear on source files and all header files. The header files can be in the same
folder as source files, in subfolders of source file folders or in include folders.

The source files are the files that you add to the Source folder of your Polyspace
project (or use with the argument - sources at the command line).

The include folders are the folders that you add to the Include folder of your
Polyspace project (or use with the argument -I at the command line).

custom

Results appear on source files and the files that you specify. If you enter a folder
name, results appear on header files in that folder.

Click I:II_II:I to add a field. Enter a file or folder name.

Tips

1

1-96

Use this option in combination with appropriate values for the option Do not
generate results for (-do-not-generate-results-for).

If you choose custom and the values for the two options conflict, the more specific
value determines the display of results. For instance, in the following examples, the
value for the option Generate results for sources and is more specific.

Generate results for Do not generate Final Result

sources and results for

custom: custom: Results are displayed on
header files in C:

C:\Includes C:\Includes \Includes

\Custom_Library\ \Custom Library\ but

not generated for other
header files in C:
\Includes and its
subfolders.

Generate results for sources and (-generate-results-for)

Generate results for Do not generate Final Result

sources and results for

custom: custom: Results are displayed on
the header file

C:\Includes C:\Includes\ my header.hinC:

\my_header.h \Includes\ but not

generated for other
header files in C:
\Includes\ and its
subfolders.

Using these two options together, you can suppress results from all files in a certain
folder but unsuppress select files in those folders.

2 Ifyou choose all-headers for this option, results are displayed on all header files
irrespective of what you specify for the option Do not generate results for.

Command-Line Information

Parameter: -generate-results-for

Value: all-headers | custom=filell[,file2[,...]]| folderl[, folder2[,...]]
Example: polyspace-bug-finder-nodesktop -lang c -sources file name -
misra2 required-rules -generate-results-for "C:\usr\include"

See Also

Topics
“Specify Polyspace Analysis Options”

Introduced in R2016a

1-97

1 Option Descriptions

1-98

Do not generate results for (-do-not-
generate-results-for)

Specify files on which you do not want analysis results

Description

Specify files on which you do not want analysis results.

Set Option

User interface: In your project configuration, the option is on the Inputs & Stubbing
node.

Command line: Use the option -do-not-generate-results-for. See “Command-
Line Information” on page 1-102.

Why Use This Option

Use this option to see results in header files that are most relevant to you.

For instance, by default, results are generated on header files that are located in the same
folder as the source files. If you are not interested in reviewing the findings in those
headers, change the default value of this option.

Settings
Default: include-folders

include-folders
Results are not generated for header files in include folders.

The include folders are the folders that you add to the Include folder of your
Polyspace project (or use with the argument - I at the command line).

Do not generate results for (-do-not-generate-results-for)

If an include folder is a subfolder of a source folder, results are generated for files in
that include folder even if you specify the option value include-folders. In this
situation, use the option value custom and explicitly specify the include folders to
ignore.

all-headers

Results are not generated for all header files. The header files can be in the same
folder as source files, in subfolders of source file folders or in include folders.

The source files are the files that you add to the Source folder of your Polyspace
project (or use with the argument - sources at the command line).

The include folders are the folders that you add to the Include folder of your
Polyspace project (or use with the argument - I at the command line).

custom

Results are not generated for the files that you specify. If you enter a folder name,
results are suppressed from files in that folder.

Click I:II_II:I to add a field. Enter a file or folder name.

Tips

1

Use this option appropriately in combination with appropriate values for the option
Generate results for sources and (-generate-results-for).

If you choose custom and the values for the two options conflict, the more specific
value determines the display of results. For instance, in the following examples, the
value for the option Generate results for sources and is more specific.

1-99

1 Option Descriptions

1-100

Generate results for Do not generate Final Result

sources and results for

custom: custom: Results are displayed on
header files in C:

C:\Includes C:\Includes \Includes

\Custom_Library\ \Custom Library\ but

not generated for other
header files in C:
\Includes and its

subfolders.
custom: custom: Results are displayed on
the header file
C:\Includes C:\Includes\ my header.hinC:
\my_header.h \Includes\ but not

generated for other
header files in C:
\Includes\ and its
subfolders.

Using these two options together, you can suppress results from all files in a certain
folder but unsuppress select files in those folders.

If you choose all-headers for this option, results are suppressed from all header
files irrespective of what you specify for the option Generate results for sources
and.

If a defect or coding rule violation involves two files and you do not generate results
for one of the files, the defect or rule violation still appears. For instance, if you
define two variables with similar-looking names in files myFile. cpp and myFile.h,
you get a violation of the MISRA® C++ rule 2-10-1, even if you do not generate
results for myFile.h. MISRA C++ rule 2-10-1 states that different identifiers must
be typographically unambiguous.

The following results can involve more than one file:
MISRA C: 2004 Rules

* MISRA C: 2004 Rule 5.1 — Identifiers (internal and external) shall not rely on the
significance of more than 31 characters.

* MISRA C: 2004 Rule 5.2 — Identifiers in an inner scope shall not use the same
name as an identifier in an outer scope, and therefore hide that identifier.

Do not generate results for (-do-not-generate-results-for)

MISRA C: 2004 Rule 8.8 — An external object or function shall be declared in one
file and only one file.

MISRA C: 2004 Rule 8.9 — An identifier with external linkage shall have exactly
one external definition.

MISRA C: 2012 Directives and Rules

MISRA C: 2012 Directive 4.5 — Identifiers in the same name space with
overlapping visibility should be typographically unambiguous.

MISRA C: 2012 Rule 5.2 — Identifiers declared in the same scope and name space
shall be distinct.

MISRA C: 2012 Rule 5.3 — An identifier declared in an inner scope shall not hide
an identifier declared in an outer scope.

MISRA C: 2012 Rule 5.4 — Macro identifiers shall be distinct.
MISRA C: 2012 Rule 5.5 — Identifiers shall be distinct from macro names.

MISRA C: 2012 Rule 8.5 — An external object or function shall be declared once
in one and only one file.

MISRA C: 2012 Rule 8.6 — An identifier with external linkage shall have exactly
one external definition.

MISRA C++ Rules

MISRA C++ Rule 2-10-1 — Different identifiers shall be typographically
unambiguous.

MISRA C++ Rule 2-10-2 — Identifiers declared in an inner scope shall not hide an
identifier declared in an outer scope.

MISRA C++ Rule 3-2-2 — The One Definition Rule shall not be violated.

MISRA C++ Rule 3-2-3 — A type, object or function that is used in multiple
translation units shall be declared in one and only one file.

MISRA C++ Rule 3-2-4 — An identifier with external linkage shall have exactly
one definition.

MISRA C++ Rule 7-5-4 — Functions should not call themselves, either directly or
indirectly.

MISRA C++ Rule 15-4-1 — If a function is declared with an exception-
specification, then all declarations of the same function (in other translation units)
shall be declared with the same set of type-ids.

1-101

1 Option Descriptions

1-102

JSF C++ Rules

* JSF C++ Rule 46 — User-specified identifiers (internal and external) will not rely
on significance of more than 64 characters.

* JSF C++ Rule 48 — Identifiers will not differ by only a mixture of case, the
presence/absence of the underscore character, the interchange of the letter 0 with
the number 0 or the letter D, the interchange of the letter I with the number 1 or
the letter 1, the interchange of the letter S with the number 5, the interchange of
the letter Z with the number 2 and the interchange of the letter n with the letter
h.

* JSF C++ Rule 137 — All declarations at file scope should be static where possible.
* JSF C++ Rule 139 — External objects will not be declared in more than one file.

Polyspace Bug Finder Defects

* Variable shadowing — Variable hides another variable of same name with
nested scope.

* Declaration mismatch — Mismatch occurs between function or variable
declarations.

4 If aresult (coding rule violation or Bug Finder defect) is inside a macro, Polyspace
typically shows the result on the macro definition instead of the macro occurrences
so that you review the result only once. Even if the macro is used in a suppressed file,
the result is still shown on the macro definition, if the definition occurs in an
unsuppressed file.

Command-Line Information

Parameter: -do-not-generate-results-for

Value: all-headers | include-folders | custom=filell[,file2[,...]]|
folderl[,folder2[,...]]

Example: polyspace-bug-finder-nodesktop -lang c -sources file name -
misra2 required-rules -do-not-generate-results-for "C:\usr\include"

See Also

Topics
“Specify Polyspace Analysis Options”

Do not generate results for (-do-not-generate-results-for)

Introduced in R2016a

1-103

1 Option Descriptions

1-104

External multitasking configuration

Enable setup of multitasking configuration from external file definitions

Description

Specify whether you want to use definitions from external files to set up the multitasking
configuration of your Polyspace project. The supported external file formats are:

* ARXML files for AUTOSAR projects
* OIL files for OSEK projects

Set Option

User interface: In the Configuration pane, the option is available on the Multitasking
node.

Command line: See “Command-Line Information” on page 1-105.

Why Use This Option

If your AUTOSAR project includes ARXML files with ECU configuration parameters, or if
your OSEK project includes OIL files, Polyspace can parse these files. The software sets
up tasks, interrupts, cyclical tasks, and critical sections. You do not have to set them up
manually.

Settings

¥ On

Polyspace parses the external files that you provide in the format that you specify to
set up the multitasking configuration of your project.

osek
Look for and parse OIL files to extract multitasking description.

External multitasking configuration

autosar
Look for and parse AUTOSAR XML files to extract multitasking description.

Off (default)
Polyspace does not set up the multitasking configuration of your project.

Command-Line Information

There is no single command-line option to turn on external multitasking configuration. By
using the -osek-multitasking option or the -autosar-multitasking option, you
enable external multitasking configuration.

See Also

ARXML files selection (-autosar-multitasking) |0IL files selection (-
osek-multitasking)

Topics

“Specify Polyspace Analysis Options”

“Analyze Multitasking Programs in Polyspace”
“Configuring Polyspace Multitasking Analysis Manually”

Introduced in R2018a

1-105

1 Option Descriptions

1-106

OIL files selection (-osek-multitasking)

Set up multitasking configuration from OIL file definition

Description

Specify the OIL files that Polyspace parses to set up the multitasking configuration of
your OSEK project.

Set Option

User interface: In the Configuration pane, the option is available on the Multitasking
node. See Dependencies on page 1-109 for other options you must also enable.

Command line: Use the option -osek-multitasking. See “Command-Line
Information” on page 1-110.

Why Use This Option

If your project includes OIL files, Polyspace can parse these files to set up tasks,
interrupts, cyclical tasks, and critical sections. You do not have to set them up manually.

Settings

¥ On
Polyspace looks for and parses OIL files to set up your multitasking configuration.
auto

Look for OIL files in your project source and include folders, but not in their
subfolders.

custom

Look for OIL files on the specified path and the path subfolders. You can specify a
path to the OIL files or to the folder containing the files.

OIL files selection (-osek-multitasking)

When you select this option, in your source code, Polyspace supports these OSEK

multitasking keywords:

TASK
DeclareTask
ActivateTask
DeclareResource
GetResource
ReleaseResource
ISR
DeclareEvent
DeclareAlarm

Polyspace parses the OIL files that you provide for TASK, ISR, RESOURCE, and ALARM
definitions. The analysis uses these definitions and the supported multitasking keywords
to configure tasks, interrupts, cyclical tasks, and critical sections

Example: Analyze Your OSEK Multitasking Project

This example shows how to set up the multitasking configuration of an OSEK projet and
run an analysis on this project. To try the steps in this example, use the demo files in the
folder MATLABROOT/help/toolbox/bugfinder/examples/

External multitasking/0SEK. MATLABROOT is your MATLAB installation folder. The

analysis results apply to this example code.

1-107

1 Option Descriptions

#include <assert.h>
#include "include/example osek multi.h"

int varl;
int var2;
int var3;

DeclareAlarm(Cyclic_task activate);
DeclareResource(resl);
DeclareTask(init);
TASK(afterinitl);

TASK(init) // task
{

var2++;

ActivateTask(afterinitl);

var3++;

GetResource(resl); // critical section begins
varl++;

ReleaseResource(resl); // critical section ends

}

TASK(afterinitl) // task
{
var3++;
var2++;
GetResource(resl); // critical section begins
varl++;
ReleaseResource(resl); // critical section ends

void main()

{}

To set up your multitasking configuration and analyze the code:

1 Copy the contents of MATLABROOT/help/toolbox/bugfinder/examples/
External multitasking/0SEK to your machine, for instance in C:
\Polyspace worskpace\OSEK.

1-108

OIL files selection (-osek-multitasking)

2 Run an analysis on your OSEK project by using the command:

polyspace-bug-finder-nodesktop -sources ©
C:\Polyspace workspace\0OSEK\example osek multitasking.c ™
-osek-multitasking auto

Polyspace detects a data race on page 3-112 on variable var3 because of multiple read
and write operation from tasks init and afterinitl.

#include <assert.h>
#include "include/example osek multi.h"

int varl;
int var2;
int var3;

There is no defect on var2 since afterinitl goes to an active state (ActivateTask())
after init increments var2. Similarly, there is no defect on varl because it is protected
by the GetResource() and ReleaseResource() calls.

To see how Polyspace models the TASK, ISR, and RESOURCE definitions from your OIL
files, open the Concurrency window from the Dashboard pane.

Off (default)
Polyspace does not set up a multitasking configuration for your OSEK project.
Additional Considerations

* The analysis ignores TerminateTask() declarations in your source code and
considers that subsequent code is executed.

* Polyspace ignores syntax elements of your OIL files that do not follow the syntax
defined here.

Dependencies

To enable this option in the user interface, first select the option External
multitasking configuration.

1-109

https://www.irisa.fr/alf/downloads/puaut/TPNXT/images/oil25.pdf

1 Option Descriptions

Command-Line Information

Parameter: -osek-multitasking

Value: auto | custom="filel [, file2, dirl,...]'

Default: Off

Example: polyspace-bug-finder-nodesktop -sources source path -1
include path -osek-multitasking custom='path\to\filel.oil, path\to
\dir'

See Also

Topics
“Specify Polyspace Analysis Options”
“Analyze Multitasking Programs in Polyspace”

Introduced in R2017b

1-110

ARXML files selection (-autosar-multitasking)

ARXML files selection (-autosar-
multitasking)

Set up multitasking configuration from ARXML file definitions

Description

To detect data races in large AUTOSAR applications, use this option with Polyspace Bug
Finder.

Specify the ARXML files that Polyspace parses to set up the multitasking configuration of
your AUTOSAR project.

Set Option

User interface: In the Configuration pane, the option is available on the Multitasking
node. See Dependencies on page 1-112 for other options you must also enable.

Command line: Use the option -autosar-multitasking. See “Command-Line
Information” on page 1-110.

Why Use This Option

If your project includes ARXML files with <ECUC-CONTAINER-VALUE> elements,
Polyspace can parse these files to set up tasks, interrupts, cyclical tasks, and critical
sections. You do not have to set them up manually.

Settings
41 0n
Polyspace looks for and parses ARXML files to set up your multitasking configuration.

When you select this option, the software assumes that you use the OSEK multitasking
API in your source code to declare and define tasks and interrupts. Polyspace supports
these OSEK multitasking keywords:

1-111

1 Option Descriptions

1-112

* TASK

* DeclareTask

* ActivateTask

* DeclareResource

* GetResource

* ReleaseResource

« ISR

* DeclareEvent

* DeclareAlarm

Polyspace parses the ARXML files that you provide for OsTask, OsIsr, O0sResource,

OsAlarm, and OsEvent definitions. The analysis uses these definitions and the supported
multitasking keywords to configure tasks, interrupts, cyclical tasks, and critical sections.

To see how Polyspace models the 0sTask, 0sIsr, and OsResource definitions from your
ARXML files, open the Concurrency window from the Dashboard pane. In that window,
under the Entry points column, the names of the elements are extracted from their
<SHORT -NAME> values in the ARXML files.

Off (default)
Polyspace does not set up a multitasking configuration for your AUTOSAR project.

Additional Considerations

* The analysis ignores TerminateTask() declarations in your source code and
considers that subsequent code is executed.

* Polyspace supports multitasking configuration only from ARXML files for AUTOSAR
specification version 4.0 and later.

Dependencies

To enable this option in the user interface, first select the option External
multitasking configuration.

ARXML files selection (-autosar-multitasking)

Command-Line Information

Parameter: -autosar-multitasking

Value: filel [,file2, dirl,...]

Default: Off

Example: polyspace-bug-finder-nodesktop -sources source path -1
include path -autosar-multitasking C:\Polyspace Workspace\AUTOSAR
\myFile.arxml

See Also

Topics
“Specify Polyspace Analysis Options”
“Analyze Multitasking Programs in Polyspace”

Introduced in R2018a

1-113

1 Option Descriptions

1-114

Configure multitasking manually

Consider that code is intended for multitasking

Description

Specify whether your code is a multitasking application. This option allows you to
manually configure the multitasking structure for Polyspace.

Set Option

User interface: In your project configuration, the option is available on the
Multitasking node.

Command line: See “Command-Line Information” on page 1-115.

Why Use This Option

In cases where automatic concurrency detection is not supported, you can explicitly
specify your multitasking model by using this option. Once you select this option, you can
explicitly specify your entry point functions, cyclic tasks, interrupts and protection
mechanisms for shared variables, such as critical section details.

The analysis uses your specifications to look for concurrency defects. For more
information, see “Concurrency Defects”.

Settings

41 On
The code is intended for a multitasking application.

Off (default)
The code is not intended for a multitasking application.

Configure multitasking manually

Tips

If you run a file by file verification in Code Prover, your multitasking options are ignored.
See Verify files independently (-unit-by-unit).

Command-Line Information

There is no single command-line option to turn on multitasking analysis. By using the -
entry-points option, you turn on multitasking analysis.

See Also

Tasks (-entry-points) |Critical section details (-critical-section-
begin -critical-section-end) | Temporally exclusive tasks (-temporal-
exclusions-file)

Topics

“Specify Polyspace Analysis Options”

“Analyze Multitasking Programs in Polyspace”
“Configuring Polyspace Multitasking Analysis Manually”

1-115

1 Option Descriptions

1-116

Enable automatic concurrency detection for
Code Prover (-enable-concurrency-
detection)

Automatically detect certain families of multithreading functions

Description

This option affects a Code Prover analysis only.

Specify whether to use the automatic concurrency detection for POSIX®, VxWorks®,
Windows, and pC/OS II multithreading functions.

Set Option

User interface: In your project configuration, the option is available on the
Multitasking node. See “Dependencies” (Polyspace Code Prover) for other options that
you must enable or disable.

Command line: Use the option -enable-concurrency-detection. See “Command-
Line Information” on page 1-117.

Why Use This Option

If you use this option, Polyspace determines your multitasking model from your use of
multithreading functions.

In some cases, using automatic concurrency detection can slow down the Code Prover
analysis. In those cases, you can explicitly specify your multitasking model using the
option Configure multitasking manually.

Enable automatic concurrency detection for Code Prover (-enable-concurrency-detection)

Settings

+| On

If you use POSIX, VxWorks, Windows, nC/OS II, or C++11 functions for multitasking,
the analysis automatically detects your multitasking model from your code.

For a list of supported multitasking functions and limitations in auto-detection of
threads, see “Auto-Detection of Thread Creation and Critical Section in Polyspace”.

Off (default)
The analysis does not attempt to detect the multitasking model from your code.

If you want to manually configure your multitasking model, see Configure
multitasking manually.

Dependencies

If you enable this option, your code must contain a main function. You cannot use the
Code Prover options (Polyspace Code Prover) to generate a main.

Command-Line Information

Parameter: -enable-concurrency-detection

Default: Off

Example: polyspace-code-prover-nodesktop -sources file name -enable-
concurrency-detection

See Also

Tasks (-entry-points) |Critical section details (-critical-section-
begin -critical-section-end) | Temporally exclusive tasks (-temporal-
exclusions-file)

Topics
“Specify Polyspace Analysis Options”
“Analyze Multitasking Programs in Polyspace”

1-117

1 Option Descriptions

“Auto-Detection of Thread Creation and Critical Section in Polyspace”

1-118

Tasks (-entry-points)

Tasks (-entry-points)

Specify functions that serve as tasks to your multitasking application

Description

Specify functions that serve as tasks to your code. If the function does not exist, the
verification warns you and continues the verification.

Set Option

User interface: In your project configuration, the option is available on the
Multitasking node. See “Dependencies” on page 1-120 for other options you must also
enable.

Command line: Use the option -entry-points. See “Command-Line Information” on
page 1-120.

Why Use This Option

Use this option when your code is intended for multitasking.

To specify cyclic tasks and interrupts, use the options Cyclic tasks (-cyclic-
tasks) and Interrupts (-interrupts). Use this option to specify other tasks.

The analysis uses your specifications to look for concurrency defects. For more
information, see “Concurrency Defects”.

Settings
No Default

Enter function names or choose from a list.

Click I:II_IIZI to add a field and enter the function name.

1-119

1 Option Descriptions

1-120

Click e to list functions in your code. Choose functions from the list.

Dependencies

To enable this option, first select the option Configure multitasking manually.

Tips

If you specify a function as a task, you must provide its definition. Otherwise, the analysis
does not consider the function as a task.

Command-Line Information

Parameter: -entry-points

No Default

Value: functionl[, function2[,...]]

Example: polyspace-bug-finder-nodesktop -sources file name -entry-
points func_ 1, func_2

See Also

Critical section details (-critical-section-begin -critical-section-
end) | Temporally exclusive tasks (-temporal-exclusions-file)

Topics

“Specify Polyspace Analysis Options”

“Analyze Multitasking Programs in Polyspace”
“Configuring Polyspace Multitasking Analysis Manually”

Cyclic tasks (-cyclic-tasks)

Cyclic tasks (-cyclic-tasks)

Specify functions that represent cyclic tasks

Description

Specify functions that represent cyclic tasks. The analysis assumes that operations in the
function body:

* Can execute any number of times.

* Can be interrupted by noncyclic Tasks on page 1-119, other cyclic tasks and interrupts
on page 1-124.

To model a cyclic task that cannot be interrupted by other cyclic tasks, specify the task
as nonpreemptable. See -non-preemptable-tasks.

Set Option

User interface: In your project configuration, the option is available on the
Multitasking node. See “Dependencies” on page 1-122 for other options you must also
enable.

Command line: Use the option -cyclic-tasks. See “Command-Line Information” on

page 1-122.

Why Use This Option

Use this option to specify cyclic tasks in your multitasking code. The functions that you
specify must have the prototype:

void function _name(void);

The analysis uses your specifications to look for concurrency defects. For the Data race
defect, the software establishes the following relations between preemptable tasks and
other tasks.

* Data race between two preemptable tasks:

1-121

1 Option Descriptions

1-122

Unless protected, two operations in different preemptable tasks can interfere with
each other. If the operations use the same shared variable without protection, a data
race can occur.

If both operations are atomic, to see the defect, you have to enable Data race
including atomic operations.

* Data race between a preemptable task and a nonpreemptable task or interrupt:

* An atomic operation in a preemptable task cannot interfere with an operation in a
nonpreemptable task or an interrupt. Even if the operations use the same shared
variable without protection, a data race cannot occur.

* A nonatomic operation in a preemptable task also cannot interfere with an
operation in a nonpreemptable task or an interrupt. However, the latter operation
can interrupt the former. Therefore, if the operations use the same shared variable
without protection, a data race can occur.

For more information, see “Concurrency Defects”.

Settings
No Default

Enter function names or choose from a list.

Click I:II_II:I to add a field and enter the function name.

Click i to list functions in your code. Choose functions from the list.

Dependencies

To enable this option, first select the option Configure multitasking manually.

Command-Line Information

Parameter: -cyclic-tasks
No Default

Cyclic tasks (-cyclic-tasks)

Value: functionl[, function2[,...]1]
Example: polyspace-bug-finder-nodesktop -sources file name -cyclic-
tasks func 1, func 2

See Also

-preemptable-interrupts | -non-preemptable-tasks | Interrupts (-
interrupts) | Tasks (-entry-points) |Critical section details (-
critical-section-begin -critical-section-end) | Temporally exclusive
tasks (-temporal-exclusions-file)

Topics

“Specify Polyspace Analysis Options”

“Analyze Multitasking Programs in Polyspace”
“Configuring Polyspace Multitasking Analysis Manually”
“Protections for Shared Variables in Multitasking Code”

Introduced in R2016b

1-123

1 Option Descriptions

1-124

Interrupts (-interrupts)

Specify functions that represent nonpreemptable interrupts

Description

Specify functions that represent nonpreemptable interrupts. The analysis assumes that
operations in the function body:

* Can execute any number of times.

* Cannot be interrupted by noncyclic Tasks on page 1-119, cyclic tasks on page 1-121 or
other interrupts.

To model an interrupt that can be interrupted by other interrupts, specify the interrupt
as preemptable. See -preemptable-interrupts.

Set Option

User interface: In your project configuration, the option is available on the
Multitasking node. See “Dependencies” on page 1-125 for other options you must also
enable.

Command line: Use the option -interrupts. See “Command-Line Information” on

page 1-126.

Why Use This Option

Use this option to specify interrupts in your multitasking code. The functions that you
specify must have the prototype:

void function name(void);

The analysis uses your specifications to look for concurrency defects. For the Data race
defect, the analysis establishes the following relations between interrupts and other
tasks:

* Data race between two interrupts:

Interrupts (-interrupts)

Two operations in different interrupts cannot interfere with each other (unless one of
the interrupts is preemptable). Even if the operations use the same shared variable
without protection, a data race cannot occur.

* Data race between an interrupt and another task:

* An operation in an interrupt cannot interfere with an atomic operation in any other
task. Even if the operations use the same shared variable without protection, a data
race cannot occur.

* An operation in an interrupt can interfere with a nonatomic operation in any other
task unless the other task is also a nonpreemptable interrupt. Therefore, if the
operations use the same shared variable without protection, a data race can occur.

See “Concurrency Defects”.

Settings
No Default

Enter function names or choose from a list.

Click I:II_II:I to add a field and enter the function name.

Click o to list functions in your code. Choose functions from the list.

Dependencies

To enable this option, first select the option Configure multitasking manually.

Tips

If you specify a function as an interrupt, you must provide its definition. Otherwise, the
analysis does not consider the function as an interrupt.

1-125

1 Option Descriptions

1-126

Command-Line Information

Parameter: -interrupts

No Default

Value: functionl[, function2[,...]]

Example: polyspace-bug-finder-nodesktop -sources file name -
interrupts func_1,func 2

See Also

-preemptable-interrupts | -non-preemptable-tasks | Cyclic tasks (-
cyclic-tasks) | Tasks (-entry-points) |Critical section details (-
critical-section-begin -critical-section-end) | Temporally exclusive
tasks (-temporal-exclusions-file)

Topics

“Specify Polyspace Analysis Options”

“Analyze Multitasking Programs in Polyspace”
“Configuring Polyspace Multitasking Analysis Manually”
“Protections for Shared Variables in Multitasking Code”

Introduced in R2016b

Disabling all interrupts (- routine-disable-interrupts -routine-enable-interrupts)

Disabling all interrupts (-routine-disable-
interrupts -routine-enable-interrupts)

Specify routines that disable and reenable interrupts.

Description

This option affects a Bug Finder analysis only.

Specify a routine that disables all interrupts and a routine that reenables all interrupts.

Set Option

User interface: In your project configuration, the option is available on the
Multitasking node. See “Dependencies” on page 1-128 for other options you must also
enable.

Command line: Use the option -routine-disable-interrupts and - routine-
enable-interrupts. See “Command-Line Information” on page 1-129.

Why Use This Option

The analysis uses the information to look for data race defects. For instance, in the
following code, the function disable all interrupts disables all interrupts until the
function enable all interrupts is called. Even if task, isrl and isr2 run
concurrently, the operations x=0 or x=1 cannot interrupt the operation x++. There are no
data race defects.

int x;
void isrl() {

X = 0;
}

void isr2() {
X =1;
}

1-127

1 Option Descriptions

1-128

void task() {
disable all interrupts();
X++;
enable all interrupts();

}

Settings
No Default

» In Disabling routine, enter the routine that disables all interrupts.
* In Enabling routine, enter the routine that reenables all interrupts.

Enter function names or choose from a list.

Click EII_::' to add a field and enter the function name.

Click o to list functions in your code. Choose functions from the list.

Dependencies

To enable this option, you must select the option, Configure multitasking
manually.

Tips
* The routine that you specify for the option disables preemption by all:

* Noncylic Tasks on page 1-119

* Cyclic tasks on page 1-121

* Interrupts on page 1-124

In other words, the analysis considers that the body of operations between the
disabling routine and the enabling routine is atomic and not interruptible at all.

* Protection via disabling interrupts is conceptually different from protection via critical
sections.

Disabling all interrupts (- routine-disable-interrupts -routine-enable-interrupts)

In the Polyspace multitasking model, to protect two sections of code from each other
via critical sections, you have to embed them in the same critical section. In other
words, you have to place the two sections between calls to the same lock and unlock
function.

For instance, suppose you use critical sections as follows:

void isrl() {
begin critical section();
X = 0;
end critical section();

}

void isr2() {
X =1;

}

void task() {
begin critical section();
X++;
end critical section();

}

Here, the operation x++ is protected from the operation x=0 in isrl, but not from the
operation x=1in isr2. If the function begin critical section disabled all
interrupts, calling it before x++ would have been sufficient to protect it.

Typically, you use one pair of routines in your code to disable and reenable interrupts,
but you can have many pairs of lock and unlock functions that implement critical
sections.

Command-Line Information

Parameter: - routine-disable-interrupts | -routine-enable-interrupts
No Default

Value: function name

Example: polyspace-bug finder-nodesktop -sources file name -routine-
disable-interrupts atomic section begins -routine-enable-interrupts
atomic section ends

1-129

1 Option Descriptions

See Also

Configure multitasking manually | Tasks (-entry-points) | Temporally
exclusive tasks (-temporal-exclusions-file) |Data race|Data race
including atomic operations

Topics
“Specify Polyspace Analysis Options”
“Analyze Multitasking Programs in Polyspace”

Introduced in R2017a

1-130

Critical section details (-critical-section-begin -critical-section-end)

Critical section details (-critical-section-
begin -critical-section-end)

Specify functions that begin and end critical sections

Description

When verifying multitasking code, Polyspace considers that a critical section lies between
calls to a lock function and an unlock function.

lock();

/* Critical section code */

unlock();

Specify the lock and unlock function names for your critical sections (for instance,
lock() and unlock() in above example).

Set Option

User interface: In your project configuration, the option is available on the
Multitasking node. See “Dependencies” on page 1-132 for other options you must also
enable.

Command line: Use the option -critical-section-beginand -critical-
section-end. See “Command-Line Information” on page 1-133.

Why Use This Option

When a task my task calls a lock function my lock, other tasks calling my lock must
wait till my task calls the corresponding unlock function. Therefore, critical section
operations in the other tasks cannot interrupt critical section operations in my task.

For instance, the operation var++in my taskl and my task2 cannot interrupt each
other.

int var;

1-131

1 Option Descriptions

1-132

void my taskl() {
my lock();
var++;
my unlock();

}

void my task2() {
my lock();
var++;
my unlock();

}

The analysis uses the critical section information to look for concurrency defects such as
data race and deadlock. See “Concurrency Defects”.

Settings

No Default

Click I:II_II:I to add a field.

* In Starting routine, enter name of lock function.
* In Ending routine, enter name of unlock function.

Enter function names or choose from a list.

Click I:II_II:I to add a field and enter the function name.

Click o to list functions in your code. Choose functions from the list.

Dependencies

To enable this option, first select the option Configure multitasking manually.

Critical section details (-critical-section-begin -critical-section-end)

Tips

* You can also use primitives such as the POSIX functions pthread mutex lock and
pthread mutex unlock to begin and end critical sections. For a list of primitives
that Polyspace can detect automatically, see “Auto-Detection of Thread Creation and

Critical Section in Polyspace”.

» For function calls that begin and end critical sections, Polyspace ignores the function

arguments.

For instance, Polyspace treats the two code sections below as the same critical

section.

Starting routine: func_begin

Starting routine: func_begin

Ending routine: func _end

Ending routine: func_end

void my taskl() {
my lock(1);
/* Critical section code */
my unlock(1);

void my task2() {
my lock(2);
/* Critical section code */
my unlock(2);

* The functions that begin and end critical sections must be functions. For instance, if
you define a function-like macro:

#define init() num_locks++

You cannot use the macro init () to begin or end a critical section.

Command-Line Information

Parameter: -critical-section-begin| -critical-section-end

No Default

Value: functionl:csll[, function2:cs2[,...1]

Example: polyspace-bug finder-nodesktop -sources file name -critical-
section-begin func begin:csl -critical-section-end func end:csl

See Also

Configure multitasking manually | Tasks (-entry-points) | Temporally
exclusive tasks (-temporal-exclusions-file) |Data race|Data race
including atomic operations

1-133

1 Option Descriptions

Topics

“Specify Polyspace Analysis Options”

“Analyze Multitasking Programs in Polyspace”
“Configuring Polyspace Multitasking Analysis Manually”
“Protections for Shared Variables in Multitasking Code”
“Define Atomic Operations in Multitasking Code”

1-134

Temporally exclusive tasks (-temporal-exclusions-file)

Temporally exclusive tasks (-temporal-
exclusions-file)

Specify entry point functions that cannot execute concurrently

Description

Specify entry point functions that cannot execute concurrently. The execution of the
functions cannot overlap with each other.

Set Option

User interface: In your project configuration, the option is available on the
Multitasking node. See “Dependencies” on page 1-136 for other options you must also
enable.

Command line: Use the option -temporal-exclusions-file. See “Command-Line
Information” on page 1-136.

Why Use This Option

Use this option to implement temporal exclusion in multitasking code.

The analysis uses the temporal exclusion information to look for concurrency defects such
as data race. See Data race.

Settings
No Default

Click I:II_II:I to add a field. In each field, enter a space-separated list of functions. Polyspace
considers that the functions in the list cannot execute concurrently.

Enter the function names manually or choose from a list.

1-135

1 Option Descriptions

1-136

Click I:II_IIZI to add a field and enter the function names.

Click 2l to list functions in your code. Choose functions from the list.

Dependencies

To enable this option, first select the option Configure multitasking manually.

Command-Line Information

For the command-line option, create a temporal exclusions file in the following format:

* On each line, enter one group of temporally excluded tasks.
* Within a line, the tasks are separated by spaces.

Parameter: -temporal-exclusions-file

No Default

Value: Name of temporal exclusions file

Example: polyspace-bug-finder-nodesktop -sources file name -temporal-
exclusions-file "C:\exclusions file.txt"

See Also

Configure multitasking manually | Tasks (-entry-points) |Critical
section details (-critical-section-begin -critical-section-end) |Data
race | Data race including atomic operations

Topics

“Specify Polyspace Analysis Options”

“Configuring Polyspace Multitasking Analysis Manually”
“Configuring Polyspace Multitasking Analysis Manually”
“Protections for Shared Variables in Multitasking Code”

Check MISRA C:2004 (-misra?2)

Check MISRA C:2004 (-misra2)

Check for violation of MISRA C:2004 rules

Description

Specify whether to check for violation of MISRA C:2004 rules. Each value of the option
corresponds to a subset of rules to check.

Set Option

User interface: In your project configuration, the option is on the Coding Rules & Code
Metrics node. See “Dependencies” on page 1-139 for other options that you must also
enable.

Command line: Use the option -misra2. See “Command-Line Information” on page 1-
139.

Why Use This Option
Use this option to specify the subset of MISRA C:2004 rules to check for.

After analysis, the Results List pane lists the coding rule violations. On the Source pane,
for every coding rule violation, Polyspace assigns a ¥ symbol to the keyword or identifier
relevant to the violation.

Settings

Default: required-rules

required-rules
Check required coding rules.
all-rules
Check required and advisory coding rules.

1-137

1 Option Descriptions

SQ0-subsetl

Check only a subset of MISRA C rules. In Polyspace Code Prover™, observing these
rules can reduce the number of unproven results. For more information, see
“Software Quality Objective Subsets (C:2004)".

SQO0-subset?2

Check a subset of rules including SQ0-subsetl and some additional rules. In
Polyspace Code Prover, observing these rules can further reduce the number of
unproven results. For more information, see “Software Quality Objective Subsets (C:
2004)".

custom

Specify coding rules to check. Click Edit to create a coding rules file. After

creating and saving the file, to reuse it for another project, do one of the following:

* Enter full path to the file in the space provided.

Click | Edit

. Click —! to load the file.

Format of the custom file:
rule number off|on
Use # to enter comments in the file. For example:

10.5 off # rule 10.5: type conversion
17.2 on # rule 17.2: pointers

If you are writing the coding rules file manually, you can choose to only enter the
rules that you want to turn off. When you run an analysis, Polyspace automatically
turns on the other rules and populates the file.

single-unit-rules
Check a subset of rules that apply only to single translation units. These rules are
checked in the compilation phase of the analysis.

system-decidable-rules

Check rules in the single-unit-rules subset and some rules that apply to the
collective set of program files. The additional rules are the less complex rules that
apply at the integration level. These rules can be checked only at the integration level
because the rules involve more than one translation unit. These rules are checked in
the compilation and linking phases of the analysis.

1-138

Check MISRA C:2004 (-misra?2)

Dependencies

» This option is available only if you set Source code language (-lang) toCorC-
CPP.

For projects with mixed C and C++ code, the MISRA C:2004 checker analyzes only .c
files.

» Ifyouset Source code language (-lang) to C-CPP, you can activate a C coding
rule checker and a C++ coding rule checker. When you have both C and C++ coding
rule checkers active, to avoid duplicate results, Polyspace does not produce the C
coding rules found in the linking phase (such as MISRA C:2012 Rule 8.3).

Tips
* To reduce unproven results in Polyspace Code Prover:

1 Find coding rule violations in SQ0-subsetl. Fix your code to address the
violations and rerun verification.

2 Find coding rule violations in SQ0-subset2. Fix your code to address the
violations and rerun verification.

» If you select the option single-unit-rules or system-decidable-rules and
choose to detect coding rule violations only, the analysis can complete quicker than
checking other rules. For more information, see “Coding Rule Subsets Checked Early
in Analysis”.

Command-Line Information

Parameter: -misra2

Value: required-rules | all-rules | SQ0-subsetl | SQO-subset2 | single-unit-
rules | system-decidable-rules | file

Default: required-rules

Example: polyspace-bug-finder-nodesktop -sources file name -misra2
all-rules

See Also

Generate results for sources and (-generate-results-for)

1-139

1 Option Descriptions

Topics
“Specify Polyspace Analysis Options”
“Check for Coding Rule Violations”

“Polyspace MISRA C 2004 and MISRA AC AGC Checkers”
“Software Quality Objective Subsets (C:2004)”

1-140

Check MISRA AC AGC (-misra-ac-agc)

Check MISRA AC AGC (-misra-ac-agc)

Check for violation of MISRA AC AGC rules

Description

Specify whether to check for violation of rules specified by MISRA AC AGC Guidelines for
the Application of MISRA-C:2004 in the Context of Automatic Code Generation. Each
value of the option corresponds to a subset of rules to check.

Set Option

User interface: In your project configuration, the option is on the Coding Rules & Code
Metrics node. See “Dependencies” on page 1-143 for other options that you must also
enable.

Command line: Use the option -misra-ac-agc. See “Command-Line Information” on
page 1-143.

Why Use This Option

Use this option to specify the subset of MISRA C:2004 AC AGC rules to check for.

After analysis, the Results List pane lists the coding rule violations. On the Source pane,
for every coding rule violation, Polyspace assigns a = symbol to the keyword or identifier
relevant to the violation.

Settings
Default: OBL-rules

0BL-rules

Check required coding rules.
OBL-REC-rules

Check required and recommended rules.

1-141

1 Option Descriptions

all-rules
Check required, recommended and readability-related rules.
SQ0-subsetl

Check a subset of rules. In Polyspace Code Prover, observing these rules can reduce
the number of unproven results. For more information, see “Software Quality
Objective Subsets (AC AGC)”.

SQ0-subset?2

Check a subset of rules including SQ0-subsetl and some additional rules. In
Polyspace Code Prover, observing these rules can further reduce the number of
unproven results. For more information, see “Software Quality Objective Subsets (AC
AGC)”.

custom

Specify coding rules to check. Click Edit to create a coding rules file.

After creating and saving the file, to reuse it for another project, do one of the
following:

» Enter full path to the file in the space provided.
click | %t | click ™3 1o 1oad the file.

Format of the custom file:

rule number off|on
Use # to enter comments in the file. For example:

10.5 off # rule 10.5: type conversion
17.2 on # rule 17.2: pointers

If you are writing the coding rules file manually, you can choose to only enter the
rules that you want to turn off. When you run an analysis, Polyspace automatically
turns on the other rules and populates the file.

single-unit-rules
Check a subset of rules that apply only to single translation units. These rules are
checked in the compilation phase of the analysis.

system-decidable-rules

Check rules in the single-unit-rules subset and some rules that apply to the
collective set of program files. The additional rules are the less complex rules that

1-142

Check MISRA AC AGC (-misra-ac-agc)

apply at the integration level. These rules can be checked only at the integration level
because the rules involve more than one translation unit. These rules are checked in
the compilation and linking phases of the analysis.

Dependencies

» This option is available only if you set Source code language (-lang) toCorC-
CPP.

For projects with mixed C and C++ code, the MISRA AC AGC checker analyzes
only . c files.

» Ifyouset Source code language (-lang) to C-CPP, you can activate a C coding
rule checker and a C++ coding rule checker. When you have both C and C++ coding
rule checkers active, to avoid duplicate results, Polyspace does not produce the C
coding rules found in the linking phase (such as MISRA C:2012 Rule 8.3).

Tips
* To reduce unproven results in Polyspace Code Prover:

1 Find coding rule violations in SQ0-subsetl. Fix your code to address the
violations and rerun verification.

2 Find coding rule violations in SQ0-subset2. Fix your code to address the
violations and rerun verification.

» Ifyou select the option single-unit-rules or system-decidable-rules and
choose to detect coding rule violations only, the analysis can complete quicker than
checking other rules. For more information, see “Coding Rule Subsets Checked Early
in Analysis”.

Command-Line Information

Parameter: -misra-ac-agc

Value: OBL-rules | OBL-REC-rules |all-rules | SQ0-subsetl | SQO-subset?2 |
single-unit-rules | system-decidable-rules | file

Default: OBL-rules

1-143

1 Option Descriptions

Example: polyspace-bug-finder-nodesktop -sources file name -misra-ac-
agc all-rules

See Also

Generate results for sources and (-generate-results-for)

Topics

“Specify Polyspace Analysis Options”

“Check for Coding Rule Violations”

“Polyspace MISRA C 2004 and MISRA AC AGC Checkers”
“MISRA C:2004 and MISRA AC AGC Coding Rules”
“Software Quality Objective Subsets (AC AGC)”

1-144

Check MISRA C:2012 (-misra3)

Check MISRA C:2012 (-misra3)

Check for violations of MISRA C:2012 rules and directives

Description

Specify whether to check for violations of MISRA C:2012 guidelines. Each value of the
option corresponds to a subset of guidelines to check.

Set Option

User interface: In your project configuration, the option is on the Coding Rules & Code
Metrics node. See “Dependencies” on page 1-147 for other options that you must also
enable.

Command line: Use the option -misra3. See “Command-Line Information” on page 1-
148.

Why Use This Option
Use this option to specify the subset of MISRA C:2012 rules to check for.

After analysis, the Results List pane lists the coding rule violations. On the Source pane,
for every coding rule violation, Polyspace assigns a ¥ symbol to the keyword or identifier
relevant to the violation.

Settings

Default: mandatory-required

mandatory-required
Check for mandatory and required guidelines.

* Mandatory guidelines: Your code must comply with these guidelines.

* Required guidelines: You may deviate from these these guidelines. However, you
must complete a formal deviation record, and your deviation must be authorized.

1-145

1 Option Descriptions

1-146

See Section 5.4 of the MISRA C:2012 guidelines. For an example of a deviation
record, see Appendix I of the MISRA C:2012 guidelines.

Note To turn off some required guidelines, instead of mandatory-required select
custom. To clear specific guidelines, click ‘_/Edit . In the Comment column, enter
your rationale for disabling a guideline. For instance, you can enter the Deviation ID
that refers to a deviation record for the guideline. The rationale appears in your
generated report.

mandatory
Check for mandatory guidelines.
CERT-rules
Check for a subset of coding rules that corresponds to CERT-C rules.

See “CERT C Coding Standard and Polyspace Results”.
CERT-all

Check for a subset of coding rules that corresponds to CERT-C rules and
recommendations.

See “CERT C Coding Standard and Polyspace Results”.
IS0-17961

Check for a subset of coding rules that corresponds to the ISO/IEC TS 17961 coding
standard.

all
Check for mandatory, required, and advisory guidelines.
SQ0-subsetl

Check for only a subset of guidelines. In Polyspace Code Prover, observing these rules
can reduce the number of unproven results. For more information, see “Software
Quality Objective Subsets (C:2012)".

SQ0-subset?2

Check for the subset SQ0-subsetl, plus some additional rules. In Polyspace Code
Prover, observing these rules can further reduce the number of unproven results. For
more information, see “Software Quality Objective Subsets (C:2012)”.

Check MISRA C:2012 (-misra3)

custom

Specify guidelines to check. Click ‘Ed_'t/ to create a coding rules file. Save the file.
To reuse it for another project, do one of the following:

* Enter full path to the file in the space provided.
Click ‘Ed_'t/ Click —! to load the file.

Custom file format:

rule number off|on
Use # to enter comments in the file. For example:

10.5 off # rule 10.5: essential type model
17.2 on # rule 17.2: functions

If you are writing the coding rules file manually, you can choose to only enter the
rules that you want to turn off. When you run an analysis, Polyspace automatically
turns on the other rules and populates the file.

single-unit-rules

Check a subset of rules that apply only to single translation units. These rules are
checked in the compilation phase of the analysis.

system-decidable-rules

Check rules in the single-unit-rules subset and some rules that apply to the
collective set of program files. The additional rules are the less complex rules that
apply at the integration level. These rules can be checked only at the integration level
because the rules involve more than one translation unit. These rules are checked in
the compilation and linking phases of the analysis.

Dependencies

This option is available only if you set Source code language (-lang) toCorC-
CPP.

For projects with mixed C and C++ code, the MISRA C:2012 checker analyzes only .c
files.

1-147

1 Option Descriptions

1-148

If you set Source code language (-lang) to C-CPP, you can activate a C coding
rule checker and a C++ coding rule checker. When you have both C and C++ coding
rule checkers active, to avoid duplicate results, Polyspace does not produce the C
coding rules found in the linking phase (such as MISRA C:2012 Rule 8.3).

Tips

To reduce unproven results in Polyspace Code Prover:
1 Find coding rule violations in SQ0-subsetl. Fix your code to address the
violations and rerun verification.

2 Find coding rule violations in SQ0-subset2. Fix your code to address the
violations and rerun verification.

If you select the option single-unit-rules or system-decidable-rules and
choose to detect coding rule violations only, the analysis can complete quicker than
checking other rules. For more information, see “Coding Rule Subsets Checked Early
in Analysis”.

Polyspace Code Prover does not support checking of the following:

* MISRA C:2012 Directive 4.13 and 4.14
* MISRA C:2012 Rule 21.13, 21.14, and 21.17 - 21.20
* MISRA C:2012 Rule 22.1 - 22.4 and 22.6 - 22.10

For support of all MISRA C: 2012 rules including the security guidelines in
Amendment 1, use Polyspace Bug Finder.

Command-Line Information

Parameter: -misra3

Value: mandatory | mandatory-required | CERT-rules | CERT-all | IS0-17961 |
all|SQ0-subsetl|SQO0-subset2 | single-unit-rules |system-decidable-
rules | file

Default: mandatory-required

Example: polyspace-bug-finder-nodesktop -lang c -sources file name -
misra3 mandatory-required

Check MISRA C:2012 (-misra3)

See Also

Generate results for sources and (-generate-results-for)

Topics

“Specify Polyspace Analysis Options”

“Check for Coding Rule Violations”

“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

1-149

1 Option Descriptions

1-150

Use generated code requirements (-misra3-
agc-mode)

Check for violations of MISRA C:2012 rules and directives that apply to generated code

Description

Specify whether to use the MISRA C:2012 categories for automatically generated code.
This option changes which rules are mandatory, required, or advisory.

Set Option

User interface: In your project configuration, the option is on the Coding Rules & Code
Metrics node. See “Dependency” on page 1-151 for other options that you must also
enable.

Command line: Use the option -misra3-agc-mode. See “Command-Line Information”
on page 1-152.

Why Use This Option

Use this option to specify that you are checking for MISRA C:2012 rules in generated
code. The option modifies the MISRA C:2012 subsets so that they are tailored for
generated code.

Settings

Off (default)

Use the normal categories (mandatory, required, advisory) for MISRA C:2012 coding
guideline checking.

¥ On (default for analyses from Simulink)

Use the generated code categories (mandatory, required, advisory, readability) for
MISRA C:2012 coding guideline checking.

Use generated code requirements (-misra3-agc-mode)

For analyses started from the Simulink plug-in, this option is the default value.
Category changed to Advisory
These rules are changed to advisory:

+ 53

« 7.1

+ 84,685,814

+ 10.1,10.2,10.3,10.4, 10.6, 10.7, 10.8
+ 141,144

+ 15.2,15.3

+ 16.1,16.2, 16.3, 16.4, 16.5, 16.6, 16.7
+ 20.8

Category changed to Readability

These guidelines are changed to readability:

* Dir4.5

+ 2.3,24,2.5,2.6,2.7
+ 5.9

e 72,73

*+ 9.2,93,95

« 119

+ 133

142

+ 15.7

+ 175,17.7,17.8
+ 185

* 205

Dependency

To use this option, first select the Check MISRA C:2012 (-misra3) option.

1-151

1 Option Descriptions

Command-Line Information

Parameter: -misra3-agc-mode

Default: Off

Example: polyspace-bug-finder-nodesktop -sources file name -misra3
all -misra3-agc-mode

See Also

Generate results for sources and (-generate-results-for) | Check MISRA
C:2012 (-misra3)

Topics

“Specify Polyspace Analysis Options”
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”

1-152

Check custom rules (-custom-rules)

Check custom rules (-custom-rules)

Follow naming conventions for identifiers

Description

Define naming conventions for identifiers and check your code against them.

Set Option

User interface: In your project configuration, the option is on the Coding Rules & Code
Metrics node.

Command line: Use the option -custom-rules. See “Command-Line Information” on

page 1-156.

Why Use This Option

Use this option to impose naming conventions on identifiers. Using a naming convention
allows you to easily determine the nature of an identifier from its name. For instance, if
you define a naming convention for structures, you can easily tell whether an identifier
represents a structured variable or not.

After analysis, the Results List pane lists violations of the naming conventions. On the
Source pane, for every violation, Polyspace assigns a * symbol to the keyword or
identifier relevant to the violation.

Settings

¥ On

Polyspace matches identifiers in your code against text patterns you define. Define
the text patterns in a custom coding rules file. To create a coding rules file,

e Use the custom rules wizard:

1-153

1 Option Descriptions

Click (I

2 From the drop-down list Set the following state to all Custom C, select
0ff. Click Apply.

3 For every custom rule you want to check:

. The New File window opens.

a Select On@,

b In the Convention column, enter the error message you want to display if
the rule is violated.

For example, for rule 4.3, All struct fields must follow the specified
pattern, you can enter ALl struct fields must begin with s .
This message appears on the Result Details pane if:
* You specify the Patternas s [A-Za-z0-9]+
* A structure field in your code does not begin with s _.

¢ In the Pattern column, enter the text pattern.
For example, for rule 4.3, All struct fields must follow the specified

pattern, you can enter s [A-Za-z0-9]+. Polyspace reports violation of
rule 4.3 if a structure field does not begin with s_.

You can use Perl regular expressions to define patterns. For instance, you
can use the following expressions.

Expression |Meaning
Matches any single character except
newline

[a- Matches any single letter in the set a- z,

z0-9] or digit in the set 0-9

[ta-el Matches any single letter not in the set
a-e

\d Matches any single digit

\w Matches any single alphanumeric
character or _

X7 Matches 0 or 1 occurrence of x

1-154

Check custom rules (-custom-rules)

Expression |Meaning

x* Matches 0 or more occurrences of x

X+ Matches 1 or more occurrences of x

For frequent patterns, you can use the following regular expressions:

(?!')[a-z0-9]+(?!), matches a text pattern that does not
start and end with two underscores.

int _ text; //Does not match
int _text_; //Matches

[@a-2z0-9]+ (u8|ul6|u32|s8|sl6]|s32), matches a text pattern
that ends with a specific suffix.

int _text_; //Does not match
int _text_s16; //Matches
int _text_s33; // Does not match

[a-z0-9]+ (u8|ul6|u32|s8|sl6|s32)(b3| b8)?, matchesa
text pattern that ends with a specific suffix and an optional second
suffix.

int _text_s16; //Matches
int _text_s16 b8; //Matches

For a complete list of regular expressions, see Perl documentation.

* Manually edit an existing custom coding rules file:

1

2

Open the file with a text editor.

For every custom rule, enter the following information in adjacent lines.

Rule number, followed by on or of f. For example:

4.3 on

The error message you want to display starting with convention=. For
example:

convention=All struct fields must begin with s

The text pattern starting with pattern=. For example:

pattern=s [A-Za-z0-9]

1-155

https://perldoc.perl.org/perlre.html#Regular-Expressions

1 Option Descriptions

1-156

If you are writing the coding rules file manually, you can choose to only enter
the rules that you want to turn off. When you run an analysis, Polyspace
automatically turns on the other rules and populates the file.

To use an existing coding rules file, enter the full path to the file in the field provided

or use —! in the New File window to navigate to the file location.
Off (default)
Polyspace does not check your code against custom naming conventions.

Command-Line Information

Parameter: -custom-rules

Value: Name of coding rules file

Default: Off

Example: polyspace-bug-finder-nodesktop -sources file name -custom-
rules "C:\Rules\myrules.txt"

See Also

Topics

“Specify Polyspace Analysis Options”
“Create Custom Coding Rules”
“Format of Custom Coding Rules File”

Effective boolean types (-boolean-types)

Effective boolean types (-boolean-types)

Specify data types that coding rule checker must treat as effectively Boolean

Description

Specify data types that the coding rule checker must treat as effectively Boolean. You can
specify a data type only if you have defined it through a typedef statement in your
source code.

Set Option

User interface: In your project configuration, the option is on the Coding Rules & Code
Metrics node. See “Dependencies” on page 1-159 for other options that you must also
enable.

Command line: Use the option -boolean-types. See “Command-Line Information” on
page 1-159.

Why Use This Option

Use this option to allow Polyspace to check the following coding rules:

+ MISRA C: 2004 and MISRA AC AGC

Rule Rule Statement
Number
12.6 Operands of logical operators, &§, | |, and !, should be effectively

Boolean. Expressions that are effectively Boolean should not be used as
operands to other operators.

13.2 Tests of a value against zero should be made explicit, unless the
operand is effectively Boolean.

15.4 A switch expression should not represent a value that is effectively
Boolean.

* MISRA C: 2012

1-157

1 Option Descriptions

Rule Rule Statement

Number

10.1 on |Operands shall not be of an inappropriate essential type
page 5-

160

10.3 on |The value of an expression shall not be assigned to an object with a
page 5- |narrower essential type or of a different essential type category
169

10.5 on |The value of an expression should not be cast to an inappropriate
page 5- |essential type
173

14.4 on |The controlling expression of an if statement and the controlling
page 5- |expression of an iteration-statement shall have essentially Boolean

247 type.

16.7 on |A switch-expression shall not have essentially Boolean type.
page 5-

286

For example, in the following code, unless you specify myBool as effectively Boolean,
Polyspace detects a violation of MISRA C: 2012 rule 14.4.

typedef int myBool;

void funcl(void);
void func2(void);

void func(myBool flag) {
if(flag)
funcl();

else
func2();

Settings

No Default

Click I:II:II:I to add a field. Enter a type name that you want Polyspace to treat as Boolean.

1-158

Effective boolean types (-boolean-types)

Dependencies

This option is available only if you select Check MISRA AC AGC (-misra-ac-agc),
Check MISRA C:2004 (-misra2), or Check MISRA C:2012 (-misra3).

Command-Line Information

Parameter: -boolean-types

Value: typell,type2[,...]]

No Default

Example: polyspace-bug-finder-nodesktop -sources filename -misra2
required-rules -boolean-types booleanl t,boolean2 t

See Also

Check MISRA AC AGC (-misra-ac-agc) | Check MISRA C:2004 (-misra2) |
Check MISRA C:2012 (-misra3)

Topics
“Specify Polyspace Analysis Options”
“Check for Coding Rule Violations”

1-159

1 Option Descriptions

1-160

Allowed pragmas (-allowed-pragmas)

Specify pragma directives for which MISRA C:2004 rule 3.4 must not be applied

Description

Specify pragma directives for which MISRA C:2004 rule 3.4 or MISRA C++ rule 16-6-1
must not be applied.

Set Option

User interface: In your project configuration, the option is on the Coding Rules & Code
Metrics node. See “Dependencies” on page 1-161 for other options that you must also
enable.

Command line: Use the option -allowed-pragmas. See “Command-Line Information”
on page 1-161.

Why Use This Option

MISRA C:2004/MISRA AC AGC rule 3.4 and MISRA C++ rule 16-6-1 require that all
pragma directives are documented within the documentation of the compiler. If you list a
pragma as documented using this analysis option, Polyspace does not flag use of the
pragma as a violation of these rules.

Settings
No Default

Click I:II_II:I to add a field. Enter the pragma name that you want Polyspace to ignore during
coding rule checking .

Allowed pragmas (-allowed-pragmas)

Dependencies

This option is enabled only if you select one of the following options:

* Check MISRA C:2004 (-misra2)
* Check MISRA AC AGC (-misra-ac-agc).
* Check MISRA C++ rules (-misra-cpp)

Command-Line Information

Parameter: -allowed-pragmas

Value: pragmall,pragma2([,...]1]

No Default

Example: polyspace-bug-finder-nodesktop -sources filename -misra-cpp
required-rules -allowed-pragmas pragma 01,pragma 02

Example: polyspace-bug-finder-nodesktop -sources filename -misra2
required-rules -allowed-pragmas pragma 01,pragma 02

See Also

Check MISRA C:2004 (-misra2) | Check MISRA AC AGC (-misra-ac-agc) |
Check MISRA C++ rules (-misra-cpp)

Topics

“Check for Coding Rule Violations”

“MISRA C:2004 and MISRA AC AGC Coding Rules”
“MISRA C++:2008 Rules”

1-161

1 Option Descriptions

1-162

Check MISRA C++ rules (-misra-cpp)

Check for violations of MISRA C++ rules

Description

Specify whether to check for violation of MISRA C++ rules. Each value of the option
corresponds to a subset of rules to check.

Set Option

User interface: In your project configuration, the option is on the Coding Rules & Code
Metrics node. See “Dependency” on page 1-164 for other options that you must also
enable.

Command line: Use the option -misra-cpp. See “Command-Line Information” on page
1-164.

Why Use This Option
Use this option to specify the subset of MISRA C++ rules to check for.

After analysis, the Results List pane lists the coding rule violations. On the Source pane,
for every coding rule violation, Polyspace assigns a ¥ symbol to the keyword or identifier
relevant to the violation.

Settings

Default: required-rules

required-rules
Check required coding rules.
all-rules
Check required and advisory coding rules.

Check MISRA C++ rules (-misra-cpp)

CERT-rules
Check a subset of MISRA C++ rules that correspond to CERT® C++ rules.

See “CERT C++ Coding Standard and Polyspace Results”
CERT-all

Check a subset of MISRA C++ rules that correspond to CERT C++ rules. This subset
is the same as for CERT- rules.

See “CERT C++ Coding Standard and Polyspace Results”
SQ0-subsetl

Check only a subset of MISRA C++ rules. In Polyspace Code Prover, observing these
rules can reduce the number of unproven results. For more information, see
“Software Quality Objective Subsets (C++)”.

SQ0-subset?

Check a subset of rules including SQ0-subsetl and some additional rules. In
Polyspace Code Prover, observing these rules can further reduce the number of
unproven results. For more information, see “Software Quality Objective Subsets (C+
+)II

custom

Edit

Specify coding rules to check. Click to create a coding rules file.

After creating and saving the file, to reuse it for another project, do one of the
following:

* Enter full path to the file in the space provided.

* Edit

Click . Click —! to load the file.

Format of the custom file:
<rule number> off|on
Use # to enter comments in the file. For example:

9-5-1 off # rule 9-5-1: classes
15-0-2 on # rule 15-0-2: exception handling

1-163

1 Option Descriptions

1-164

If you are writing the coding rules file manually, you can choose to only enter the
rules that you want to turn off. When you run an analysis, Polyspace automatically
turns on the other rules and populates the file.

Dependency

This option is available only if you set Source code language (-lang) to CPPorC-
CPP.

For projects with mixed C and C++ code, the MISRA C++ checker analyzes only . cpp
files.

Command-Line Information

Parameter: -misra-cpp

Value: required-rules | all-rules | SQO-subsetl | SQO-subset2 | file

Default: required-rules

Example: polyspace-bug-finder-nodesktop -sources file name -misra-cpp
all-rules

See Also

Generate results for sources and (-generate-results-for)

Topics

“Specify Polyspace Analysis Options”
“Check for Coding Rule Violations”
“Polyspace MISRA C++ Checkers”
“Software Quality Objective Subsets (C++)”
“MISRA C++:2008 Rules”

Check JSF C++ rules (-jsf-coding-rules)

Check JSF C++ rules (-jsf-coding-rules)

Check for violations of JSF C++ rules

Description

Specify whether to check for violation of JSF C++ rules (JSF++:2005). Each value of the
option corresponds to a subset of rules to check.

Set Option

User interface: In your project configuration, the option is on the Coding Rules & Code
Metrics node. See “Dependency” on page 1-167 for other options that you must also
enable.

Command line: Use the option - jsf-coding-rules. See “Command-Line Information”
on page 1-167.

Why Use This Option
Use this option to specify the subset of JSF C++ rules to check for.
After analysis, the Results List pane lists the coding rule violations. On the Source pane,

for every coding rule violation, Polyspace assigns a ¥ symbol to the keyword or identifier
relevant to the violation.

Settings

Default: shall-rules

shall-rules

Check all Shall rules. Shall rules are mandatory requirements and require
verification.

1-165

1 Option Descriptions

shall-will-rules

Check all Shall and Will rules. Will rules are intended to be mandatory requirements
but do not require verification.

all-rules
Check all Shall, Will, and Should rules. Should rules are advisory rules.
custom

Specify coding rules to check. Click ‘Ed_'t/ to create a coding rules file.

After creating and saving the file, to reuse it for another project, do one of the
following:

* Enter full path to the file in the space provided.

Click ¥ | click —! to load the file.

Format of the custom file:
<rule number> off|on
Use # to enter comments in the file. For example:

67 off # rule 67: classes
202 on # rule 202: expressions

If you are writing the coding rules file manually, you can choose to only enter the
rules that you want to turn off. When you run an analysis, Polyspace automatically
turns on the other rules and populates the file.

Tips
» If your project uses a setting other than iso for Compiler (-compiler), some rules

might not be completely checked. For example, AV Rule 8: “All code shall conform to
ISO/IEC 14882:2002(E) standard C++.”

1-166

Check JSF C++ rules (-jsf-coding-rules)

Dependency

This option is available only if you set Source code language (-lang) to CPPor C-
CPP.

For projects with mixed C and C++ code, the JSF C++ checker analyzes only . cpp files.

Command-Line Information

Parameter: - jsf-coding-rules

Value: shall-rules | shall-will-rules |all-rules | file

Default: shall-rules

Example: polyspace-bug-finder-nodesktop -sources file name -jsf-
coding-rules all-rules

See Also

Generate results for sources and (-generate-results-for)

Topics

“Specify Polyspace Analysis Options”
“Check for Coding Rule Violations”
“Polyspace JSF C++ Checkers”

“JSF C++ Coding Rules”

1-167

1 Option Descriptions

1-168

Calculate code metrics (-code-metrics)

Compute and display code complexity metrics

Description

Specify that Polyspace must compute and display code complexity metrics for your source
code. The metrics include file metrics such as number of lines and function metrics such
as cyclomatic complexity and estimated size of local variables.

For more information, see “Compute Code Complexity Metrics”.

Set Option

User interface: In your project configuration, the option is on the Coding Rules & Code
Metrics node.

Command line: Use the option -code-metrics. See “Command-Line Information” on
page 1-169.

Why Use This Option

By default, Polyspace does not calculate code complexity metrics. If you want these
metrics in your analysis results, before running analysis, set this option.

High values of code complexity metrics can lead to obscure code and increase chances of
coding errors. Additionally, if you run a Code Prover verification on your source code, you
might benefit from checking your code complexity metrics first. If a function is too
complex, attempts to verify the function can lead to a lot of unproven code. For
information on how to cap your code complexity metrics, see .

Settings

¥ On
Polyspace computes and displays code complexity metrics on the Results List pane.

Calculate code metrics (-code-metrics)

Off (default)
Polyspace does not compute complexity metrics.

Tips
If you want to compute only the code complexity metrics for your code:

* In Bug Finder, disable checking of defects. See Find defects (-checkers).

* In Code Prover, run verification up to the Source Compliance Checking phase.
See Verification level (-to).

Command-Line Information

Parameter: -code-metrics

Default: Off

Example: polyspace-bug-finder-nodesktop -sources file name -code-
metrics

See Also

Topics
“Compute Code Complexity Metrics”

1-169

1 Option Descriptions

1-170

Find defects (-checkers)

Enable or disable defect checkers

Description

This option affects a Bug Finder analysis only.

Enable checkers for bugs/coding defects.

Set Option

User interface: In your project configuration, the option is on the Bug Finder Analysis
node.

Command line: Use the option - checkers. See “Command-Line Information” on page
1-172.

Why Use This Option

The default set of checkers is designed to find the most meaningful bugs in most software
development situations. If you have specific needs, enable or disable individual defect
checkers. For instance, if you want to follow a specific security standard, choose a
different subset of checkers.

Settings

Default: default

default

A subset of defects defined by the software. For information on which defects are
default, refer to the individual defect reference pages.

all
All defects.

Find defects (-checkers)

CWE
A subset of defects that correspond to CWE™ IDs.

See “CWE Coding Standard and Polyspace Results”.

CERT-rules
A subset of defects that correspond to CERT C rules when you analyze C code, or
CERT C++ rules when you analyze C++ code.

See:

* “CERT C Coding Standard and Polyspace Results”
* “CERT C++ Coding Standard and Polyspace Results”

CERT-all
A subset of defects that correspond to CERT C rules and recommendations when you
analyze C code. For C++ code, this subset is the same as CERT-rules.

See:

* “CERT C Coding Standard and Polyspace Results”
* “CERT C++ Coding Standard and Polyspace Results”

IS0-17961
A subset of defects that correspond to ISO/IEC TS 17961 coding standard.

See “ISO/IEC TS 17961 Coding Standard and Polyspace Results”.
custom

Choose the defects you want to find by selecting categories of checkers or specific
defects.

Tips

You can use a spreadsheet to keep track of the defect checkers that you enable and add
notes explaining why you do not enable the other checkers. A spreadsheet of checkers is
provided in matlabroot\polyspace\resources. Here, matlabroot is the MATLAB
installation folder, such as C:\Program Files\MATLAB\R2017a.

1-171

1 Option Descriptions

1-172

Command-Line Information

Regardless of order, the shell script processes the -checkers option, and then -
disable-checkers option.

For the command-line parameters values, see “Short Names of Bug Finder Defect
Checkers”.

Parameter: -checkers

Value: default | none | all | CWE | CERT-rules | CERT-all | IS0-17961
| defect group | defect parameters

Default: default

Parameter: -disable-checkers

Value: defect group | defect parameters

Example 1: polyspace-bug-finder-nodesktop -sources filename -checkers
numerical,data flow -disable-checkers FLOAT ZERO DIV

Example 2: polyspace-bug-finder-nodesktop -sources filename -checkers
default -disable-checkers concurrency,dead code

See Also

“Defects”

Topics

“Specify Polyspace Analysis Options”

“Short Names of Bug Finder Defect Checkers”
“Bug Finder Defect Groups”

Class (-class-analyzer)

Class (-class-analyzer)

Specify classes that you want to verify

Description

This option affects a Code Prover analysis only.

Specify classes that Polyspace uses to generate a main.

Set Option

User interface: In your project configuration, the option is on the Code Prover
Verification node. See “Dependencies” on page 1-174 for other options that you must
also enable.

Command line: Use the option -class-analyzer. See “Command-Line Information” on

page 1-174.

Why Use This Option

If you are verifying a module or library, Code Prover generates a main function if one
does not exist. If a main exists, the analysis uses the existing main.

Use this option and the option Functions to call within the specified
classes (-class-analyzer-calls) to specify the class methods that the generated
main must call. Unless a class method is called directly or indirectly from main, the
software does not analyze the method.

Settings
Default: all

all

Polyspace can use all classes to generate a main. The generated main calls methods
that you specify using Functions to call within the specified classes.

1-173

1 Option Descriptions

1-174

none
The generated main cannot call any class method.
custom

Polyspace can use classes that you specify to generate a main. The generated main
calls methods from classes that you specify using Functions to call within the
specified classes.

Dependencies

You can use this option only if all of the following are true:

* Your code does not contain a main function.
* Source code language (-lang) is set to CPP.
* Verify module or library (-main-generator) is selected.

Tips

If you select none for this option, Polyspace will not verify class methods that you do not
call explicitly in your code.

Command-Line Information

Parameter: -class-analyzer

Value: all | none | custom=classli[,class2,...]

Default: all

Example: polyspace-code-prover-nodesktop -sources file name -main-
generator -class-analyzer custom=myClassl,myClass2

See Also

Verify module or library (-main-generator) | Functions to call within
the specified classes (-class-analyzer-calls) | Analyze class contents
only (-class-only) |Skip member initialization check (-no-
constructors-init-check)

Class (-class-analyzer)

Topics
“Specify Polyspace Analysis Options” (Polyspace Code Prover)
“Verify C++ Classes” (Polyspace Code Prover)

1-175

1 Option Descriptions

Functions to call within the specified classes
(-class-analyzer-calls)

Specify class methods that you want to verify

Description

This option affects a Code Prover analysis only.

Specify class methods that Polyspace uses to generate a main. The generated main can
call static, public and protected methods in classes that you specify using the Class
option.

Set Option

User interface: In your project configuration, the option is on the Code Prover
Verification node. See “Dependencies” on page 1-178 for other options that you must
also enable.

Command line: Use the option -class-analyzer-calls. See “Command-Line
Information” on page 1-178.

Why Use This Option

If you are verifying a module or library, Code Prover generates a main function if one
does not exist. If a main exists, the analysis uses the existing main.

Use this option and the option Class (-class-analyzer) to specify the class methods
that the generated main must call. Unless a class method is called directly or indirectly
from main, the software does not analyze the method.

Settings

Default: unused

1-176

Functions to call within the specified classes (-class-analyzer-calls)

all

The generated main calls all public and protected methods. It does not call methods
inherited from a parent class.

all-public

The generated main calls all public methods. It does not call methods inherited from
a parent class.

inherited-all

The generated main calls all public and protected methods including those inherited
from a parent class.

inherited-all-public

The generated main calls all public methods including those inherited from a parent
class.

unused

The generated main calls public and protected methods that are not called in the
code.

unused-public

The generated main calls public methods that are not called in the code. It does not
call methods inherited from a parent class.

inherited-unused

The generated main calls public and protected methods that are not called in the
code including those inherited from a parent class.

inherited-unused-public

The generated main calls public methods that are not called in the code including
those inherited from a parent class.

custom
The generated main calls the methods that you specify.

Enter function names or choose from a list.

Click I:II_II:I to add a field and enter the function name.
Click i to list functions in your code. Choose functions from the list.

If you use the scope resolution operator to specify the function from a particular
namespace, enter the fully qualified name, for instance, myClass: :myMethod(int).

1-177

1 Option Descriptions

1-178

If the function does not have a parameter, use an empty parenthesis, for instance,
myClass: :myMethod().

Dependencies

You can use this option only if:

* Source code language (-lang) is set to CPP.
* Verify module or library (-main-generator) is selected

Command-Line Information

Parameter: -class-analyzer-calls

Value: all | all-public | inherited-all | inherited-all-public |unused |
unused-public | inherited-unused | inherited-unused-public |
custom=methodl[,method2, ...]

Default: unused

Example: polyspace-code-prover-nodesktop -sources file name -main-
generator -class-analyzer custom=myClassl,myClass2 -class-analyzer-
calls unused-public

See Also

Verify module or library (-main-generator) |Class (-class-analyzer) |
Analyze class contents only (-class-only) |Skip member initialization
check (-no-constructors-init-check)

Topics
“Specify Polyspace Analysis Options” (Polyspace Code Prover)
“Verify C++ Classes” (Polyspace Code Prover)

Analyze class contents only (-class-only)

Analyze class contents only (-class-only)

Do not analyze code other than class methods

Description

This option affects a Code Prover analysis only.

Specify that Polyspace must verify only methods of classes that you specify using the
option Class (-class-analyzer).

Set Option

User interface: In your project configuration, the option is on the Code Prover
Verification node. See “Dependencies” on page 1-180 for other options that you must
also enable.

Command line: Use the option -class-only. See “Command-Line Information” on
page 1-180.

Why Use This Option

Use this option to restrict the analysis to certain class methods only.

You specify these methods through the options:

* C(Class (-class-analyzer)

* Functions to call within the specified classes (-class-analyzer-
calls)

When you analyze a module or library, Code Prover generates a main function if one does
not exist. The main function calls class methods using these two options and functions
that are not class methods using other options. Code Prover analyzes these methods and
functions for robustness to all inputs. If you use this option, Code Prover analyzes the
methods only.

1-179

1 Option Descriptions

Settings

¥ On

Polyspace verifies the class methods only. It stubs functions out of class scope even if
the functions are defined in your code.

Off (default)
Polyspace verifies functions out of class scope in addition to class methods.

Dependencies

You can use this option only if all of the following are true:

* Your code does not contain a main function.
* Source code language (-lang) is set to CPP.
* Verify module or library (-main-generator) is selected.

If you select this option, you must specify the classes using the Class (-class-
analyzer) option.

Tips
Use this option:

» For robustness verification of class methods. Unless you use this option, Polyspace
verifies methods that you call in your code only for your input combinations.

* In case of scaling.

Command-Line Information

Parameter: -class-only
Default: Off

See Also

Verify module or library (-main-generator) |Class (-class-analyzer) |
Functions to call within the specified classes (-class-analyzer-

1-180

Analyze class contents only (-class-only)

calls) | Skip member initialization check (-no-constructors-init-
check)

Topics
“Specify Polyspace Analysis Options” (Polyspace Code Prover)
“Verify C++ Classes” (Polyspace Code Prover)

1-181

1 Option Descriptions

1-182

Initialization functions (-functions-called-
before-main)

Specify functions that you want the generated main to call ahead of other functions

Description

This option affects a Code Prover analysis only.

Specify functions that you want the generated main to call ahead of other functions.

Set Option

User interface: In your project configuration, the option is on the Code Prover
Verification node. See “Dependencies” on page 1-183 for other options that you must
also enable.

Command line: Use the option - functions-called-before-main. See “Command-
Line Information” on page 1-184.

Why Use This Option

If you are verifying a module or library, Code Prover generates a main function if one
does not exist. If a main exists, the analysis uses the existing main.

Use this option along with the option Functions to call (-main-generator-

calls) to specify which functions the generated main must call. Unless a function is
called directly or indirectly from main, the software does not analyze the function.

Settings
No Default

Enter function names or choose from a list.

Initialization functions (- functions-called-before-main)

Click I:II_IIZI to add a field and enter the function name.
Click i to list functions in your code. Choose functions from the list.

If the function or method is not overloaded, specify the function name. Otherwise, specify
the function prototype with arguments. For instance, in the following code, you must
specify the prototypes func(int) and func(double).

int func(int x) {
return(x * 2);

}

double func(double x) {
return(x * 2);

}
For C++, if the function is:

* A class method: The generated main calls the class constructor before calling this
function.

* Not a class method: The generated main calls this function before calling class
methods.

If you use the scope resolution operator to specify the function from a particular
namespace, enter the fully qualified name, for instance, myClass::init(int). If the
function does not have a parameter, use an empty parenthesis, for instance,
myClass::init().

Dependencies

This option is enabled only if you select Verify module or library under Code Prover
Verification and your code does not contain a main function.

Tips

Although these functions are called ahead of other functions, they can be called in
arbitrary order. If you want to call your initialization functions in a specific order,
manually write a main function to call them.

1-183

1 Option Descriptions

Command-Line Information

Parameter: - functions-called-before-main

Value: functionl[, function2[,...]]

No Default

Example: polyspace-code-prover-nodesktop -sources file name -main-
generator -functions-called-before-main myfunc

Example: polyspace-code-prover-nodesktop -sources file name -main-
generator -functions-called-before-main myClass::init(int)

See Also

Verify module or library (-main-generator) |Variables to initialize
(-main-generator-writes-variables) | Functions to call (-main-
generator-calls) | Class (-class-analyzer) | Functions to call within
the specified classes (-class-analyzer-calls) | Analyze class contents
only (-class-only)

Topics
“Verify C Application Without main Function” (Polyspace Code Prover)

1-184

Verify whole application

Verify whole application

Stop verification if sources files are incomplete and do not contain a main function

Description

This option affects a Code Prover analysis only.

Specify that Polyspace verification must stop if a main function is not present in the
source files.

If you select a Visual C++ setting for Compiler (-compiler), you can specify which
function must be considered as main. See Main entry point (-main).

Set Option

User interface: In your project configuration, the option is on the Code Prover
Verification node.

Command line: There is no corresponding command-line option. See “Command-Line
Information” on page 1-186.

Settings

2 On
Polyspace verification stops if it does not find a main function in the source files.
Off (default)

Polyspace continues verification even when a main function is not present in the
source files. If a main is not present, it generates a file polyspace main.c that
contains a main function.

1-185

1 Option Descriptions

1-186

Command-Line Information

Unlike the user interface, by default, a verification from the command line stops if it does
not find a main function in the source files. If you specify the option -main-generator,
Polyspace generates a main if it cannot find one in the source files.

See Also

Verify module or library (-main-generator)

Topics
“Verify C Application Without main Function” (Polyspace Code Prover)

Main entry point (-main)

Main entry point (-main)

Specify a Microsoft Visual C++ extensions of main

Description

This option affects a Code Prover analysis only.

Specify the function that you want to use as main. If the function does not exist, the
verification stops with an error message. Use this option to specify Microsoft Visual C++
extensions of main.

Set Option

User interface: In your project configuration, the option is on the Code Prover
Verification node. See “Dependencies” on page 1-188 for other options that you must
also enable.

Command line: Use the option -main. See “Command-Line Information” on page 1-188.

Settings
Default: tmain

_tmain

Use tmain as entry point to your code.
wmain

Use wmain as entry point to your code.
_tWinMain

Use tWinMain as entry point to your code.
wWinMain

Use wWinMain as entry point to your code.
WinMain

Use WinMain as entry point to your code.

1-187

1 Option Descriptions

D1lMain
Use D11Main as entry point to your code.

Dependencies

This option is enabled only if you:

* Set Source code language (-lang) to CPP.
* Select Verify whole application

Command-Line Information

Parameter: -main

Value: tmain|wmain| _ tWinMain |wWinMain |WinMain | D1lMain

Example: polyspace-code-prover-nodesktop -sources file name -compiler
visuall4.0 -main _tmain

See Also

Verify module or library (-main-generator)

1-188

Functions to call (-main-generator-calls)

Functions to call (-main-generator-calls)

Specify functions that you want the generated main to call after the initialization
functions

Description

This option affects a Code Prover analysis only.

Specify functions that you want the generated main to call. The main calls these
functions after the ones you specify through the option Initialization functions
(-functions-called-before-main).

Set Option

User interface: In your project configuration, the option is on the Code Prover
Verification node. See “Dependencies” on page 1-190 for other options that you must
also enable.

Command line: Use the option -main-generator-calls. See “Command-Line
Information” on page 1-191.

Why Use This Option

If you are verifying a module or library, Code Prover generates a main function if one
does not exist. If a main exists, the analysis uses the existing main.

Use this option along with the option Initialization functions (-functions-
called-before-main) to specify which functions the generated main must call. Unless

a function is called directly or indirectly from main, the software does not analyze the
function.

Settings

Default: unused

1-189

1 Option Descriptions

1-190

none
The generated main does not call any function.
unused

The generated main calls only those functions that are not called in the source code.
It does not call inlined functions.

all

The generated main calls all functions except inlined ones.
custom

The generated main calls functions that you specify.

Enter function names or choose from a list.

Click I:II_IIZI to add a field and enter the function name.
Click o to list functions in your code. Choose functions from the list.

If you use the scope resolution operator to specify the function from a particular
namespace, enter the fully qualified name, for instance, myClass: :myMethod(int).
If the function does not have a parameter, use an empty parenthesis, for instance,
myClass: :myMethod().

Dependencies

This option is available only if you select Verify module or library (-main-
generator).

Tips
* Select unused when you use Code Prover Verification > Verify files
independently.

* Ifyou want the generated main to call an inlined function, select custom and specify
the name of the function.

» To verify a multitasking application without a main, select none.

* The generated main can call the functions in arbitrary order. If you want to call your
functions in a specific order, manually write a main function to call them.

Functions to call (-main-generator-calls)

Command-Line Information

Parameter: -main-generator-calls

Value: none | unused | all | custom=functionl[, function2[,...]]

Default: unused

Example: polyspace-code-prover-nodesktop -sources file name -main-
generator -main-generator-calls all

See Also

Verify module or library (-main-generator) |Variables to initialize
(-main-generator-writes-variables) | Initialization functions (-
functions-called-before-main) | Class (-class-analyzer) | Functions to
call within the specified classes (-class-analyzer-calls) | Analyze
class contents only (-class-only)

Topics
“Verify C Application Without main Function” (Polyspace Code Prover)

1-191

1 Option Descriptions

1-192

Variables to initialize (-main-generator-
writes-variables)

Specify global variables that you want the generated main to initialize

Description

This option affects a Code Prover analysis only.

Specify global variables that you want the generated main to initialize. Polyspace
considers these variables to have any value allowed by their type.

Set Option

User interface: In your project configuration, the option is on the Code Prover
Verification node. See “Dependencies” on page 1-193 for other options that you must
also enable.

Command line: Use the option -main-generator-writes-variables. See
“Command-Line Information” on page 1-193.

Why Use This Option

If you are verifying a module or library, Code Prover generates a main function if one
does not exist. If a main exists, the analysis uses the existing main.

Use this option to specify which global variables the generated main must initialize.

Settings

Default:

* Ccode — public
e C++ Code — uninit

Variables to initialize (-main-generator-writes-variables)

uninit
C++ Only

The generated main only initializes global variables that you have not initialized
during declaration.

none
The generated main does not initialize global variables.
public

The generated main initializes all global variables except those declared with
keywords static and const.

all

The generated main initializes all global variables except those declared with
keyword const.

custom

The generated main only initializes global variables that you specify. Click I:II_II:I to add
a field. Enter a global variable name.

Dependencies

You can use this option only if the following are true:

* Your code does not contain a main function.
* Verify module or library (-main-generator) is selected.

Command-Line Information

Parameter: -main-generator-writes-variables

Value: uninit | none|public|all|custom=variablel[,variable2[,...]]
Default: (C) public | (C++)uninit

Example: polyspace-code-prover-nodesktop -sources file name -main-
generator -main-generator-writes-variables all

See Also

Verify module or library (-main-generator) |Initialization functions
(-functions-called-before-main) | Functions to call (-main-generator-

1-193

1 Option Descriptions

calls) | Class (-class-analyzer) | Functions to call within the
specified classes (-class-analyzer-calls) |Analyze class contents

only (-class-only)

Topics
“Verify C Application Without main Function” (Polyspace Code Prover)

1-194

Skip member initialization check (-no-constructors-init-check)

Skip member initialization check (-no-
constructors-init-check)

Do not check if class constructor initializes class members

Description

This option affects a Code Prover analysis only.

Specify that Polyspace must not check whether each class constructor initializes all class
members.

Set Option

User interface: In your project configuration, the option is on the Code Prover
Verification node. See “Dependencies” on page 1-196 for other options that you must
also enable.

Command line: Use the option -no-constructors-init-check. See “Command-Line
Information” on page 1-196.

Why Use This Option

Use this option to disable checks for initialization of class members in constructors.

Settings

+| On

Polyspace does not check whether each class constructor initializes all class
members.

Off (default)

Polyspace checks whether each class constructor initializes all class members. It uses
the functions check NIV() and check NIP() in the generated main to perform
these checks. It checks for initialization of:

1-195

1 Option Descriptions

1-196

» Integer types such as int, char and enum, both signed or unsigned.
* Floating-point types such as float and double.
* Pointers.

Dependencies

You can use this option only if all of the following are true:

* Your code does not contain a main function.
* Source code language (-lang) is setto CPP.
* Verify module or library (-main-generator) is selected.

If you select this option, you must specify the classes using theClass (-class-
analyzer) option.

Command-Line Information
Parameter: -no-constructors-init-check
Default: Off

See Also

Verify module or library (-main-generator) |Class (-class-analyzer)

Topics
“Specify Polyspace Analysis Options” (Polyspace Code Prover)

Verify files independently (-unit-by-unit)

Verify files independently (-unit-by-unit)

Verify each source file independently of other source files

Description

This option affects a Code Prover analysis only.

Specify that each source file must be verified independently of other source files. Each file
is verified individually, independent of other files in the module. Verification results can be
viewed for the entire project or for individual files.

After you open the verification result for one file, you can see a summary of results for all
files on the Dashboard pane. You can open the results for each file directly from this
summary table.

Set Option

User interface: In your project configuration, the option is on the Code Prover
Verification node. See “Dependencies” on page 1-198 for other options that you must
also enable.

Command line: Use the option -unit-by-unit. See “Command-Line Information” on
page 1-199.

Why Use This Option

There are many reasons you might want to verify each source file independently of other
files.

For instance, if verification of a project takes very long, you can perform a file by file
verification to identify which file is slowing the verification.

1-197

1 Option Descriptions

1-198

Settings

41 On
Polyspace creates a separate verification job for each source file.
Off (default)
Polyspace creates a single verification job for all source files in a module.

Dependencies

This option is enabled only if you select Verify module or library (-main-
generator).

Tips
» Ifyou perform a file by file verification, you cannot specify multitasking options.

» Ifyour verification for the entire project takes very long, perform a file by file
verification. After the verification is complete for a file, you can view the results while
other files are still being verified.

* You can generate a report of the verification results for each file or for all the files
together.

To generate a single report for all the files:

1 Open the results for one file.

2 Select Reporting > Run Report. Before generating the report, select the option
Generate a single report including all unit results.

* When you perform a file-by-file verification, you can see many instances of unused
variables. Some of these variables might be used in other files but show as unused in a
file-by-file verification.

If you want to ignore these results, use a review scope (named set of filters) that filters
out unused variables. See “Filter and Group Results” (Polyspace Code Prover).

Verify files independently (-unit-by-unit)

Command-Line Information

Parameter: -unit-by-unit

Default: Off

Example: polyspace-code-prover-nodesktop -sources file name -unit-by-
unit

See Also

Common source files (-unit-by-unit-common-source)

1-199

1 Option Descriptions

1-200

Common source files (-unit-by-unit-
common-source)

Specify files that you want to include with each source file during a file by file verification

Description

This option affects a Code Prover analysis only.

For a file by file verification, specify files that you want to include with each source file
verification. These files are compiled once, and then linked to each verification.

Set Option

User interface: In your project configuration, the option is on the Code Prover
Verification node. See “Dependencies” on page 1-201 for other options that you must
also enable.

Command line: Use the option -unit-by-unit-common-source. See “Command-Line
Information” on page 1-201.

Why Use This Option

There are many reasons you might want to verify each source file independently of other
files. For instance, if verification of a project takes very long, you can perform a file by file
verification to identify which file is slowing the verification.

If you perform a file by file verification, some of your files might be missing information
present in the other files. Place the missing information in a common file and use this
option to specify the file for verification. For instance, if multiple source files call the same
function, use this option to specify a file that contains the function definition or a function
stub. Otherwise, Polyspace uses its own stubs for functions that are called but not defined
in the source files. The assumptions behind the Polyspace stubs can be broader than what
you want, leading to orange checks.

Common source files (-unit-by-unit-common-source)

Settings

No Default

Click I:II_II:I to add a field. Enter the full path to a file. Otherwise, use the —! button to
navigate to the file location.

Dependencies

This option is enabled only if you select Verify files independently (-unit-by-
unit).

Command-Line Information

Parameter: -unit-by-unit-common-source

Value: filel[,file2[,...]]

No Default

Example: polyspace-code-prover-nodesktop -sources file name -unit-by-
unit -unit-by-unit-common-source definitions.c

See Also
Verify files independently (-unit-by-unit)

1-201

1 Option Descriptions

1-202

Verify model generated code (-main-
generator)

Specify that a main function must be generated if it is not present in source files

Description

This option is available only for model-generated code.

Specify that Polyspace must generate a main function if it does not find one in the source
files.

Set Option

User interface: In your project configuration, the option is on the Code Prover
Verification node.

Command line: Use the option -main-generator. See “Command-Line Information” on
page 1-203.

Settings
This option is always enabled for code generated from models.

Polyspace generates a main function for the analysis. The generated main contains cyclic
code that executes in a loop. The loop can run an unspecified number of times.

The main performs the following functions before the loop begins:

+ Initializes variables specified by Parameters (-variables-written-before-
loop).

» Calls the functions specified by Initialization functions (-functions-
called-before-1loop).

The main then performs the following functions in the loop:

Verify model generated code (-main-generator)

» Calls the functions specified by Step functions (-functions-called-in-
loop).
* Writes to variables specified by Inputs (-variables-written-in-loop).

Finally, the main calls the functions specified by Termination functions (-
functions-called-after-loop).

Command-Line Information

Parameter: -main-generator
Default: On
Example: polyspace-bug-finder-nodesktop -sources file name -main-

generator ...

See Also

Parameters (-variables-written-before-loop) | Inputs (-variables-
written-in-loop) | Initialization functions (-functions-called-before-
loop) | Step functions (-functions-called-in-loop) | Termination
functions (-functions-called-after-loop)

Topics
“Configure Advanced Polyspace Options in Simulink”
“How Polyspace Analysis of Generated Code Works”

1-203

1 Option Descriptions

1-204

Initialization functions (-functions-called-
before-1loop)

Specify functions that the generated main must call before the cyclic code loop

Description

This option is available only for model- generated code.

Specify functions that the generated main must call before the cyclic code begins.

Set Option

User interface: In your project configuration, the option is available on the Main
Generator node.

Command line: Use the option - functions-called-before-loop. See “Command-
Line Information” on page 1-204.

Settings

No Default

Click I:II_II:I to add a field. Enter function name.

If you use the scope resolution operator to specify the function from a particular
namespace, enter the fully qualified name, for instance, myClass: :init(int). If the
function does not have a parameter, use an empty parenthesis, for instance,
myClass::init().

Command-Line Information

Parameter: - functions-called-before-1loop
No Default

Initialization functions (- functions-called-before-1loop)

Value: functionl[, function2[,...]1]
Example: polyspace-bug-finder-nodesktop -sources file name -main-
generator -functions-called-before-loop myfunc

See Also

Parameters (-variables-written-before-loop) | Inputs (-variables-
written-in-loop) | Step functions (-functions-called-in-loop) |
Termination functions (-functions-called-after-loop)

Topics

“Configure Advanced Polyspace Options in Simulink”
“How Polyspace Analysis of Generated Code Works”

1-205

1 Option Descriptions

1-206

Step functions (-functions-called-in-
loop)

Specify functions that the generated main must call in the cyclic code loop

Description

This option is available only for model-generated code.

Specify functions that the generated main must call in each cycle of the cyclic code.

Set Option

User interface: In your project configuration, the option is available on the Main
Generator node.

Command line: Use the option - functions-called-in-1loop. See “Command-Line
Information” on page 1-207.

Settings

Default: none

none
The generated main does not call functions in the cyclic code.
all

The generated main calls all functions except inlined ones. If you specify certain
functions for the options Initialization functions or Termination functions, the
generated main does not call those functions in the cyclic code.

custom

The generated main calls functions that you specify. Click I:II_II:I to add a field. Enter
function name.

Step functions (- functions-called-in-1loop)

If you use the scope resolution operator to specify the function from a particular
namespace, enter the fully qualified name, for instance, myClass: :myMethod(int).
If the function does not have a parameter, use an empty parenthesis, for instance,
myClass: :myMethod().

Tips

If you have specified a function for the option Initialization functions or Termination
functions, to call it inside the cyclic code, use custom and specify the function name.

Command-Line Information

Parameter: - functions-called-in-loop

Value: none | all | custom=functionl[, function2[,...]]

Default: none

Example: polyspace-bug-finder-nodesktop -sources file name -main-
generator -functions-called-in-loop all

See Also

Parameters (-variables-written-before-loop) | Inputs (-variables-
written-in-loop) | Initialization functions (-functions-called-before-
loop) | Termination functions (-functions-called-after-loop)

Topics

“Configure Advanced Polyspace Options in Simulink”
“How Polyspace Analysis of Generated Code Works”

1-207

1 Option Descriptions

1-208

Termination functions (-functions-called-
after-1loop)

Specify functions that the generated main must call after the cyclic code loop

Description

This option is available only for model-generated code.

Specify functions that the generated main must call after the cyclic code ends.

Set Option

User interface: In your project configuration, the option is available on the Main
Generator node.

Command line: Use the option - functions-called-after-loop. See “Command-
Line Information” on page 1-209.

Settings

No Default

Click I:II_II:I to add a field. Enter function name.

If you use the scope resolution operator to specify the function from a particular
namespace, enter the fully qualified name, for instance, myClass: :myMethod (int). If
the function does not have a parameter, use an empty parenthesis, for instance,
myClass: :myMethod().

Tips

» If you specify a function for the option Initialization functions, you cannot specify it
for Termination functions.

Termination functions (- functions-called-after-loop)

Command-Line Information

Parameter: - functions-called-after-loop

No Default

Value: functionl[, function2[,...]]

Example: polyspace-bug-finder-nodesktop -sources file name -main-
generator -functions-called-after-loop myfunc

See Also

Parameters (-variables-written-before-loop) | Inputs (-variables-
written-in-loop) | Initialization functions (-functions-called-before-
loop) | Step functions (-functions-called-in-loop)

Topics
“Configure Advanced Polyspace Options in Simulink”
“How Polyspace Analysis of Generated Code Works”

1-209

1 Option Descriptions

Parameters (-variables-written-before-
loop)

Specify variables that the generated main must initialize before the cyclic code loop

Description

This option is available only for model-generated code.

Specify variables that the generated main must initialize before the cyclic code loop
begins. Before the loop begins, Polyspace considers these variables to have any value
allowed by their type.

Set Option

User interface: In your project configuration, the option is available on the Main
Generator node.

Command line: Use the option -variables-written-before-1loop. See “Command-
Line Information” on page 1-211.

Settings
Default: none

none
The generated main does not initialize variables.
all

The generated main initializes all variables except those declared with keyword
const.

1-210

Parameters (-variables-written-before-1loop)

custom

The generated main only initializes variables that you specify. Click I:II_IIZI to add a field.
Enter variable name. For C++ class members, use the syntax
className: :variableName.

Command-Line Information

Parameter: -variables-written-before-1loop

Value: none | all | custom=variablel[,variable2[,...]]

Default: public

Example: polyspace-bug-finder-nodesktop -sources file name -main-
generator -variables-written-before-loop all

See Also

Inputs (-variables-written-in-loop) | Initialization functions (-
functions-called-before-loop) | Step functions (-functions-called-in-
loop) | Termination functions (-functions-called-after-loop)

Topics
“Configure Advanced Polyspace Options in Simulink”
“How Polyspace Analysis of Generated Code Works”

1-211

1 Option Descriptions

1-212

Inputs (-variables-written-in-1loop)

Specify variables that the generated main must initialize in the cyclic code loop

Description

This option is available only for model-generated code.

Specify variables that the generated main must initialize at the beginning of every
iteration of the cyclic code loop. At the beginning of every loop iteration, Polyspace
considers these variables to have any value allowed by their type.

Set Option

User interface: In your project configuration, the option is available on the Main
Generator node.

Command line: Use the option -variables-written-in-1loop. See “Command-Line
Information” on page 1-213.

Settings

Default: none

none
The generated main does not initialize variables.
all

The generated main initializes all variables except those declared with keyword
const.

custom

The generated main only initializes variables that you specify. Click I:II_II:I to add a field.
Enter variable name. For C++ class members, use the syntax
className: :variableName.

Inputs (-variables-written-in-1loop)

Command-Line Information

Parameter: -variables-written-in-loop

Value: none | all | custom=variablel[,variable2[,...]]

Default: none

Example: polyspace-bug-finder-nodesktop -sources file name -main-
generator -variables-written-in-loop all

See Also

Parameters (-variables-written-before-loop) |Initialization functions
(-functions-called-before-loop) | Step functions (-functions-called-
in-loop) | Termination functions (-functions-called-after-loop)

Topics
“Configure Advanced Polyspace Options in Simulink”
“How Polyspace Analysis of Generated Code Works”

1-213

1 Option Descriptions

1-214

Verify module or library (-main-generator)

Generate a main function if source files are modules or libraries that do not contain a
main

Description

This option affects a Code Prover analysis only.

Specify that Polyspace must generate a main function if it does not find one in the source
files.

Set Option

User interface: In your project configuration, the option is on the Code Prover
Verification node.

Command line: Use the option -main-generator. See “Command-Line Information” on
page 1-215.

For the analogous option for model generated code, see Verify model generated
code (-main-generator).

Why Use This Option

Use this option if you are verifying a module or library. A Code Prover analysis requires a
main function. When verifying a module or library, your code might not have a main.

When you use this option, Code Prover generates a main function if one does not exist. If
a main exists, the analysis uses the existing main.

Settings

9 On (default)

Polyspace generates a main function if it does not find one in the source files. The
generated main:

Verify module or library (-main-generator)

Initializes variables specified by Variables to initialize (-main-
generator-writes-variables).

Before calling other functions, calls the functions specified by Initialization
functions (-functions-called-before-main).

In all possible orders, calls the functions specified by Functions to call (-
main-generator-calls).

(C++ only) Calls class methods specified by Class (-class-analyzer) and
Functions to call within the specified classes (-class-
analyzer-calls).

If you do not specify the function and variable options above, the generated main:

Off

Initializes all global variables except those declared with keywords const and
static.

In all possible orders, calls all functions that are not called anywhere in the source
files. Polyspace considers that global variables can be written between two
consecutive function calls. Therefore, in each called function, global variables
initially have the full range of values allowed by their type.

Polyspace stops if a main function is not present in the source files.

Tips

+ Ifamain function is present in your source files, the verification uses that main
function, irrespective of whether you enable or disable this option.

The option is relevant only if a main function is not present in your source files.

» Ifyou specify multitasking options, the verification ignores your specifications for
main generation. Instead, the verification introduces an empty main function.

For more information on the multitasking options, see “Configuring Polyspace
Multitasking Analysis Manually”.

Command-Line Information

Parameter: -main-generator

1-215

1 Option Descriptions

1-216

Default: Off
Example: polyspace-bug-finder-nodesktop -sources file name -main-
generator ..

See Also

Parameters (-variables-written-before-loop) | Inputs (-variables-
written-in-loop) | Initialization functions (-functions-called-before-
loop) | Step functions (-functions-called-in-loop) | Termination
functions (-functions-called-after-loop)

Topics
“Specify Polyspace Analysis Options”

Consider volatile qualifier on fields (-consider-volatile-qualifier-on-fields)

Consider volatile qualifier on fields (-
consider-volatile-qualifier-on-fields)

Assume that volatile qualified structure fields can have all possible values at any point
in code

Description

This option affects a Code Prover analysis only.

Specify that the verification must take into account the volatile qualifier on fields of a
structure.

Set Option

User interface: In your project configuration, the option is available on the Verification
Assumptions node.

Command line: Use the option -consider-volatile-qualifier-on-fields. See
“Command-Line Information” on page 1-220.

Why Use This Option

The volatile qualifier on a variable indicates that the variable value can change
between successive operations even if you do not explicitly change it in your code. For
instance, if var is a volatile variable, the consecutive operations res = var; res
=var; can result in two different values of var being read into res.

Use this option so that the verification emulates the volatile qualifier for structure
fields. If you select this option, the software assumes that a volatile structure field has
a full range of values at any point in the code. The range is determined only by the data
type of the structure field.

1-217

1 Option Descriptions

Settings

¥ On
The verification considers the volatile qualifier on fields of a structure.

In the following example, the verification considers that the field vall can have all
values allowed for the int type at any point in the code.

struct myStruct {
volatile int vall;
int val2;

};

Even if you write a specific value to vall and read the variable in the next operation,
the variable read results in any possible value.

struct myStruct myStructInstance;

myStructInstance.vall = 1;

assert (myStructInstance.vall == 1); // Assertion can fail
Off (default)

The verification ignores the volatile qualifier on fields of a structure.
In the following example, the verification ignores the qualifier on field vall.
struct myStruct {

volatile int vall;

int val2;

}

If you write a specific value to vall and read the variable in the next operation, the
variable read results in that specific value.

struct myStruct myStructInstance;
myStructInstance.vall = 1;
assert (myStructInstance.vall == 1); // Assertion passes

Tips

» Ifyour volatile fields do not represent values read from hardware and you do not
expect their values to change between successive operations, disable this option. You

1-218

Consider volatile qualifier on fields (-consider-volatile-qualifier-on-fields)

are using the volatile qualifier for some other reason and the verification does not
need to consider full range for the field values.

If you enable this option, the number of red, gray, and green checks in your code can
decrease. The number of orange checks can increase.

In the following example, a red or green check changes to orange or a gray check goes
away when the option is used. Considering the volatile qualifier changes the check
color. These examples use the following structure definition:

struct myStruct {
volatile int fieldl;

int field2;
Y
Color Result Without Option Result With Option
Without
Option
Green void main(){ void main(){

struct myStruct structVal;
structVal.fieldl = 1;
assert(structVal.fieldl ==

struct myStruct structVal;
structVal.fieldl = 1;

1);assert(structVal.fieldl ==]);

struct myStruct structVal;
structVal.fieldl = 1;
if (structVal.fieldl '= 1)
{
/* Perform operation */
}

}

} }
Red void main(){ void main(){
struct myStruct structVal; struct myStruct structVal;
structVal.fieldl = 1; structVal.fieldl = 1;
assert(structVal.fieldl !=[1);assert(structVal.fieldl !=]1);
} }
Gray void main(){ void main(){

struct myStruct structVal;
structVal.fieldl = 1;
if (structvVal.fieldl !'= 1)
{
/* Perform operation */
}

}

In C++ code, the option also applies to class members.

1-219

1 Option Descriptions

Command-Line Information

Parameter: -consider-volatile-qualifier-on-fields

Default: Off

Example: polyspace-code-prover-nodesktop -sources file name -
consider-volatile-qualifier-on-fields

See Also

Topics
“Specify External Constraints” (Polyspace Code Prover)

Introduced in R2016b

1-220

Float rounding mode (- float-rounding-mode)

Float rounding mode (-float-rounding-
mode)

Specify rounding modes to consider when determining the results of floating point
arithmetic

Description

This option affects a Code Prover analysis only.

Specify the rounding modes to consider when determining the results of floating-point
arithmetic.

Set Option

User interface: In your project configuration, the option is available on the Verification
Assumptions node.

Command line: Use the option - float-rounding-mode. See “Command-Line
Information” on page 1-224.

Why Use This Option

The default verification uses the round-to-nearest mode.

Use the rounding mode all if your code contains routines such as fesetround to specify
a rounding mode other than round-to-nearest. Although the verification ignores the
fesetround specification, it considers all rounding modes including the rounding mode
that you specified. Alternatively, for targets that can use extended precision (for instance,
using the flag -mfpmath=387), use the rounding mode all. However, for your Polyspace
analysis results to agree with run-time behavior, you must prevent use of extended
precision through a flag such as - ffloat-store.

Otherwise, continue to use the default rounding mode to-nearest. Because all rounding
modes are considered when you specify all, you can have many orange Overflow checks
resulting from overapproximation.

1-221

http://www.cplusplus.com/reference/cfenv/fesetround/

1 Option Descriptions

1-222

Settings

Default: to-nearest

to-nearest

The verification assumes the round-to-nearest mode.

all

The verification assumes all rounding modes for each operation involving floating-
point variables. The following rounding modes are considered: round-to-nearest,
round-towards-zero, round-towards-positive-infinity, and round-towards-negative-
infinity.

Tips

The Polyspace analysis uses floating-point arithmetic that conforms to the IEEE® 754
standard. For instance, the arithmetic uses floating point instructions present in the
SSE instruction set. The GNU C flag -mfpmath=sse enforces use of this instruction
set. If you use the GNU C compiler with this flag to compile your code, your Polyspace
analysis results agree with your run-time behavior.

However, if your code uses extended precision, for instance using the GNU C flag -
mfpmath=387, your Polyspace analysis results might not agree with your run-time
behavior in some corner cases. See some examples of these corner cases in
codeprover limitations.pdf inmatlabroot\polyspace\verifier

\code prover. Here, matlabroot is the MATLAB installation folder, for instance, C:
\Program Files\MATLAB\R2017b.

To prevent use of extended precision, on targets without SSE support, you can use a
flag such as - ffloat-store. For your Polyspace analysis, use all for rounding mode
to account for double rounding.

The Overflow check uses the rounding modes that you specify. For instance, the
following table shows the difference in the result of the check when you change your
rounding modes.

Float rounding mode (- float-rounding-mode)

Rounding mode: to-nearest

Rounding mode: all

If results of floating-point operations are
rounded to nearest values:

* In the first addition operation, epsl
is just large enough that the value
nearest to FLT MAX + epslis
greater than FLT MAX. The Overflow
check is red.

* In the second addition operation,
eps2 is just small enough that the
value nearest to FLT MAX + eps2is
FLT MAX. The Overflow check is
green.

#include <float.h>
#define epsl 0x1pl03
#define eps2 0x0.FFFFFFpl03

float func(int ch) {
float left op = FLT MAX;
float right op 1 = epsl, \
right op 2 = eps2;
switch(ch) {
case 1:
return (left op +\
right op 1);
case 2:
return (left op +\
right op 2);
default:
return 0;
}

Besides to-nearest mode, the Overflow
check also considers other rounding
modes.

* In the first addition operation, in to-
nearest mode, the value nearest to
FLT MAX + epsl is greater than
FLT MAX, so the addition overflows.
But if rounded towards negative
infinity, the result is FLT MAX, so the
addition does not overflow.
Combining these two rounding
modes, the Overflow check is
orange.

* In the second addition operation, in
to-nearest mode, the value nearest to
FLT MAX + eps2is FLT MAX, so
the addition does not overflow. But if
rounded towards positive infinity, the
result is greater than FLT MAX, so
the addition overflows. Combining
these two rounding modes, the
Overflow check is orange.

#include <float.h>
#define epsl O0x1pl03
#define eps2 0Ox0.FFFFFFp103

float func(int ch) {
float left op = FLT MAX;
float right op 1 = epsl, \
right op 2 = eps2;
switch(ch) {
case 1:
return (left op +\
right op 1);
case 2:
return (left op +\
right op 2);

1-223

1 Option Descriptions

1-224

Rounding mode: to-nearest

Rounding mode: all

default:
return 0;
}
}

If you set the rounding mode to all and obtain an orange Overflow check, to
determine how the overflow can occur, consider all rounding modes.

Command-Line Information

Parameter: - float-rounding-mode

Value: to-nearest | all
Default: to-nearest

Example: polyspace-code-prover-nodesktop -sources file name -float-

rounding-mode all

See Also

Overflow

Introduced in R2016a

Respect types in fields (- respect-types-in-fields)

Respect types in fields (-respect-types-
in-fields)

Do not cast nonpointer fields of a structure to pointers

Description

This option affects a Code Prover analysis only.

Specify that structure fields not declared initially as pointers will not be cast to pointers
later.

Set Option

User interface: In your project configuration, the option is available on the Verification
Assumptions node.

Command line: Use the option -respect-types-in-fields. See “Command-Line
Information” on page 1-226.

Why Use This Option

Use this option to identify and forbid casts from nonpointer structure fields to pointers.

Settings
4/ On

The verification assumes that structure fields not declared initially as pointers will not
be cast to pointers later.

1-225

1 Option Descriptions

1-226

Code with option off

Code with option on

struct {
unsigned int x1;
unsigned int x2;
}S;

void funct(void) {
int var, *tmp;

S.x1 = &var;
tmp = (int*)S.x1;
*tmp = 1;

assert(var==1);

}

In this example, the fields of S are
declared as integers but S. x1 is cast to
a pointer. With the option turned off,
Polyspace allows the cast.

struct {
unsigned int x1;
unsigned int x2;

ST

void funct(void) {
int var, *tmp;

S.x1 = &var;
tmp = (int*)S.x1;
*tmp = 1;

assert(var==1);

}

In this example, the fields of S are
declared as integers but S. x1 is cast to
a pointer. With the option turned on,
Polyspace ignores the cast. Therefore, it
ignores the initialization of var through
the pointer (int*)S.x1 and produces
a red Non-initialized local variable
error when var is read.

Off (default)

The verification assumes that structure fields can be cast to pointers even when they
are not declared as pointers.

Command-Line Information

Parameter: -respect-types-in-fields
Default: Off

See Also

Respect types in global variables (-respect-types-in-globals) | Non-
initialized local variable

Respect types in global variables (- respect-types-in-globals)

Respect types in global variables (-respect-
types-in-globals)

Do not cast nonpointer global variables to pointers

Description

This option affects a Code Prover analysis only.

Specify that global variables not declared initially as pointers will not be cast to pointers
later.

Set Option

User interface: In your project configuration, the option is available on the Verification
Assumptions node.

Command line: Use the option - respect-types-in-globals. See “Command-Line
Information” on page 1-228.

Why Use This Option

Use this option to identify and forbid casts from nonpointer global variables to pointers.

Settings

¥ On

The verification assumes that global variables not declared initially as pointers will
not be cast to pointers later.

Off (default)

The verification assumes that global variables can be cast to pointers even when they
are not declared as pointers.

1-227

1 Option Descriptions

1-228

Tips

If you select this option, the number of checks in your code can change. You can use this
option and the change in results to identify cases where you cast nonpointer variables to

pointers.

For instance, in the following example, when you select the option, the results have one

less orange check and one more red check.

Code with option off

Code with option on

int global;

void main(void) {
int local;
global = (int)&local;
(int)global = 5;
assert(local==5);

}

In this example, global is declared as an
int variable but cast to a pointer. With the
option turned off, Polyspace allows the cast.

int global;

void main(void) {
int local;
global = (int)&local;
(int)global = 5;
assert(local==5);

}

In this example, global is declared as an
int variable but cast to a pointer. With the
option turned on, Polyspace ignores the
cast. Therefore, it ignores the initialization
of Local through the pointer
(int*)global and produces a red Non-
initialized local variable error when
local is read.

Command-Line Information

Parameter: - respect-types-in-globals
Default: Off

See Also

Respect types in fields (-respect-types-in-fields) |Non-initialized

local variable

Consider environment pointers as unsafe (-stubbed-pointers-are-unsafe)

Consider environment pointers as unsafe (-
stubbed-pointers-are-unsafe)

Specify that environment pointers can be unsafe to dereference unless constrained
otherwise

Description

This option affects a Code Prover analysis only.

Specify that the verification must consider environment pointers as unsafe unless
otherwise constrained. Environment pointers are pointers that can be assigned values
outside your code.

Environment pointers include:

* Global or extern pointers.

* Pointers returned from stubbed functions.

A function is stubbed if your code does not contain the function definition or you
override a function definition by using the option Functions to stub (-
functions-to-stub).

» Pointer parameters of functions whose calls are generated by the software.
A function call is generated if you verify a module or library and the module or library

does not have an explicit call to the function. You can also force a function call to be
generated with the option Functions to call (-main-generator-calls).

Set Option

User interface: In your project configuration, the option is available on the Verification
Assumptions node.

Command line: Use the option -stubbed-pointers-are-unsafe. See “Command-
Line Information” on page 1-232.

1-229

1 Option Descriptions

1-230

Why Use This Option

Use this option so that the verification makes more conservative assumptions about
pointers from external sources.

If you specify this option, the verification considers that environment pointers can have a
NULL value. If you read an environment pointer without checking for NULL, the Illegally
dereferenced pointer check shows a potential error in orange. The message associated
with the orange check shows the pointer can be NULL.

Settings

41 0On
The verification considers that environment pointers can have a NULL value.
Off (default)

The verification considers that environment pointers:

e Cannot have a NULL value.
* Points within allowed bounds.

Tips

* Enable this option during the integration phase. In this phase, you provide complete
code for verification. Even if an orange check originates from external sources, you
are likely to place protections against unsafe pointers from such sources. For instance,
if you obtain a pointer from an unknown source, you check the pointer for NULL value.

Disable this option during the unit testing phase. In this phase, you focus on errors
originating from your unit.

» Ifyou are verifying code implementation of AUTOSAR runnables, Code Prover
assumes that pointer arguments to runnables and pointers returned from Rte
functions are not NULL. You cannot use this option to change the assumption. See
“Run Polyspace on AUTOSAR Code with Conservative Assumptions” (Polyspace Code
Prover).

» Ifyou enable this option, the number of orange checks in your code might increase.

Consider environment pointers as unsafe (-stubbed-pointers-are-unsafe)

Environment Pointers Safe Environment Pointers Unsafe

The Illegally dereferenced pointer The Illegally dereferenced pointer
check is green. The verification assumes |check is orange. The verification
that env_ptr is not NULL and any assumes that env_ptr can be NULL.
dereference is within allowed bounds.))
The verification assumes that the result | 1int func (int *env_ptr) {
of the dereference is full range. For) MEEIT . ET_PT,
instance, in this case, the return value
has the full range of type int.

int func (int *env_ptr) {
return *env _ptr;
}

If you enable this option, the number of gray checks might decrease.

Environment Pointers Safe Environment Pointers Unsafe

The verification assumes that env_ptr |The verification assumes that env_ptr
is not NULL. The if condition is always |can be NULL. The if condition is not
true and the else block is unreachable. |always true and the else block can be

_ _ reachable.
#include <stdlib.h>
int func (int *env_ptr) { #include <stdlib.h>
if(env_ptr!=NULL) int func (int *env ptr) {
return *env ptr; if(env_ptr!=NULL)
else return *env_ptr;
return 0; else
} return 0;
}

* Instead of considering all environment pointers as safe or unsafe, you can individually
constrain some of the environment pointers. See the description of Initialize Pointer
in “External Constraints for Polyspace Analysis” (Polyspace Code Prover).

When you individually constrain a pointer, you first specify an Init Mode, and then
specify through the Initialize Pointer option whether the pointer is Null, Not Null,
or Maybe Null. Depending on the Init Mode, you can either override the global
specification for all environment pointers or not.

* Ifyou set the Init Mode of the pointer to INIT or PERMANENT, your selection for
Initialize Pointer overrides your specification for this option. For instance, if you
specify Not NULL for an environment pointer ptr, the verification assumes that

1-231

1 Option Descriptions

1-232

ptr is not NULL even if you specify that environment pointers must be considered
unsafe.

* Ifyou set the Init Mode to MAIN GENERATOR, the verification uses your
specification for this option.

For pointers returned from stubbed functions, the option MAIN GENERATOR is not
available. If you override the global specification for such a pointer through the
Initialize Pointer option in constraints, you cannot toggle back to the global
specification without changing the Initialize Pointer option too.

» If you disable this option, the verification considers that dereferences at all pointer
depths are valid.

For instance, all the dereferences are considered valid in this code:
int*** stub(void);

void func2() {
int ***ptr = stub();
int **ptr2 *ptr;
int *ptr3 = *ptr2;

Command-Line Information

Parameter: -stubbed-pointers-are-unsafe

Default: Off

Example: polyspace-code-prover-nodesktop -sources file name -stubbed-
pointers-are-unsafe

See Also

Constraint setup (-data-range-specifications)

Topics
“Specify External Constraints” (Polyspace Code Prover)
“External Constraints for Polyspace Analysis” (Polyspace Code Prover)

Introduced in R2016b

Allow negative operand for left shifts (-allow-negative-operand-in-shift)

Allow negative operand for left shifts (-
allow-negative-operand-in-shift)

Allow left shift operations on a negative number

Description

This option affects a Code Prover analysis only.

Specify that the verification must allow left shift operations on a negative number.

Set Option

User interface: In your project configuration, the option is on the Check Behavior
node.

Command line: Use the option -allow-negative-operand-in-shift. See
“Command-Line Information” on page 1-234.

Why Use This Option

According to the C99 standard (sec 6.5.7), the result of a left shift operation on a negative
number is undefined. Following the standard, the verification produces a red check on left
shifts of negative numbers.

If your compiler has a well-defined behavior for left shifts of negative numbers, set this
option. Note that allowing left shifts of negative numbers can reduce the cross-compiler
portability of your code.

Settings

¥ On

The verification allows shift operations on a negative number, for instance, -2 << 2.

1-233

1 Option Descriptions

Off (default)

If a shift operation is performed on a negative number, the verification generates an
error.

Command-Line Information

Parameter: -allow-negative-operand-in-shift
Default: Off

See Also

Invalid shift operations

1-234

Consider non finite floats (-allow-non-finite-floats)

Consider non finite floats (-allow-non-
finite-floats)

Enable an analysis mode that incorporates infinities and NaNs

Description

Enable an analysis mode that incorporates infinities and NaNs for floating point
operations.

Set Option

User interface: In your project configuration, the option is on the Check Behavior
node.

Command line: Use the option -allow-non-finite-floats. See “Command-Line
Information” on page 1-238.

Why Use This Option

By default, the analysis does not incorporate infinities and NaNs. For instance, the
analysis terminates the execution thread where a division by zero occurs and does not
consider that the result could be infinite.

If you use functions such as isinf or isnan and account for infinities and NaNs in your
code, set this option. When you set this option and a division by zero occurs for instance,
the execution thread continues with infinity as the result of the division.

Set this option alone if you are sure that you have accounted for infinities and NaNs in
your code. Using the option alone effectively disables many numerical checks on floating
point operations. If you have generally accounted for infinities and NaNs, but you are not
sure that you have considered all situations, set these additional options:

* Infinities (-check-infinite): Usewarn-first.

* NaNs (-check-nan):Usewarn-first.

1-235

1 Option Descriptions

1-236

If the analysis flags comparisons using isinf or isnan as dead code, use this option. By
default, a Bug Finder analysis does not incorporate infinities and NaNs.

Settings

+| On

The analysis allows infinities and NaNs. For instance, in this mode:

The analysis assumes that floating-point operations can produce results such as
infinities and NaNs.

By using options Infinities (-check-infinite) and NaNs (-check-nan),
you can choose to highlight operations that produce nonfinite results and stop the
execution threads where the nonfinite results occur. These options are not
available for a Bug Finder analysis.

The analysis assumes that floating-point variables with unknown values can have
any value allowed by their type, including infinite or NaN. Floating-point variables
with unknown values include volatile variables and return values of stubbed
functions.

Off (default)
The analysis does not allow infinities and NaNs. For instance, in this mode:

The Code Prover analysis produces a red check on a floating-point operation that
produces an infinity or a NaN as the only possible result on all execution paths.
The verification produces an orange check on a floating-point operation that can
potentially produce an infinity or NaN.

The Code Prover analysis assumes that floating-point variables with unknown
values are full-range but finite.

The Bug Finder analysis shows comparisons with infinity using isinf as dead
code.

Consider non finite floats (-allow-non-finite-floats)

Tips

* The IEEE 754 Standard allows special quantities such as infinities and NaN so that you
can handle certain numerical exceptions without aborting the code. Some
implementations of the C standard support infinities and NaN.

+ If your compiler supports infinities and NaNs and you account for them explicitly in
your code, use this option so that the verification also allows them.

For instance, if a division results in infinity, in your code, you specify an alternative
action. Therefore, you do not want the verification to highlight division operations
that result in infinity.

* Ifyour compiler supports infinities and NaNs but you are not sure if you account for
them explicitly in your code, use this option so that the verification incorporates
infinities and NaNs. Use the options - check-nan and -check-infinite with
argument warn so that the verification highlights operations that result in infinities
and NaNs, but does not stop the execution thread. These options are not available
for a Bug Finder analysis.

* If you run a Bug Finder analysis and use this option:
* The checkers for overflow and division by zero are disabled. See “Numerical
Defects”.

* The checker Floating point comparison with equality operators can
show false positives.

» Ifyou select this option, the number and type of Code Prover checks in your code can
change.

For instance, in the following example, when you select the option, the results have
one less red check and three more green checks.

1-237

1 Option Descriptions

1-238

Infinities and NaNs Not Allowed

Infinities and NaNs Allowed

Code Prover produces a Division by
zero error and stops verification.

double func(void) {
double x=1.0/0.0;
double y=1.0/x;
double z=x-Xx;
return z;

If you select this option, Code Prover
does not check for a Division by zero
errTor.

double func(void) {
double x=1.0/0.0;
double y=1.0/x;
double z=x-Xx;
return z;

}

The analysis assumes that dividing by
zero results in:

* Value of x equal to Inf

* Value of y equal to 0.0
* Value of z equal to NaN

In your analysis results in the Polyspace
user interface, if you place your cursor
on y and z, you can see the nonfinite
values Inf and NaN respectively in the
tooltip.

* You cannot run the Automatic Orange Tester in Code Prover if you incorporate non-

finites in your analysis.

Command-Line Information

Parameter: -allow-non-finite-floats
Default: Off

See Also

Infinities (-check-infinite) |NaNs (-check-nan) |Division by zero |
Overflow | Invalid shift operations | Invalid use of standard library

routine

Consider non finite floats (-allow-non-finite-floats)

Topics
“Specify Polyspace Analysis Options” (Polyspace Code Prover)

Introduced in R2016a

1-239

1 Option Descriptions

1-240

Infinities (-check-infinite)

Specify how to handle floating-point operations that result in infinity

Description

This option affects a Code Prover analysis only.

Specify how the analysis must handle floating-point operations that result in infinities.

Set Option

User interface: In your project configuration, the option is on the Check Behavior
node. See “Dependencies” on page 1-242 for other options you must also enable.

Command line: Use the option -check-infinite. See “Command-Line Information” on
page 1-242.

Why Use This Option

Use this option to enable detection of floating-point operations that result in infinities.

If you specify that the analysis must consider nonfinite floats, by default, the analysis does
not flag these operations. Use this option to detect these operations while still
incorporating nonfinite floats.

Settings
Default: allow

allow
The verification does not produce a check on the operation.

For instance, in the following code, there is no Overflow check.

double func(void) {
double x=1.0/0.0;

Infinities (-check-infinite)

return x;

}

warn-first

The verification produces a check on the operation. The check determines if the result
of the operation is infinite when the operands themselves are not infinite. The
verification does not terminate the execution thread that produces infinity.

If the verification detects an operation that produces infinity as the only possible
result on all execution paths and the operands themselves are never infinite, the
check is red. If the operation can potentially result in infinity, the check is orange.

For instance, in the following code, there is a nonblocking Overflow check for infinity.

double func(void) {
double x=1.0/0.0;
return x;

}

Even though the Overflow check on the / operation is red, the verification continues.
For instance, a green Non-initialized local variable check appears on x in the
return statement.

forbid

The verification produces a check on the operation and terminates the execution
thread that produces infinity.

If the check is red, the verification does not continue for the remaining code in the
same scope as the check. If the check is orange, the verification continues but
removes from consideration the variable values that produced infinity.

For instance, in the following code, there is a blocking Overflow check for infinity.

double func(void) {
double x=1.0/0.0;
return x;

}

The verification stops because the Overflow check on the / operation is red. For
instance, a Non-initialized local variable check does not appear on x in the return
statement.

1-241

1 Option Descriptions

Dependencies

To use this option, you must enable the verification mode that incorporates infinities and
NaNs. See Consider non finite floats (-allow-non-finite-floats).

Command-Line Information

Parameter: -check-infinite

Value: allow |warn-first | forbid

Default: allow

Example: polyspace-code-prover-nodesktop -sources file name -check-
infinite forbid

See Also
Polyspace Analysis Options

Consider non finite floats (-allow-non-finite-floats) | NaNs (-check-
nan)

Polyspace Results
Overflow

Introduced in R2016a

1-242

NaNs (-check-nan)

NaNs (-check-nan)

Specify how to handle floating-point operations that result in NaN

Description

This option affects a Code Prover analysis only.

Specify how the analysis must handle floating-point operations that result in NaN.

Set Option

User interface: In your project configuration, the option is on the Check Behavior
node. See “Dependencies” on page 1-245 for other options you must also enable.

Command line: Use the option - check-nan. See “Command-Line Information” on page
1-245.

Why Use This Option

Use this option to enable detection of floating-point operations that result in NaN-s.

If you specify that the analysis must consider nonfinite floats, by default, the analysis does
not flag these operations. Use this option to detect these operations while still
incorporating nonfinite floats.

Settings
Default: allow

allow
The verification does not produce a check on the operation.

For instance, in the following code, there is no Invalid operation on floats check.

double func(void) {
double x=1.0/0.0;

1-243

1 Option Descriptions

1-244

double y=x-x;
return y;
}
warn-first

The verification produces a check on the operation. The check determines if the result
of the operation is NaN when the operands themselves are not NaN. For instance, the
check flags the operation vall + val2 only if the result can be NaN when both
vall and val2 are not NaN. The verification does not terminate the execution thread
that produces NaN.

If the verification detects an operation that produces NaN as the only possible result
on all execution paths and the operands themselves are never NaN, the check is red.
If the operation can potentially result in NaN, the check is orange.

For instance, in the following code, there is a nonblocking Invalid operation on
floats check for NaN.

double func(void) {
double x=1.0/0.0;
double y=x-x;
return y;

}

Even though the Invalid operation on floats check on the - operation is red, the
verification continues. For instance, a green Non-initialized local variable check
appears on y in the return statement.

forbid

The verification produces a check on the operation and terminates the execution
thread that produces NaN.

If the check is red, the verification does not continue for the remaining code in the
same scope as the check. If the check is orange, the verification continues but
removes from consideration the variable values that produced a NaN.

For instance, in the following code, there is a blocking Invalid operation on floats
check for NaN.

double func(void) {
double x=1.0/0.0;
double y=x-x;

NaNs (-check-nan)

return y;

}

The verification stops because the Invalid operation on floats check on the -
operation is red. For instance, a Non-initialized local variable check does not
appear on y in the return statement.

The Invalid operation on floats check for NaN also appears on the / operation and
is green.

Dependencies

To use this option, you must enable the verification mode that incorporates infinities and
NaNs. See Consider non finite floats (-allow-non-finite-floats).

Command-Line Information

Parameter: -check-nan
Value: allow |warn-first | forbid
Default: allow

Example: polyspace-code-prover-nodesktop -sources file name -check-
nan forbid

See Also

Polyspace Analysis Options
Consider non finite floats (-allow-non-finite-floats) | Infinities (-
check-infinite)

Polyspace Results
Invalid operation on floats

Introduced in R2016a

1-245

1 Option Descriptions

1-246

Enable pointer arithmetic across fields (-
allow-ptr-arith-on-struct)

Allow arithmetic on pointer to a structure field so that it points to another field

Description

This option affects a Code Prover analysis only.

Specify that a pointer assigned to a structure field can point outside its bounds as long as
it points within the structure.

Set Option

User interface: In your project configuration, the option is on the Check Behavior
node. See “Dependency” on page 1-247 for other options you must also enable.

Command line: Use the option -allow-ptr-arith-on-struct. See “Command-Line
Information” on page 1-248.

Why Use This Option

Use this option to relax the check for illegally dereferenced pointers. Once you assign a
pointer to a structure field, you can perform pointer arithmetic and use the result to
access another structure field.

Settings

¥ On

A pointer assigned to a structure field can point outside the bounds imposed by the
field as long as it points within the structure. For instance, in the following code,
unless you use this option, the verification will produce a red Il1legally
dereferenced pointer check:

Enable pointer arithmetic across fields (-allow-ptr-arith-on-struct)

void main(void) {

struct S {char a; char b; int c;} x;

char *ptr = &x.b;

ptr ++;

*ptr = 1; // Red on the dereference, because ptr points outside x.b

}

Off (default)

A pointer assigned to a structure field can point only within the bounds imposed by
the field.

Tips

The verification does not allow a pointer with negative offset values. This behavior
occurs irrespective of whether you choose the option Enable pointer arithmetic
across fields.

Using this option can slightly increase the number of orange checks. The option
relaxes the constraint that a pointer to a structure field cannot point to other fields of
the structure. In exchange for relaxing this constraint, the verification loses precision
on the boundary of fields within a structure and treats the structure as a whole.
Pointer dereferences that were previously green can now turn orange.

Use this option if you follow a policy of reviewing red checks only and you need to
work around red checks from pointer arithmetic within a structure.

Before using this option, consider the costs of using pointer arithmetic across different
fields of a structure.

Unlike an array, members of a structure can have different data types. For efficient
storage, structures use padding to accommodate this difference. When you increment
a pointer pointing to a structure member, you might not point to the next member.
When you dereference this pointer, you cannot rely on what you are reading or writing
to.

Dependency

This option is available only if you set Source code language (-lang) to C.

1-247

1 Option Descriptions

Command-Line Information

Parameter: -allow-ptr-arith-on-struct

Default: Off

Example: polyspace-code-prover-nodesktop -sources file name -allow-
ptr-arith-on-struct

See Also

Allow incomplete or partial allocation of structures (-size-in-
bytes) | IlTlegally dereferenced pointer

1-248

Detect stack pointer dereference outside scope (-detect-pointer-escape)

Detect stack pointer dereference outside
scope (-detect-pointer-escape)

Find cases where a function returns a pointer to one of its local variables

Description

This option affects a Code Prover analysis only.

Specify that the verification must detect cases where you access a variable outside its
scope via pointers. Such an access can happen, for example, when a function returns a
pointer to a local variable and you dereference the pointer outside the function. The

dereference causes undefined behavior because the local variable that the pointer points
to does not live outside the function.

Set Option

User interface: In your project configuration, the option is on the Check Behavior
node.

Command line: Use the option -detect-pointer-escape. See “Command-Line
Information” on page 1-251.

Why Use This Option

Use this option to enable detection of pointer escape.

Settings

¥ On

The Illegally dereferenced pointer check performs an additional task, besides its
usual specifications. When you dereference a pointer, the check also determines if you
are accessing a variable outside its scope through the pointer. The check is:

1-249

1 Option Descriptions

1-250

* Red, if all the variables that the pointer points to are accessed outside their scope.

For instance, you dereference a pointer ptr in a function func that is called twice
in your code. In both calls, when you perform the dereference *ptr, ptris
pointing to variables outside their scope. Therefore, the Illegally dereferenced
pointer check is red.

* Orange, if only some of the variables that the pointer points to are accessed
outside their scope.

* Green, if none of the variables that the pointer points to are accessed outside their
scope, and other requirements of the check are also satisfied.

In the following code, if you enable this option, Polyspace Code Prover produces a red
Illegally dereferenced pointer check on *ptr. Otherwise, the Illegally
dereferenced pointer check on *ptr is green.

void func2(int *ptr) {
*ptr = 0;
}

int* funcl(void) {
int ret = 0;
return &ret ;
}
void main(void) {
int* ptr = funcl() ;
func2(ptr) ;
}

The Result Details pane displays a message indicating that ret is accessed outside
its scope.

¥ ID 1: Tllegally dereferenced pointer

Error: pointer is outside its bounds
This check may be a path-related issue, which is not dependent on input values

Dereference of parameter 'ptr' (pointer to int 32, size: 32 bits):
Pointer is not null.
Points to 4 bytes at offset 0 in buffer of 4 bytes, so is within bounds (if memary is allocated).
Pointer may point to variable or field of variable:

'ret’, local to function "funcl'. ret’ is accessed outside its scope.

Detect stack pointer dereference outside scope (-detect-pointer-escape)

Off (default)

When you dereference a pointer, the Illegally dereferenced pointer check does not
check for whether you are accessing a variable outside its scope. The check is green
even if the pointer dereference is outside the variable scope, as long as it satisfies
requirements:

* The pointer is not NULL.
* The pointer points within the memory buffer.

Command-Line Information

Parameter: -detect-pointer-escape
Default: Off

See Also

Illegally dereferenced pointer

Introduced in R2015a

1-251

1 Option Descriptions

1-252

Disable checks for non-initialization (-
disable-initialization-checks)

Disable checks for non-initialized variables and pointers

Description

This option affects a Code Prover analysis only.

Specify that Polyspace Code Prover must not check for non-initialization in your code.

Set Option

User interface: In your project configuration, the option is on the Check Behavior
node.

Command line: Use the option -disable-initialization-checks. See “Command-
Line Information” on page 1-254.

Why Use This Option

Use this option if you do not want to detect instances of non-initialized variables.

Settings

¥ On
Polyspace Code Prover does not perform the following checks:
* Non-initialized local variable: Local variable is not initialized before
being read.

* Non-initialized variable: Variable other than local variable is not initialized
before being read.

* Non-initialized pointer: Pointer is not initialized before being read.

Disable checks for non-initialization (-disable-initialization-checks)

* Return value not initialized: C function does not return value when
expected.

Polyspace assumes that, at declaration:

» Variables have full-range of values allowed by their type.
* Pointers can be NULL-valued or point to a memory block at an unknown offset.

Off (default)

Polyspace Code Prover checks for non-initialization in your code. The software
displays red checks if, for instance, a variable is not initialized and orange checks if a
variable is initialized only on some execution paths.

Tips

» Ifyou select this option, the software does not report most violations of MISRA C:
2004 (Polyspace Code Prover), rule 9.1, and MISRA C:2012 Rule 9.1.

» Ifyou select this option, the number and type of orange checks in your code can
change.

For instance, the following table shows an additional orange check with the option
enabled.

1-253

1 Option Descriptions

1-254

Checks for Non-initialization Checks for Non-initialization
Enabled Disabled
void func(int flag) { void func(int flag) {
int varl,var2; int varl,var2;
if(flag==0) { if(flag==0) {
varl=var2; varl=var2;
} }
else { else {
varl=0; varl=0;
} }
var2=varl + 1; var2=varl + 1;
} }

In this example, the software produces: |In this example, the software:

+ A red Non-initialized local * Does not produce Non-initialized

variable check on var2 in the if local variable checks. At

branch. The verification continues as initialization, the software assumes
if only the else branch of the if that var2 has full range of int
statement exists. values. Following the if statement,

because the software considers both
if branches, it assumes that varl
also has full range of int values.

* A green Non-initialized local
variable check on varl in the last
statement. varl has the assigned

value 0. * Produces an orange Overflow check
on the + operation. For instance, if
* Agreen Overflow check on the + varl has the maximum int value,
operation. adding 1 to it can cause an overflow.

Command-Line Information

Parameter: -disable-initialization-checks

Default: Off

Example: polyspace-code-prover-nodesktop -sources file name -disable-
initialization-checks

See Also

Permissive function pointer calls (-permissive-function-pointer)

Permissive function pointer calls (-
permissive-function-pointer)

Allow type mismatch between function pointers and the functions they point to

Description

This option affects a Code Prover analysis only.

Specify that the verification must allow function pointer calls where the type of the
function pointer does not match the type of the function.

Set Option

User interface: In your project configuration, the option is on the Check Behavior
node. See “Dependency” on page 1-258 for other options you must also enable.

Command line: Use the option -permissive-function-pointer. See “Command-
Line Information” on page 1-258.

Why Use This Option

By default, Code Prover does not recognize calls through function pointers when a type
mismatch occurs. Fix the type mismatch whenever possible.

Use this option if:

* You cannot fix the type mismatch, and

* The analysis does not cover a significant portion of your code because calls via
function pointers are not recognized.

Settings
4/ On

The verification must allow function pointer calls where the type of the function
pointer does not match the type of the function. For instance, a function declared as

1-255

1 Option Descriptions

1-256

int f(int*) can be called by a function pointer declared as int (*fptr)
(void*).

Only type mismatches between pointer types are allowed. Type mismatches between
nonpointer types cause compilation errors. For instance, a function declared as int
f(int) cannot be called by a function pointer declared as int (*fptr) (double).

Off (default)

The verification must require that the argument and return types of a function pointer
and the function it calls are identical.

Type mismatches are detected with the check Correctness condition.

Tips

With sources that use function pointers extensively, enabling this option can cause loss
in performance. This loss occurs because the verification has to consider more
execution paths.

Using this option can increase the number of orange checks. Some of these orange
checks can reveal a real issue with the code.

Consider these examples where a type mismatch occurs between the function pointer
type and the function that it points to:

* In this example, the function pointer obj fptr has an argument that is a pointer
to a three-element array. However, it points to a function whose corresponding
argument is a pointer to a four-element array. In the body of foo, four array
elements are read and incremented. The fourth element does not exist and the ++
operation reads a meaningless value.

Permissive function pointer calls (-permissive-function-pointer)

typedef int array three elements[3];
typedef void (*fptr)(array three elements*);

typedef int array four elements[4];
void foo(array four elements*);

void main() {

array_three elements arr[3] = {0,0,0};
array_three elements *ptr;

fptr obj fptr;

ptr = &arr;
obj fptr = &foo;

//Call via function pointer
obj fptr(&ptr);
}

void foo(array four elements* x) {
int i = 0;
int *current pos;

for(i = 0; i< 4; i++) {
current pos = (*x) + i;
(*current _pos)++;
}
}

Without this option, an orange Correctness condition check appears on the
call obj fptr(&ptr) and the function foo is not verified. If you use this option,
the body of foo contains several orange checks. Review the checks carefully and
make sure that the type mismatch does not cause issues.

In this example, the function pointer has an argument that is a pointer to a
structure with three float members. However, the corresponding function
argument is a pointer to an unrelated structure with one array member. In the
function body, the strlen function is used assuming the array member. Instead the
strlen call reads the float members and can read meaningless values, for
instance, values stored in the structure padding.

1-257

1 Option Descriptions

#include <string.h>
struct point {
float x;
float y;
float z;
}i
struct message {
char msg[10] ;
}i

void foo(struct message*);

void main() {
struct point pt = {3.14, 2048.0, -1.0} ;
void (*obj fptr)(struct point *) ;

obj fptr = &foo;
//Call via function pointer
obj fptr(&pt);

}

void foo(struct message* x) {
int y = strlen(x->msg) ;
}

Without this option, an orange Correctness condition check appears on the
call obj fptr(&pt) and the function foo is not verified. If you use this option, the
function contains an orange check on the strlen call. Review the check carefully
and make sure that the type mismatch does not cause issues.

Dependency

This option is available only if you set Source code language (-lang) to C.

Command-Line Information

Parameter: -permissive-function-pointer

Default: Off

Example: polyspace-code-prover-nodesktop -sources file name -lang c -
permissive-function-pointer

1-258

Permissive function pointer calls (-permissive-function-pointer)

See Also

Correctness condition

1-259

1 Option Descriptions

1-260

Overflow mode for signed integer (-signed-
integer-overflows)

Specify whether result of overflow is wrapped around or truncated

Description

This option affects a Code Prover analysis only.

Specify whether Polyspace flags signed integer overflows and whether the analysis wraps
the result of an overflow or restricts it to its extremum value.

Set Option

User interface: In the Configuration pane, the option is on the Check Behavior node
under Code Prover Verification.

Command line: Use the option -signed-integer-overflows. See “Command-Line
Information” (Polyspace Code Prover).

Why Use This Option

Use this option to specify whether to check for signed integer overflows and to specify the
assumptions the analysis makes following an overflow.

Settings
Default: forbid

forbid
Polyspace flags signed integer overflows. If the Overflow check on an operation is:

* Red, Polyspace does not analyze the remaining code in the current scope.

* Orange, Polyspace analyzes the remaining code in the current scope. Polyspace
considers that:

Overflow mode for signed integer (-signed-integer-overflows)

+ After a positive Overflow, the result of the operation has an upper bound. This

upper bound is the maximum value allowed by the type of the result.

* After a negative Overflow, the result of the operation has a lower bound. This

lower bound is the minimum value allowed by the type of the result.

This behavior conforms to the ANSI C (ISO C++) standard.

In the following code, j has values in the range [1..231-1] before the orange

overflow. Polyspace considers that j has even values in the range

[2 .. 2147483646] after the overflow. Polyspace does not analyze the printf()

statement after the red overflow.

#include<stdio.h>
int getVal();
void funcl()
{
int 1 = 1;
i=1<< 30;
// Result of * operation overflows
i=1%*2;
// Remaing code in current scope not analyzed
printf("sd", 1i);
}
void func2()
{
int j = getVal();
if (j > 0) {
// Range of j: [1..231-1]
// Result of * operation may overflow
j=3%*2
// Range of j: even values in [2 .. 2147483646]
printf("sd", j);
}
}

allow

Polyspace does not flag signed integer overflows. If an operation results in an

overflow, Polyspace analyzes the remaining code but wraps the result of the overflow.

1-261

1 Option Descriptions

In this code, the analysis does not flag any overflow in the code. However, the range
of j wraps around to even values in the range [-231..2] or [2..231-2] and the
value of i wraps around to -231,

#include<stdio.h>
int getVal();
void funcl()
{
int 1 = 1;
i=1 << 30;
// i = 23
i=1%x*2;
// 1= -23%
printf("sd", 1i);
}
void func2()
{
int j = getVal();
if (j > 0) {
// Range of j: [1..231-1]
1=3*2
// Range of j: even values in [-231..2] or [2..231-2]
printf("sd", j);
}
}

warn-with-wrap-around

Polyspace flags signed integer overflows. If an operation results in an overflow,
Polyspace analyzes the remaining code but wraps the result of the overflow.

In the following code, j has values in the range [1..231-1] before the orange
overflow. Polyspace considers that j has even values in the range [-231..2] or
[2..231-2] after the overflow.

Similarly, i has value 23° before the red overflow and value -23! after it .

1-262

Overflow mode for signed integer (-signed-integer-overflows)

#include<stdio.h>
int getVal();

void funcl()
{
int i = 1;
i=1 << 30;
// 1= 2%
// Result of * operation overflows
i=1%x*2;
// 1= -23
printf("sd", 1i);

void func2()

{

int j = getVal();
if (j > 0) {
// Range of j: [1..231-1]
// Result of * operation may overflow
j=3*2
// Range of j: even values in [-231..2] or [2..23!-2]
printf("sd", j);

Tips

To check for overflows on conversions from unsigned to signed integers of the same
size, set Overflow mode for unsigned integer to forbid orwarn-with-wrap-
around. If you allow unsigned integer overflows, Polyspace does not flag overflows on
conversions and wraps the result of an overflow, even if you check for signed integer
overflows.

In Polyspace Code Prover, overflowing signed constants are wrapped around. This
behavior cannot be changed by using the options. If you want to detect overflows with
signed constants, use the Polyspace Bug Finder checker Integer constant
overflow.

1-263

1 Option Descriptions

Command-Line Information

Parameter: -signed-integer-overflows

Value: forbid | allow |warn-with-wrap-around

Default: forbid

Example: polyspace-code-prover-nodesktop -sources file name -signed-
integer-overflows allow

See Also
Overflow | Overflow mode for unsigned integer (-unsigned-integer-
overflows)

Introduced in R2018b

1-264

Overflow mode for unsigned integer (-unsigned-integer-overflows)

Overflow mode for unsigned integer (-
unsigned-integer-overflows)

Specify whether result of overflow is wrapped around or truncated

Description

This option affects a Code Prover analysis only.

Specify whether Polyspace flags unsigned integer overflows and whether the analysis
wraps the result of an overflow or restricts it to its extremum value.

Set Option

User interface: In the Configuration pane, the option is on the Check Behavior node
under Code Prover Verification.

Command line: Use the option -unsigned-integer-overflows. See “Command-Line
Information” (Polyspace Code Prover).

Why Use This Option

Use this option to specify whether to check for unsigned integer overflows and to specify
the assumptions the analysis makes following an overflow.

Settings
Default: allow

forbid
Polyspace flags unsigned integer overflows. If the Overflow check on an operation is:

* Red, Polyspace does not analyze the remaining code in the current scope.

* Orange, Polyspace analyzes the remaining code in the current scope. Polyspace
considers that:

1-265

1 Option Descriptions

+ After a positive Overflow, the result of the operation has an upper bound. This
upper bound is the maximum value allowed by the type of the result.

* After a negative Overflow, the result of the operation has a lower bound. This
lower bound is the minimum value allowed by the type of the result.

In the following code, j has values in the range [1..232-1] before the orange
overflow. Polyspace considers that j has even values in the range

[2 .. 4294967294] after the overflow. Polyspace does not analyze the printf()
statement after the red overflow.

#include<stdio.h>
unsigned int getVal();
void funcl()
{
unsigned int i = 1;
i=1 << 31;
// Result of * operation overflows
i=1%*2;
// Remaing code in current scope not analyzed
printf("su", 1i);
}
void func2()
{
unsigned int j = getVal();
if (3 > 0) {
// Range of j: [1..23-1]
// Result of * operation may overflow
j=3%*2;
// Range of j: even values in [2 .. 4294967294]
printf("su", j);
}
}

allow

Polyspace does not flag unsigned integer overflows. If an operation results in an
overflow, Polyspace analyzes the remaining code but wraps the result of the overflow.
For instance, MAX_INT + 1 wraps to MIN INT. This behavior conforms to the ANSI C
(ISO C++) standard.

1-266

Overflow mode for unsigned integer (-unsigned-integer-overflows)

In this code, the analysis does not flag any overflow in the code. However, the range
of j wraps around to even values in the range [0..232-2]] and the value of i wraps

around to 0.
#include<stdio.h>
unsigned int getVal();
void funcl()
{
unsigned int i = 1;
i=1 << 31;
// 1= 23
i=1%*2;
// 1 =20
printf("su", 1i);
}
void func2()
{
unsigned int j = getVal();
if (j > 0) {
// Range of j: [1..232-1]
1=3*2
// Range of j: even values in [0 .. 4294967294]
printf("su", j);
}
}

warn-with-wrap-around

Polyspace flags unsigned integer overflows. If an operation results in an overflow,
Polyspace analyzes the remaining code but wraps the result of the overflow. For
instance, MAX_INT + 1 wrapstoMIN INT.

In the following code, j has values in the range [1..232-1] before the orange
overflow. Polyspace considers that j has even values in the range [0
4294967294 after the overflow.

Similarly, i has value 23! before the red overflow and value 0 after it.

1-267

1 Option Descriptions

1-268

#include<stdio.h>
unsigned int getVal();

void funcl()

{
unsigned int i = 1;
i=1 << 31;

//i=231
i=1%x*2;
// 1=0

printf("su", 1i);

void func2()

{
unsigned int j = getVal();
if (j > 0) {
// Range of j: [1..232-1]
j=3*2
// Range of j: even values in [0 .. 4294967294]
printf("su", j);
}
}

Tips

* To check for overflows on conversions from unsigned to signed integers of the same
size, set Overflow mode for unsigned integer to forbid or warn-with-wrap-
around. If you allow unsigned integer overflows, Polyspace does not flag overflows on
conversions and wraps the result of an overflow, even if you check for signed integer

overflows.

* In Polyspace Code Prover, overflowing unsigned constants are wrapped around. This
behavior cannot be changed by using the options. If you want to detect overflows with
unsigned constants, use the Polyspace Bug Finder checker Unsigned integer

constant overflow.

Command-Line Information

Parameter: -unsigned-integer-overflows

Overflow mode for unsigned integer (-unsigned-integer-overflows)

Value: forbid | allow |warn-with-wrap-around
Default: allow

Example: polyspace-code-prover-nodesktop -sources file name -
unsigned-integer-overflows allow

See Also

Overflow | Overflow mode for signed integer (-signed-integer-
overflows)

Introduced in R2018b

1-269

1 Option Descriptions

1-270

Allow incomplete or partial allocation of
structures (-size-in-bytes)

Allow a pointer with insufficient memory buffer to point to a structure

Description

This option affects a Code Prover analysis only.

Specify that the verification must allow dereferencing a pointer that points to a structure
but has a sufficient buffer for only some of the structure’s fields.

This type of pointer results when a pointer to a smaller structure is cast to a pointer to a
larger structure. The pointer resulting from the cast has sufficient buffer for only some
fields of the larger structure.

Set Option

User interface: In your project configuration, the option is on the Check Behavior
node.

Command line: Use the option -size-in-bytes. See “Command-Line Information” on
page 1-272.

Why Use This Option

Use this option to relax the check for illegally dereferenced pointers. You can point to a
structure even when the buffer allowed for the pointer is not sufficient for all the
structure fields.

Allow incomplete or partial allocation of structures (-size-in-bytes)

Settings

41 0On
When a pointer with insufficient buffer is dereferenced,Polyspace does not produce an
Illegally dereferenced pointer error, as long as the dereference occurs within
allowed buffer.

For instance, in the following code, the pointer p has sufficient buffer for the first two
fields of the structure BIG. Therefore, with the option on, Polyspace considers that
the first two dereferences are valid. The third dereference takes p outside its allowed
buffer. Therefore, Polyspace produces an Illegally dereferenced pointer error on
the third dereference.

#include <stdlib.h>

typedef struct little { int a; int b; } LITTLE;
typedef struct big { int a; int b; int c; } BIG;

void main(void) {
BIG *p = malloc(sizeof(LITTLE));

if (p!= ((void *) 0)) {
p->a = 0 ;
p->b =0 ;
p->c = 0 ; // Red IDP check
}
}
Off (default)

Polyspace does not allow dereferencing a pointer to a structure if the pointer does not
have sufficient buffer for all fields of the structure. It produces an Illegally
dereferenced pointer error the first time you dereference the pointer.

For instance, in the following code, even though the pointer p has sufficient buffer for
the first two fields of the structure BIG, Polyspace considers that dereferencing p is
invalid.

#include <stdlib.h>

typedef struct little { int a; int b; } LITTLE;
typedef struct big { int a; int b; int c; } BIG;

1-271

1 Option Descriptions

1-272

void main(void) {
BIG *p = malloc(sizeof(LITTLE));

if (p!= ((void *) 0)) {
p->a = 0 ; // Red IDP check
p->b =0 ;
p->c = 0 ;

}

Tips

* Ifyou do not turn on this option, you cannot point to the field of a partially allocated
structure.

For instance, in the preceding example, if you do not turn on the option and perform
the assignment

int *ptr = &(p->a);
Polyspace considers that the assignment is invalid. If you dereference ptr, it produces

an Illegally dereferenced pointer error.
» Using this option can slightly increase the number of orange checks.

Command-Line Information

Parameter: -size-in-bytes

Default: Off

Example: polyspace-code-prover-nodesktop -sources file name -size-in-
bytes

See Also

Enable pointer arithmetic across fields (-allow-ptr-arith-on-struct)
| Illegally dereferenced pointer

Subnormal detection mode (-check-subnormal)

Subnormal detection mode (-check-
subnormal)

Detect operations that result in subnormal floating-point values

Description

This option affects a Code Prover analysis only.

Specify that the verification must check floating-point operations for subnormal results.

Set Option

User interface: In your project configuration, the option is on the Check Behavior
node.

Command line: Use the option -check-subnormal. See “Command-Line Information”
on page 1-276.

Why Use This Option

Use this option to detect floating-point operations that result in subnormal values.

Subnormal numbers have magnitudes less than the smallest floating-point number that
can be represented without leading zeros in the significand. The presence of subnormal
numbers indicates loss of significant digits. This loss can accumulate over subsequent
operations and eventually result in unexpected values. Subnormal numbers can also slow
down the execution on targets without hardware support.

Settings

Default: allow

allow
The verification does not check operations for subnormal results.

1-273

1 Option Descriptions

1-274

forbid
The verification checks for subnormal results.

The verification stops the execution path with the subnormal result and prevents
subnormal values from propagating further. Therefore, in practice, you see only the
first occurrence of the subnormal value.

warn-all

The verification checks for subnormal results and highlights all occurrences of
subnormal values. Even if a subnormal result comes from previous subnormal values,
the result is highlighted.

The verification continues even if the check is red.

warn-first

The verification checks for subnormal results but only highlights first occurrences of
subnormal values. If a subnormal value propagates to further subnormal results,
those subsequent results are not highlighted.

The verification continues even if the check is red.

For details of the result colors in each mode, see Subnormal float.

Tips

* Ifyou want to see only those operations where a subnormal value originates from non-
subnormal operands, use the warn-first mode.

For instance, in the following code, argl and arg2 are unknown. The verification
assumes that they can take all values allowed for the type double. This assumption
can lead to subnormal results from certain operations. If you use the warn-first
mode, the first operation causing the subnormal result is highlighted.

Subnormal detection mode (-check-subnormal)

warn-all

warn-first

void func (double argl, double arg2
{

double differencel = argl
double difference2 = argl
double vall = differencel
double val2 = difference2

*

a
a
2
2

*

In this example, all four operations can
have subnormal results. The four checks
for subnormal results are orange.

yoid func (double argl, double arg2
{

rg2; double differencel = argl - a
rg2; double difference2 = argl - a
; double vall = differencel * 2
; double val2 = difference2 * 2
}

In this example, differencel and
difference2 can be subnormal if argl
and arg2 are sufficiently close. The first
two checks for subnormal results are
orange. vall and val2 cannot be
subnormal unless differencel and
difference?2 are subnormal. The last
two checks for subnormal results are
green.

Through red/orange checks, you see
only the first instance where a
subnormal value appears. You do not see
red/orange checks from those
subnormal values propagating to

subsequent operations.

If you want to see where a subnormal value originates and do not want to see
subnormal results arising from the same cause more than once, use the forbid mode.

For instance, in the following code, argl and arg2 are unknown. The verification
assumes that they can take all values allowed for the type double. This assumption
can lead to subnormal results for argl-arg2. If you use the forbid mode and
perform the operation argl-arg2 twice in succession, only the first operation is
highlighted. The second operation is not highlighted because the subnormal result for
the second operation arises from the same cause as the first operation.

1-275

~

rg2;
rg2;

1 Option Descriptions

1-276

warn-all

forbid

void func (double argl, double arg2
{

double differencel = argl - a

double difference2 = argl - a

double vall = differencel * 2

double val2 = difference2 * 2
}

In this example, all four operations can
have subnormal results. The four checks
for subnormal results are orange.

yoid func (double argl, double arg2
{

rg2; double differencel = argl - a
rg2; double difference2 = argl - a
; double vall = differencel * 2
; double val2 = difference2 * 2
}

In this example, differencel can be
subnormal if argl and arg2 are
sufficiently close. The first check for
subnormal results is orange. Following
this check, the verification excludes
from consideration:

* The close values of argl and arg2
that led to the subnormal value of
differencel.

In the subsequent operation argl -
arg?2, the check is green and
difference2 is not subnormal. The
result of the check on difference2
* 2 is green for the same reason.

¢ The subnormal value of
differencel.

In the subsequent operation
differencel * 2, the checkis

~

rg2;
rg2;

green.

Command-Line Information

Parameter: - check-subnormal
Value: allow |warn-first |warn-all| forbid
Default: allow

You cannot run the Automatic Orange Tester if you check for subnormals in your
verification.

Subnormal detection mode (-check-subnormal)

Example: polyspace-code-prover-nodesktop -sources file name -check-

subnormal forbid

See Also

Polyspace Results
Subnormal float

Introduced in R2016b

1-277

1 Option Descriptions

Detect uncalled functions (-uncalled-
function-checks)

Detect functions that are not called directly or indirectly from main or another entry
point function

Description

This option affects a Code Prover analysis only.

Detect functions that are not called directly or indirectly from main or another entry
point function during run-time.

Set Option

User interface: In your project configuration, the option is on the Check Behavior
node.

Command line: Use the option -uncalled-function-checks. See “Command-Line
Information” on page 1-279.

Why Use This Option
Typically, after verification, the Dashboard pane shows functions that are not called

during verification. However, you do not see them in your analysis results or reports. You
cannot comment on them or justify them.

If you want to see these uncalled functions in your analysis results and reports, use this
option.

Settings

Default: none

1-278

Detect uncalled functions (-uncalled-function-checks)

none

The verification does not generate checks for uncalled functions.
never-called

The verification generates checks for functions that are defined but not called
called-from-unreachable

The verification generates checks for functions that are defined and called from an
unreachable part of the code.

all
The verification generates checks for functions that are:

* Defined but not called
* Defined and called from an unreachable part of the code.

Command-Line Information

Parameter: -uncalled-function-checks

Value: none | never-called | called-from-unreachable | all

Default: none

Example: polyspace-code-prover-nodesktop -sources file name -
uncalled-function-checks all

See Also

Function not called | Function not reachable

Topics

“Specify Polyspace Analysis Options” (Polyspace Code Prover)

“Review and Fix Function Not Called Checks” (Polyspace Code Prover)
“Review and Fix Function Not Reachable Checks” (Polyspace Code Prover)

1-279

1 Option Descriptions

1-280

Sensitivity context (-context-sensitivity)

Store call context information to identify function call that caused errors

Description

This option affects a Code Prover analysis only.

Specify the functions for which the verification must store call context information. If the
function is called multiple times, using this option helps you to distinguish between the
different calls.

Set Option

User interface: In your project configuration, the option is available on the Precision
node.

Command line: Use the option -context-sensitivity. See “Command-Line
Information” (Polyspace Code Prover).

Why Use This Option

Suppose a function is called twice in your code. The check color on each operation in the
function body is a combined result of both calls. If you want to distinguish between the
colors in the two calls, use this option.

For instance, if a function contains a red or orange check and a green check on the same
operation for two different calls, the software combines the contexts and displays an
orange check on the operation. If you use this option, you can identify the color of the
check for each call. For a tutorial on using this option, see “Identify Function Call with
Run-Time Error” (Polyspace Code Prover).

Settings

Default: none

Sensitivity context (-context-sensitivity)

none
The software does not store call context information for functions.
auto
The software stores call context information for checks in:
* Functions that form the leaves of the call tree. These functions are called by other
functions, but do not call functions themselves.
* Small functions. The software uses an internal threshold to determine whether a
function is small.
custom
The software stores call context information for functions that you specify. To enter

the name of a function, click I:ll_II:I

Command-Line Information

Parameter: -context-sensitivity

Value: functionl[, function2,...]

Default: none

Example: polyspace-code-prover-nodesktop -sources file name -context-
sensitivity myFuncl,myFunc2

To allow the software to determine which functions receive call context storage, use the
option -context-sensitivity-auto.

See Also

Topics
“Specify Polyspace Analysis Options” (Polyspace Code Prover)

1-281

1 Option Descriptions

1-282

Improve precision of interprocedural
analysis (-path-sensitivity-delta)

Avoid certain verification approximations for code with fewer lines

Description

This option affects a Code Prover analysis only.

For smaller code, use this option to improve the precision of cross-functional analysis.

Set Option

User interface: In your project configuration, the option is available on the Precision
node.

Command line: Use the option -path-sensitivity-delta. See “Command-Line
Information” on page 1-283.

Why Use This Option

Use this option to avoid certain software approximations on execution paths. Avoiding
these approximations results in fewer orange checks but a much longer verification time.

For instance, for deep function call hierarchies or nested conditional statements, to
complete verification in a reasonable amount of time, the software combines many
execution paths and stores less information at each stage of verification. If you use this
option, the software stores more information about the execution paths, resulting in a
more precise verification.

Settings
Default: Off

Enter a positive integer to turn on this option.

Improve precision of interprocedural analysis (-path-sensitivity-delta)

Entering a higher value leads to a greater number of proven results, but also increases
verification time exponentially. For instance, a value of 10 can result in very long
verification times.

Tips

Use this option only when you have less than 1000 lines of code.

Command-Line Information

Parameter: -path-sensitivity-delta
Value: Positive integer

See Also

Topics
“Improve Verification Precision” (Polyspace Code Prover)

1-283

1 Option Descriptions

1-284

Precision level (-0)

Specify a precision level for the verification

Description

This option affects a Code Prover analysis only.

Specify the precision level that the verification must use.

Set Option

User interface: In your project configuration, the option is available on the Precision
node.

Command line: Use the option - 0#, for instance, -00 or -01. See “Command-Line
Information” on page 1-285.

Why Use This Option

Higher precision leads to greater number of proven results but also requires more
verification time. Each precision level corresponds to a different algorithm used for
verification.

In most cases, you see the optimal balance between precision and verification time at
level 2.

Settings

Default: 2

0
This option corresponds to a static interval verification.

This option corresponds to a complex polyhedron model of domain values.

Precision level (-0)

This option corresponds to more complex algorithms closely modelling domain values.
The algorithms combine both complex polyhedrons and integer lattices.

This option is only suitable for code having less than 1000 lines. Using this option, the
percentage of proven results can be very high.

Tips

For best results in reasonable time, use the default level 2. If the verification takes a long
time, reduce precision. However, the number of unproven checks can increase. Likewise,
to reduce orange checks, you can improve your precision. But the verification can take
significantly longer time.

Command-Line Information

Parameter: -00 | -01| -02 | -03
Default: -02
Example: polyspace-code-prover-nodesktop -sources file name -01

See Also

Topics
“Specify Polyspace Analysis Options” (Polyspace Code Prover)
“Improve Verification Precision” (Polyspace Code Prover)

1-285

1 Option Descriptions

1-286

Specific precision (-modules-precision)

Specify source files you want to verify at higher precision than the remaining verification

Description

This option affects a Code Prover analysis only.

Specify source files that you want to verify at a precision level higher than that for the
entire verification.

Set Option

User interface: In your project configuration, the option is available on the Precision
node. See “Dependency” on page 1-287 for other options you must also enable.

Command line: Use the option -modules-precision. See “Command-Line
Information” on page 1-287.

Why Use This Option

If a specific file is verified imprecisely leading to many orange checks in the file and
elsewhere, you can improve the precision for that file.

Note that increasing precision also increases verification time.

Settings

Default: All files are verified with the precision you specified using Precision >
Precision level.

Click I:II_II:I to enter the name of a file without the extension . ¢ and the corresponding
precision level.

Specific precision (-modules-precision)

Dependency

This option is available only if you set Source code language (-lang) to C or C-CPP.

Command-Line Information

Parameter: -modules-precision

Value: file:00 | file:01| file:02| file:03

Example: polyspace-code-prover-nodesktop -sources file name -01 -
modules-precision My File:02

See Also

Precision level (-0)

Topics
“Specity Polyspace Analysis Options” (Polyspace Code Prover)
“Improve Verification Precision” (Polyspace Code Prover)

1-287

1 Option Descriptions

1-288

Verification level (-to0)

Specify number of times the verification process runs on your code

Description

This option affects a Code Prover analysis only.

Specify the number of times the Polyspace verification process runs on your source code.
Each run can lead to greater number of proven results but also requires more verification
time.

Set Option

User interface: In your project configuration, the option is available on the Precision
node.

Command line: Use the option -to. See “Command-Line Information” on page 1-291.

Why Use This Option

There are many reasons you might want to increase or decrease the verification level. For
instance:

* Coding rules are checked early during the compilation phase, with some exceptions
(Polyspace Code Prover) only. If you check for coding rules alone, you can lower the
verification level.

» Ifyou see many orange checks after verification, try increasing the verification level.
However, increasing the verification level also increases verification time.

In most cases, you see the optimal balance between precision and verification time at
level 2.

Settings

Default: Software Safety Analysis level 2

Verification level (-to)

Source Compliance Checking
Polyspace completes coding rules checking at the end of the compilation phase.
Software Safety Analysis level 0
The verification process runs once on your source code.
Software Safety Analysis level 1
The verification process runs twice on your source code.
Software Safety Analysis level 2

The verification process runs three time on your source code. Use this option for most
accurate results in reasonable time.

Software Safety Analysis level 3

The verification process runs four times on your source code.
Software Safety Analysis level 4

The verification process runs five times on your source code.
other

If you use this option, Polyspace verification will make 20 passes unless you stop it
manually.

Tips
* Use a higher verification level for fewer orange checks.
Difference between Level 0 and 1

The following example illustrates the difference between Software Safety
Analysis level 0 and Software Safety Analysis level 1:

1-289

1 Option Descriptions

Software Safety Analysis Level 0

Software Safety Analysis Level 1

#include <stdlib.h>

void ratio

{
}

(float x, float *y)

*y=(abs(x-*y))/(x+*y);

void levell (float x,
float y, float *t)
{ float v;
V=Y,
ratio (x, &y);
*t = 1.0/(v - 2.0 * X);

}
float level2(float v)
{
float t;
t = v;
levell(0.0, 1.0, &t);
return t;
}
void main(void)
{
float r,d;
d= level2(1.0);
r=1.0/ (2.0 - d);
}

#include <stdlib.h>

void ratio

{
}

(float x, float *y)

*y=(abs (x-*y))/(x+*y);

void levell (float x,
float y, float *t)
{ float v;
V=Y,
ratio (x, &y);
*t = 1.0/(v - 2.0 * x);

}
float level2(float v)
{
float t;
t =v;
levell(0.0, 1.0, &t);
return t;
}
void main(void)
{
float r,d;
d= level2(1.0);
r=1.0/ (2.0 - d);
}

In the table, verification produces an orange Division by Zero check during level 0
verification. The check turns green during level 1. The verification acquires more
precise knowledge of x in the higher level.

If a higher verification level fails because the verification runs out of memory, but
results are available at a lower level, Polyspace displays the results from the lower
level.

» For best results, use the option Software Safety Analysis level 2.Ifthe
verification takes too long, use a lower Verification level. Fix red errors and gray
code before rerunning the verification with higher verification levels.

1-290

Verification level (-to)

* Use the option Other sparingly since it can increase verification time by an
unreasonable amount. Using Software Safety Analysis level 2 provides
optimal verification of your code in most cases.

* Ifyou want to check for coding rules only, you can run Polyspace on your source code
up to the Source Compliance Checking phase.

With the exception of certain rules (Polyspace Code Prover) Polyspace checks for
coding rule violations during the compilation phase.

» If the Verification Level is set to Source Compliance Checking, do not run
verification on a remote server. The source compliance checking, or compilation,
phase takes place on your local computer anyway. Therefore, if you are running
verification only to the end of compilation, run verification on your local computer.

Command-Line Information

Parameter: -to

Value: compile | pass0O | passl | pass2 | pass3 | passd | other

Default: pass2

Example: polyspace-code-prover-nodesktop -sources file name -to pass2

See Also

Topics
“Improve Verification Precision” (Polyspace Code Prover)

1-291

1 Option Descriptions

1-292

Verification time limit (-timeout)

Specify a time limit on your verification

Description

This option affects a Code Prover analysis only.

Specify a time limit for the verification in hours. If the verification does not complete
within that limit, it stops.

Set Option

User interface: In your project configuration, the option is available on the Precision
node.

Command line: Use the option -timeout. See “Command-Line Information” on page 1-
293.

Why Use This Option

Use this option to impose a time limit on the verification.

By default, if an internal step in the verification lasts for more than 24 hours, the
verification stops. You can use this option to reduce the time limit even further. Note that
you can have verification results despite the verification timing out. For instance, if a step
in Software Safety Analysis level 1 times out, you still get the results from level 0. See
Verification level (-to).

The option is useful only in very specific cases. Suppose your code has certain constructs
that might slow down the verification. To check this, you can impose a time limit on the
verification so that the verification stops if it takes too long.

Typically, Technical Support asks you to use this option as needed.

Verification time limit (-timeout)

Settings

Enter the time in hours. For fractions of an hour, specify decimal form.

Command-Line Information

Parameter: -timeout

Value: time

Example: polyspace-code-prover-nodesktop -sources file name -timeout
5.75

See Also

Topics
“Specity Polyspace Analysis Options” (Polyspace Code Prover)
“Improve Verification Precision” (Polyspace Code Prover)

1-293

1 Option Descriptions

1-294

Inline (-inline)

Specify functions that must be cloned internally for each function call

Description

This option affects a Code Prover analysis only.

Specify the functions that the verification must clone internally for every function call.

Set Option

User interface: In your project configuration, the option is available on the Scaling
node.

Command line: Use the option -inline. See “Command-Line Information” on page 1-
296.

Why Use This Option

Use this option sparingly. Sometimes, using the option helps to work around scaling
issues during verification. If your verification takes too long, Technical Support can ask
you to use this option for certain functions.

Do not use this option to understand results. For instance, suppose a function is called
twice in your code. The check color on each operation in the function body is a combined
result of both calls. If you want to distinguish between the colors in the two calls, use the
option Sensitivity context (-context-sensitivity).

Settings
No Default

Enter function names or choose from a list.

Click I:II_IIZI to add a field and enter the function name.

Inline (-inline)

Click o to list functions in your code. Choose functions from the list.

The verification internally clones the function for each call. For instance, if you specify the
function func for inlining and func is called twice, the software creates two copies of
func for verification. The copies are named using the convention
func_pst_inlined ver where ver is the version number. You see both copies on the
Call Hierarchy pane.

However, for each run-time check in the function body, you see only one color in your
verification results. The semantics of the check color is different from the normal
specification.

Red checks:

* Normally, if a function is called twice and an operation causes a definite error only in
one of the calls, the check color is orange.

» If you use this option, the worst color is shown for the check. Therefore, the check is
red.

Gray checks:

* Normally, if a function is called twice and an if statement branch is unreachable in
only one of the calls, the branch is shown as reachable.

+ If you use this option, the worst color is shown for the check. Therefore, the if branch
appears gray.

Do not use this option to understand results. Use this option only if a certain function
causes scaling issues.

Tips
* Use this option to identify the cause of a Non-terminating call error.

* Situation: Sometimes, a red Non-terminating call check can appear on a
function call though a red check does not appear in the function body. The function
body represents all calls to the function. Therefore, if some calls to a function do
not cause an error, an orange check appears in the function body.

* Action: If you use this option, for every function call, there is a corresponding
function body. Therefore, you can trace a red check on a function call to a red
check in the function body.

1-295

1 Option Descriptions

1-296

» Using this option can sometimes duplicate a lot of code and lead to scaling problems.
Therefore choose functions to inline carefully.

* Choose functions to inline based on hints provided by the alias verification.
* Do not use this option for entry point functions, including main.
» Using this option can increase the number of gray Unreachable code checks.

For example, in the following code, if you enter max for Inline, you obtain two
Unreachable code checks, one for each call to max.

int max(int a, int b) {
return a > b ? a : b;

}

void main() {
int i=3, j=1, k;
k=max(i,j);
i=0;
k=max(i,j);
}
* Ifyou use the keyword inline before a function definition, place the definition in a
header file and call the function from multiple source files, you have the same result as
using the option Inline.

* For C++ code, this option applies to all overloaded methods of a class.

Command-Line Information

Parameter: -inline

Value: functionl[, function2[,...]]

No Default

Example: polyspace-code-prover-nodesktop -sources file name -inline
funcl, func?2

See Also

Depth of verification inside structures (-k-1imiting)

Depth of verification inside structures (-k-
limiting)

Limit the depth of analysis for nested structures

Description

This option affects a Code Prover analysis only.

Specify a limit to the depth of analysis for nested structures.

Set Option

User interface: In your project configuration, the option is available on the Scaling
node.

Command line: Use the option -k-1limiting. See “Command-Line Information” on
page 1-298.

Why Use This Option

Use this option if the analysis is slow because your code has a structure that is many
levels deep.

Typically, you see a warning message when a structure with a deep hierarchy is slowing
down the verification.

Settings
Default: Full depth of nested structures is analyzed.

Enter a number to specify the depth of analysis for nested structures. For instance, if you
specify 0, the analysis does not verify a structure inside a structure.

If you specify a number less than 2, the verification could be less precise.

1-297

1 Option Descriptions

Command-Line Information

Parameter: -k-1limiting

Value: positive integer

Default: polyspace-code-prover-nodesktop -sources file name -k-
limiting 3

See Also

1-298

Generate report

Generate report

Specify whether to generate a report after the analysis

Description

Specify whether to generate a report after the analysis.

Depending on the format you specify, you can view this report using an external software.
For example, if you specify the format PDF, you can view the report in a pdf reader.

Set Option

User interface: In your project configuration, the option is available on the Reporting
node.

Command line: See “Command-Line Information” on page 1-300.

Why Use This Option

You can generate a report from your analysis results for archiving purposes. You can
provide this report to your management or clients as proof of code quality.

Using other analysis options, you can tailor the report content and format for your
specific needs. See Bug Finder and Code Prover report (-report-template)
and Output format (-report-output-format).

Settings

¥ On
Polyspace generates an analysis report using the template and format you specify.

The report is stored in the Polyspace-Doc subfolder of your results folder. To open
your results folder from the user interface, on the Project Browser pane, right-click
the results node and select Open Folder with File Manager.

1-299

1 Option Descriptions

1-300

=1 Module_2
EI'_:"I Module Source Files
&[T sources
El_j Configuration
% Bug_Finder_Example
£ Result

LR IEF _Result [Completed]

Open Results

Open Configuration

Remowve Delete

= & & U

Delete Result Folder Content
Rename Result Folder

Refresh a Result Folder F5

o
|
L4

L&

Open Folder with File Manager

To change the results folder location, see “Project and Results Folder Contents”.

"] Off (default)

Polyspace does not generate an analysis report. You can still view your results in the
Polyspace interface.

Tips

» To generate a report after an analysis is complete, select Reporting > Run Report.
Alternatively, at the command line, use the command polyspace-report-
generator.

Command-Line Information

There is no command-line option to solely turn on the report generator. However, using
the options -report-template for template and - report-output-format for output
format automatically turns on the report generator.

Generate report

See Also

Bug Finder and Code Prover report (-report-template) | Output format
(-report-output-format)

Topics
“Specify Polyspace Analysis Options”
“Generate Reports”

1-301

1 Option Descriptions

1-302

Bug Finder and Code Prover report (-
report-template)

Specify template for generating analysis report

Description

Specify template for generating analysis report.

. rpt files for the report templates are available in matlabroot\toolbox\polyspace
\psrptgen\templates\. Here, matlabroot is the MATLAB installation folder.

Set Option

User interface: In your project configuration, the option is on the Reporting node. You
have separate options for Bug Finder and Code Prover analysis. See “Dependencies” on
page 1-309 for other options you must also enable.

J

Command line: Use the option - report-template. See “Command-Line Information’
on page 1-309.

Why Use This Option

Depending on the template that you use, the report contains information about certain
types of results from the Results List pane. The template also determines what
information is presented in the report and how the information is organized. See the
template descriptions below.

Settings - Bug Finder
Default: BugFinderSummary

BugFinder
The report lists:

Bug Finder and Code Prover report (- report-template)

Polyspace Bug Finder Summary: Number of results in the project. The results
are summarized by file. The files that are partially analyzed because of compilation
errors are listed in a separate table.

Code Metrics: Summary of the various code complexity metrics. For more
information, see “Code Metrics”.

Coding Rules: Coding rule violations in the source code. For each rule violation,
the report lists the:

* Rule number and description.

* Function containing the rule violation.

* Review information, such as Severity, Status and comments.

Defects: Defects found in the source code. For each defect, the report lists the:

* Function containing the defect.
* Defect information on the Result Details pane.
* Review information, such as Severity, Status and comments.

Configuration Settings: List of analysis options that Polyspace uses for analysis.
If you configured your project for multitasking, this section also lists the
Concurrency Modeling Summary. For more information, see “Analysis Options”.
If your project has source files with compilation errors, these files are also listed.

If you check for coding rules, an additional Coding Rules Configuration section
states the rules along with the information whether they were enabled or disabled.

BugFinderSummary

The report lists:

Polyspace Bug Finder Summary: Number of results in the project. The results
are summarized by file. The files that are partially analyzed because of compilation
errors are listed in a separate table.

Code Metrics: Summary of the various code complexity metrics. For more
information, see “Code Metrics”.

Coding Rules Summary: Coding rules along with number of violations.

Defect Summary: Defects that Polyspace Bug Finder looks for. For each defect,
the report lists the:

* Defect group.

1-303

1 Option Descriptions

* Defect name.
* Number of instances of the defect found in the source code.

Configuration Settings: List of analysis options that Polyspace uses for analysis.
If you configured your project for multitasking, this section also lists the
Concurrency Modeling Summary. For more information, see “Analysis Options”.
If your project has source files with compilation errors, these files are also listed.

If you check for coding rules, an additional Coding Rules Configuration section
states the rules along with the information whether they were enabled or disabled.

CodeMetrics

The report lists the following:

Code Metrics Summary: Various quantities related to the source code. For more
information, see “Code Metrics”.

Code Metrics Details: Various quantities related to the source code with the
information broken down by file and function.

Configuration Settings: List of analysis options that Polyspace uses for analysis.
If you configured your project for multitasking, this section also lists the
Concurrency Modeling Summary. For more information, see “Analysis Options”.
If your project has source files with compilation errors, these files are also listed.

If you check for coding rules, an additional Coding Rules Configuration section
states the rules along with the information whether they were enabled or disabled.

CodingRules

For C code, the report lists information about compliance with:

MISRA C rules
MISRA AC AGC rules

Custom coding rules

For C++ code, the report lists information about compliance with:

1-304

MISRA C++ rules
JSF C++ rules
Custom coding rules

Bug Finder and Code Prover report (- report-template)

This report also contains the Polyspace configuration settings for the analysis. An
additional section states the rules along with the information whether they were
enabled or disabled.

SecurityCERT

The report contains the same information as the BugFinder report. However, in the
Defects chapter, an additional column lists the CERT C rules mapped to each defect.
The Configuration Settings appendix also includes a Security Standard to
Polyspace Result Map.

SecurityCWE

The report contains the same information as the BugFinder report. However, in the
Defects chapter, an additional column lists the CWE rules mapped to each defect.
The Configuration Settings appendix also includes a Security Standard to
Polyspace Result Map.

SecurityISO 17961

The report contains the same information as the BugFinder report. However, in the
Defects chapter, an additional column lists the ISO/IEC TS 17961 rules mapped to
each defect. The Configuration Settings appendix also includes a Security
Standard to Polyspace Result Map.

Metrics

Only available for results downloaded from the Polyspace Metrics interface.

The report lists information useful to quality engineers and available on the Polyspace
Metrics interface, including:

Information about whether the project satisfies quality objectives
Time taken in each phase of analysis

Metrics about the whole project. For each metric, the report lists the quality
threshold and whether the metric satisfies this threshold.

Coding rule violations in the project. For each rule, the report lists the number of
violations justified and whether the justifications satisfy quality objectives.

Definite as well as possible run-time errors in the project. For each type of run-
time error, the report lists the number of errors justified and whether the
justifications satisfy quality objectives.

The appendices contain further details of Polyspace configuration settings, code
metrics, coding rule violations, and run-time errors.

1-305

1 Option Descriptions

1-306

Settings - Code Prover

Default: Developer

CodeMetrics

The report contains a summary of code metrics, followed by the complete metrics for
an application.

CodingRules
For C code, the report lists information about compliance with:

¢ MISRA C rules
* MISRA AC AGC rules
* Custom coding rules

For C++ code, the report lists information about compliance with:

* MISRA C++ rules

* JSF C++rules

* Custom coding rules

This report also contains the Polyspace configuration settings and modifiable

assumptions used in the analysis. An additional section states the rules along with the
information whether they were enabled or disabled.

Developer
The report lists information useful to developers, including:

* Summary of results

* Coding rule violations

» List of proven run-time errors or red checks

» List of unproven run-time errors or orange checks

+ List of unreachable procedures or gray checks

* Global variable usage in code. See “Global Variables” (Polyspace Code Prover).
The report also contains the Polyspace configuration settings and modifiable

assumptions used in the analysis. If your project has source files with compilation
errors, these files are also listed.

Bug Finder and Code Prover report (- report-template)

DeveloperReview

The report lists the same information as the Developer report. However, the

reviewed results are sorted by severity and status, and unreviewed results are sorted
by file location.

Developer withGreenChecks

The report lists the same information as the Developer report. In addition, the
report lists code proven to be error-free or green checks.

Quality
The report lists information useful to quality engineers, including:

* Summary of results

» Statistics about the code

* Graphs showing distributions of checks per file

The report also contains the Polyspace configuration settings and modifiable

assumptions used in the analysis. If your project has source files with compilation
errors, these files are also listed.

VariableAccess

The report displays the global variable access in your source code. The report first
displays the number of global variables of each type. For information on the types, see
“Global Variables” (Polyspace Code Prover). For each global variable, the report
displays the following information:

e Variable name.

The entry for each variable is denoted by |.

* Type of the variable.

* Number of read and write operations on the variable.

* Details of read and write operations. For each read or write operation, the table
displays the following information:

* File and function containing the operation in the form
file name.function _name.

The entry for each read or write operation is denoted by | | . Write operations
are denoted by < and read operations by >.

* Line and column number of the operation.

1-307

1 Option Descriptions

This report captures the information available on the Variable Access pane in the
Polyspace user interface.

CallHierarchy
The report displays the call hierarchy in your source code. For each function call in
your source code, the report displays the following information:

» Level of call hierarchy, where the function is called.

Each level is denoted by |. If a function call appears in the table as | | | ->

file name.function _name, the function call occurs at the third level of the
hierarchy. Beginning from main or an entry point, there are three function calls
leading to the current call.

* File containing the function call.

In addition, the line and column is also displayed.
+ File containing the function definition.

In addition, the line and column where the function definition begins is also
displayed.

In addition, the report also displays uncalled functions.

This report captures the information available on the Call Hierarchy pane in the
Polyspace user interface.

SoftwareQualityObjectives
The report lists information useful to quality engineers and available on the Polyspace
Metrics interface, including:
* Information about whether the project satisfies quality objectives
+ Time taken in each phase of verification

* Metrics about the whole project. For each metric, the report lists the quality
threshold and whether the metric satisfies this threshold.

* Coding rule violations in the project. For each rule, the report lists the number of
violations justified and whether the justifications satisfy quality objectives.

* Definite as well as possible run-time errors in the project. For each type of run-
time error, the report lists the number of errors justified and whether the
justifications satisfy quality objectives.

1-308

Bug Finder and Code Prover report (- report-template)

The appendices contain further details of Polyspace configuration settings, code
metrics, coding rule violations, and run-time errors.

This template is available only if you generate a report from results downloaded from
the Polyspace Metrics web dashboard.

SoftwareQualityObjectives Summary

The report contains the same information as the SoftwareQualityObjectives
report. However, it does not have the supporting appendices with details of code
metrics, coding rule violations and run-time errors.

This template is available only if you generate a report from results downloaded from
the Polyspace Metrics web dashboard.

Dependencies

This option is available only if you select the Generate report check box.

Tips

The first chapter of the reports contain a summary of the relevant results. You can enter a
Pass/Fail status in that chapter for your project based on the summary. If you use the
template SoftwareQualityObjectives or SoftwareQualityObjectives Summary,
the status is automatically assigned based on your objectives and the verification results.
For more information on enforcing objectives using Polyspace Metrics, see “Compare
Metrics Against Software Quality Objectives”.

Command-Line Information

Parameter: -report-template

Value: Full path to template. rpt

Example: polyspace-bug-finder-nodesktop -sources file name -report-
template matlabroot\toolbox\polyspace\psrptgen\templates\bug finder
\BugFinder.rpt

See Also

Generate report|Output format (-report-output-format)

1-309

1 Option Descriptions

Topics
“Generate Reports”

1-310

Output format (- report-output-format)

Output format (-report-output-format)

Specify output format of generated report

Description

Specify output format of analysis report.

Set Option

User interface: In your project configuration, the option is on the Reporting node. See
“Dependencies” on page 1-312 for other options you must also enable.

Command line: Use the option -report-output-format. See “Command-Line
Information” on page 1-312.

Why Use This Option

Use this option to specify whether you want a report in PDF, HTML or another format.

Settings

Default: Word

HTML

Generate report in . html format
PDF

Generate report in . pdf format
Word

Generate report in . docx format.

1-311

1 Option Descriptions

1-312

Tips

If the table of contents or graphics in a .docx report appear outdated, select the content
of the report and refresh the document. Use keyboard shortcuts Ctrl+A to select the
content and F9 to refresh it.

Dependencies

This option is enabled only if you select the Generate report box.

Command-Line Information

Parameter: -report-output-format

Value: html | pdf | word

Default: word

Example: polyspace-bug-finder-nodesktop -sources file name -report-
output-format pdf

See Also

Generate report |Bug Finder and Code Prover report (-report-template)

Topics
“Specify Polyspace Analysis Options”
“Generate Reports”

Run Bug Finder or Code Prover analysis on a remote cluster (-batch)

Run Bug Finder or Code Prover analysis on a
remote cluster (-batch)

Enable batch remote analysis

Description

Enable batch remote analysis.

For batch remote analysis, you need:

* Polyspace and MATLAB Distributed Computing Server™ on the cluster
* MATLAB, Polyspace and Parallel Computing Toolbox™ on your local computer.

Set Option

User interface: In your project configuration, the option is on the Run Settings node.
You have separate options for a Bug Finder and a Code Prover analysis.

Command line: Use the option -batch. See “Command-Line Information” on page 1-
315.

Why Use This Option

Use this option if you want the analysis to run on a remote cluster instead of your local
desktop.

For instance, you can run remote analysis when:

* You want to shut down your local machine but not interrupt the analysis.
* You want to free execution time on your local machine.

* You want to transfer the analysis to a more powerful computer.

1-313

1 Option Descriptions

1-314

Settings

+|1 On

Run batch analysis on a remote computer. In this remote analysis mode, the analysis
is queued on a cluster after the compilation phase. Therefore, on your local computer,
after the analysis is queued:

» If you are running the analysis from the Polyspace user interface, you can close
the user interface.

* Ifyou are running the analysis from the command line, you can close the
command-line window.

You can manage the queue from the Polyspace Job Monitor. To use the Polyspace Job
Monitor:
* In the Polyspace user interface, select Tools > Open Job Monitor.

* On the DOS or UNIX® command line, use the polyspace-jobs-manager
command. For more information, see “Run Polyspace Analysis on Remote Clusters
Using Scripts”.

* On the MATLAB command line, use the polyspaceJobsManager function.

After the analysis, you might have to manually download the results from the cluster.
Off (default)

Do not run batch analysis on a remote computer.

Dependencies

If you use a third-party scheduler instead of the MATLAB Job Scheduler, add the
option -no-credentials-check. The credentials check performed in the product is
only compatible with the MATLAB Job Scheduler. In the Polyspace user interface, add
this option to the Other field.

Do not run a Code Prover analysis on a remote cluster if you run up to the
Verification Level of Source Compliance Checking. For both local and remote
analysis, the source compliance checking or compilation phase takes place on your
local computer. Therefore, if you are running only up to this phase, run on your local
computer.

Run Bug Finder or Code Prover analysis on a remote cluster (-batch)

Command-Line Information

To run a remote analysis from the command line, use with the - scheduler option.
Parameter: -batch

Value: -scheduler host name if you have not set the Job scheduler host name in
the Polyspace user interface

Default: Off

Example: polyspace-code-prover-nodesktop -batch -scheduler NodeHost
polyspace-code-prover-nodesktop -batch -scheduler MJSName@NodeHost
Example: polyspace-bug-finder-nodesktop -batch -scheduler NodeHost
polyspace-bug-finder-nodesktop -batch -scheduler MJSName@NodeHost

See Also

Upload results to Polyspace Metrics (-add-to-results-repository) | -
scheduler

Topics

“Specify Polyspace Analysis Options”

“Set Up Polyspace Analysis on Remote Server”
“Run Polyspace Analysis on Remote Clusters”

1-315

1 Option Descriptions

1-316

Upload results to Polyspace Metrics (-add-
to-results-repository)

Upload analysis results for viewing on Polyspace Metrics web dashboard

Description

Specify upload of analysis results to the Polyspace Metrics results repository, allowing
Web-based reporting of results and code metrics.

Set Option

User interface: In your project configuration, the option is on the Run Settings node.
You have separate options for a Bug Finder and a Code Prover analysis. See
“Dependencies” on page 1-317 for other options that you must also enable.

Command line: Use the option -add-to-results-repository. See “Command-Line
Information” on page 1-317.

Why Use This Option

Polyspace Metrics is a web dashboard that generates code quality metrics from your
analysis results. Using this dashboard, you can:

* Provide your management a high-level overview of your code quality.

* Compare your code quality against predefined standards.

* Establish a process where you review in detail only those results that fail to meet
standards.

* Track improvements or regression in code quality over time.

See “Generate Code Quality Metrics”.

Upload results to Polyspace Metrics (-add-to-results-repository)

Settings

+| On

Analysis results are stored in the Polyspace Metrics results repository. This allows you
to use a Web browser to view results and code metrics.

The results are not downloaded automatically to your desktop.

Off (default)
Analysis results are stored locally.

Dependencies

The option to upload to Polyspace Metrics is available only if you select Run Bug Finder
or Code Prover analysis on a remote cluster (-batch).

If you perform a local analysis on your desktop, you can later upload your results to
Polyspace Metrics. Right-click your results file and select Upload to Metrics.

Command-Line Information

Parameter: -add-to-results-repository

Default: Off

Example: polyspace-code-prover-nodesktop -batch -scheduler NodeHost -
add-to-results-repository -password passwordName

Example: polyspace-bug-finder-nodesktop -batch -scheduler NodeHost -
add-to-results-repository -password passwordName

The password is optional.

The upload uses the Polyspace Metrics server that you set up in the Polyspace user
interface. See Configure Client Side (Polyspace Metrics). If you want to explicitly specify
the Polyspace Metrics server during upload, use the option -polyspace-metrics-
server serverName:portNumber. For instance:

-add-to-results-repository -polyspace-metrics-server localhost:12427

1-317

1 Option Descriptions

See Also

Run Bug Finder or Code Prover analysis on a remote cluster (-batch)

Topics

“Set Up Polyspace Metrics”

“Upload Results to Polyspace Metrics”
“View Projects in Polyspace Metrics”

1-318

Use fast analysis mode for Bug Finder (- fast-analysis)

Use fast analysis mode for Bug Finder (-
fast-analysis)

Run analysis using faster local mode

Description

This option affects a Bug Finder analysis only.

Run analysis using faster local mode. The first run analyzes all files, but subsequent runs
analyze only the files that you edited since the previous analysis.

Fast analysis mode is a faster way to analyze code for localized defects and coding rules.

When you launch fast analysis, Bug Finder analyzes your code for a subset of defects and
coding rules.

Set Option

User interface: In your project configuration, the option is available on the Run
Settings node.

Command line: Use the option - fast-analysis. See “Command-Line Information” on
page 1-322.

Why Use This Option

If you use this option, you have to wait less for analysis results from your second analysis
onwards. During development, you can frequently run analysis in fast mode and quickly
check for new defects or coding rule violations.

Polyspace produces results quickly because the analysis is localized. When you rerun in

fast-analysis mode, Polyspace reanalyzes only those files that need to be reanalyzed,
regenerating results even more quickly. These situations trigger a reanalysis.

1-319

1 Option Descriptions

Situation What Is Reanalyzed

You modified a source file. Modified source file

You modified a header file. Source files that include the modified header
file (directly or indirectly)

You added or removed an analysis All files

option.

Previous fast-analysis results were not |All files
found.

For instance, you deleted the results
folder.

You upgraded to a later release of All files
Polyspace and ran the analysis.

Comments from the previous analysis are
retained and imported to the current analysis.

For example, consider a Polyspace project with three . ¢ files and you fix a bug in one of
the files. When you rerun the analysis, Polyspace reanalyzes only the one file that you
changed.

The results of fast analysis appear in a folder separate from the results of normal analysis.

=3 Bug_Finder_Example
& [Project Source Files
[Project Include Folders
=3 Module_1
-3 Module Source Files
-3 sources
=3 Configuration
[% Bug_Finder_Example
=3 Result
|§_| BF_Result [Completed]

|1| BF_Fast_Result [Completed]

1-320

Use fast analysis mode for Bug Finder (- fast-analysis)

Settings
Default: || Off
¥ On

Polyspace Bug Finder runs in fast-analysis mode. Polyspace analyzes code for only a
subset of defects and coding rules. If you have selected any defects or coding rules
that are not supported by fast-analysis, you code is not checked for those results.

Off

Polyspace Bug Finder runs in the normal mode. Analysis checks for all selected
defects, coding rules, and code metrics.

Tips

Comments Import

If you enter comments in your results, the comments are automatically imported to the
next analysis in fast mode.

To import the comments from fast mode results to results of a regular Bug Finder
analysis, do one of the following:

* Select Tools > Import Comments. Navigate to the sibling results folder
BF Fast Result and import comments from the fast mode results.

* When reviewing results of fast mode, enter the comments directly into your code. If
you run a regular analysis on this code, the comments are imported to your analysis
results.

For details on how to enter code comments, see “Annotate Code and Hide Known or
Acceptable Results”.

Fast Analysis Limitations

In fast analysis mode, you cannot perform these actions:

* You cannot create a new results folder for each run. Even if you choose to create a
new result folder, each new run overwrites the previous one.

1-321

1 Option Descriptions

* You cannot specify constraints using the option Constraint setup (-data-
range-specifications).

* You cannot run the analysis on a remote cluster.

Command-Line Information

Parameter: - fast-analysis
Default: Off
Example: polyspace-bug-finder-nodesktop -sources filename -fast-

analysis

See Also

“Defects”

Topics
“Results Found by Fast Analysis”

1-322

Command/script to apply after the end of the code verification (-post-analysis-command)

Command/script to apply after the end of
the code verification (-post-analysis-
command)

Specify command or script to be executed after analysis

Description

Specify a command or script to be executed after the analysis.

Set Option

User interface: In your project configuration, the option is on the Advanced Settings
node.

Command line: Use the option -post-analysis-command. See “Command-Line
Information” on page 1-325.

Why Use This Option

Create scripts for tasks that you want performed after the Polyspace analysis.

For instance, you want to be notified by email that the Polyspace analysis is over. Create a
script that sends an email and use this option to execute the script after the Polyspace
analysis.

Settings

No Default

Enter full path to the command or script, or click o navigate to the location of the
command or script. After the analysis, this script is executed.

1-323

1 Option Descriptions

1-324

For a Perl script, in Windows, specify the full path to the Perl executable followed by the
full path to the script. For example, to specify a Perl script send email.pl that sends an
email once the analysis is over, enter matlabroot\sys\perl\win32\bin\perl.exe
<absolute path>\send email.pl. Here, matlabroot is the location of the current
MATLAB installation, such as C:\Program Files\MATLAB\R2015b\, and

<absolute path> is the location of the Perl script.

Tips

Running post analysis commands on the server

If you perform verification on a remote server, after verification, the software executes
your command on the server, not on the client desktop. If your command executes a
script, the script must be present on the server.

For instance, if you specify the command, /local/utils/send mail.sh, the Shell
script send_email.sh must be present on the server in /local/utils/. The software
does not copy the script send _email. sh from your desktop to the server before
executing the command. If the script is not present on the server, you encounter an error.
Sometimes, there are multiple servers that the MATLAB Job Scheduler can run the
verification on. Place the script on each of the servers because you do not control which
server eventually runs your verification.

Running post analysis commands in the Polyspace user
interface

To test the use of this option, run the following Perl script from a folder containing a
Polyspace project (.psprj file). The script parses the latest Polyspace log file in the
folder Module 1\CP_Result and writes the current project name and date to a file
report.txt. The file is saved in Module 1\CP_Result.

Command/script to apply after the end of the code verification (-post-analysis-command)

foreach my $file (" ls Module 1\\CP_Result\\Polyspace *.log) {
open (FH, $file);

while ($line = <FH>) {
if ($line =~ m/Ending at: (.*)/) {
$date=$1;

}
if ($line =~ m/-prog=(.*)/) {
$project=%1;

}
}

my $filename = 'report.txt';
open(my $fh, '>', $filename) or die "Could not open file '$filename' $!";

print $fh "date=$date\n";
print $fh "project=$project\n";

close $fh;

In Linux, you can specify the Perl script for this option.

In Windows, instead of specifying the Perl script directly, specify a . bat file that invokes
Perl and runs this script. For instance, the .bat file can contain the following line
(assuming that the .bat file and . pl file are in the Polyspace project folder). Depending
on your MATLAB installation, change the path to perl.exe appropriately.

|"C:\Program Files\MATLAB\R2018b\sys\perl\win32\bin\perl.exe" command.pl

Run Code Prover. Check that the folder Module 1\CP Result contains the file
report.txt with the project name and date.

Command-Line Information

Parameter: -post-analysis-command

Value: Path to executable file or command in quotes

No Default

Example in Linux: polyspace-bug-finder-nodesktop -sources file name -
post-analysis-command “pwd /send email.pl

1-325

1 Option Descriptions

Example in Windows: polyspace-bug-finder-nodesktop -sources file name
-post-analysis-command "C:\Program Files\MATLAB\R2015b\sys\perl
\win32\bin\perl.exe" "C:\My Scripts\send email"

See Also

Command/script to apply to preprocessed files (-post-preprocessing-
command)

Topics
“Specify Polyspace Analysis Options”

1-326

Automatic Orange Tester (-automatic-orange-tester)

Automatic Orange Tester (-automatic-
orange-tester)

Specify that Automatic Orange Tester must be executed after verification

Description

This option affects a Code Prover analysis only.

Specify that the Automatic Orange Tester must be executed at the end of the verification.

Set Option

User interface: In your project configuration, the option is on the Advanced Settings
node. See “Dependency” on page 1-328 for other options you must also enable.

Command line: Use the option -automatic-orange-tester. See “Command-Line
Information” on page 1-328.

Why Use This Option

The Automatic Orange Tester runs dynamic tests on your code. The dynamic tests help
you determine if an orange check represents a real run-time error or an imprecision of
Polyspace analysis. For a tutorial, see “Test Orange Checks for Run-Time Errors”
(Polyspace Code Prover).

To run the Automatic Orange Tester after verification, you must select this option before
verification. During verification, Polyspace generates additional source code to test each
orange check for errors. When you run the Automatic Orange Tester later, the software
uses this instrumented code for testing.

1-327

1 Option Descriptions

Settings

+| On

After verification, when you run the Automatic Orange Tester, Polyspace creates tests
for unproven code and runs them.

Off (default)

You cannot launch the Automatic Orange Tester after verification.

Dependency

This option is available only if you set Source code language (-lang) to C or C-CPP.

Tips
* To launch the Automatic Orange Tester, after verification, open your results. Select

Tools > Automatic Orange Tester.
* When using the automatic orange tester, you cannot:

* Select Division round down under Target & Compiler.

* Select the options c18, tms320c3c. x86 64 or sharc21x61 for Target &
Compiler > Target processor type.

* Specify the type char as 16-bit or short as 8-bit using the option mcpu. ..
(Advanced) for Target & Compiler > Target processor type. For the same
option, you must specify the type pointer as 32-bit.

* Specify global asserts in the code, having the form Pst Global Assert(A,B).In
global assert mode, you cannot use Constraint setup under Inputs & Stubbing.

* Select these options related to floating-point verification: Subnormal detection
mode and Consider non finite floats.

Command-Line Information

Parameter: -automatic-orange-tester
Default: Off

1-328

Automatic Orange Tester (-automatic-orange-tester)

Example: polyspace-code-prover-nodesktop -sources file name -lang c -
automatic-orange-tester

See Also

Number of automatic tests (-automatic-orange-tester-tests-number) |
Maximum loop iterations (-automatic-orange-tester-loop-max-
iteration) | Maximum test time (-automatic-orange-tester-timeout)

Topics

“Test Orange Checks for Run-Time Errors” (Polyspace Code Prover)
“Limitations of Automatic Orange Tester” (Polyspace Code Prover)

1-329

1 Option Descriptions

1-330

Maximum loop iterations (-automatic-
orange-tester-loop-max-iteration)

Specify number of loop iterations after which Automatic Orange Tester considers infinite
loop

Description

This option affects a Code Prover analysis only.
Specify number of loop iterations after which the Automatic Orange Tester considers the

loop to be infinite. Specifying a large number decreases the possibility of identifying an
infinite loop incorrectly, but takes more time to complete.

Set Option

User interface: In your project configuration, the option is on the Advanced Settings
node. See “Dependencies” on page 1-330 for other options you must also enable.

Command line: Use the option -automatic-orange-tester-loop-max-iteration.
See “Command-Line Information” on page 1-331.

Settings
Default: 1000

Enter number of loop iterations. The maximum value that the software supports is 1000.

Dependencies

This option is enabled only if you set the following options:

* Set Source code language (-lang) toC.

Maximum loop iterations (-automatic-orange-tester-loop-max-iteration)

* Turn on Automatic Orange Tester (-automatic-orange-tester).

Command-Line Information

Parameter: -automatic-orange-tester-loop-max-iteration

Value: positive integer

Default: 1000

Example: polyspace-code-prover-nodesktop -sources file name -lang c -
automatic-orange-tester -automatic-orange-tester-loop-max-iteration
500

See Also

Automatic Orange Tester (-automatic-orange-tester) |Number of
automatic tests (-automatic-orange-tester-tests-number) | Maximum test
time (-automatic-orange-tester-timeout)

Topics
“Test Orange Checks for Run-Time Errors” (Polyspace Code Prover)

1-331

1 Option Descriptions

1-332

Number of automatic tests (-automatic-
orange-tester-tests-number)

Specify number of tests that Automatic Orange Tester must run

Description

This option affects a Code Prover analysis only.

Specify number of tests that you want the Automatic Orange Tester to run. The more the
number of tests, the greater the possibility of finding a run-time error, but longer it takes
to complete.

Set Option

User interface: In your project configuration, the option is on the Advanced Settings
node. See “Dependencies” on page 1-332 for other options you must also enable.

Command line: Use the option -automatic-orange-tester-tests-number. See
“Command-Line Information” on page 1-333.

Settings
Default: 500

Enter number of tests up to a maximum of 100,000.

Dependencies

This option is enabled only if you set the following options:

* Set Source code language (-lang) toC.
* Turn on Automatic Orange Tester (-automatic-orange-tester).

Number of automatic tests (-automatic-orange-tester-tests-number)

Command-Line Information

Parameter: -automatic-orange-tester-tests-number

Value: positive integer

Default: 500

Example: polyspace-code-prover-nodesktop -sources file name -lang c -
automatic-orange-tester -automatic-orange-tester-tests-number 500

See Also

Automatic Orange Tester (-automatic-orange-tester) |Maximum loop
iterations (-automatic-orange-tester-loop-max-iteration) | Maximum
test time (-automatic-orange-tester-timeout)

Topics
“Test Orange Checks for Run-Time Errors” (Polyspace Code Prover)

1-333

1 Option Descriptions

1-334

Maximum test time (-automatic-orange-
tester-timeout)

Specify time in seconds allowed for a single test in Automatic Orange Tester

Description

This option affects a Code Prover analysis only.
Specify time in seconds allowed for a single test. After this time is over, the Automatic

Orange Tester proceeds to the next test. Increasing this time reduces number of tests that
do not complete, but increases total verification time.

Set Option

User interface: In your project configuration, the option is on the Advanced Settings
node. See “Dependencies” on page 1-334 for other options you must also enable.

Command line: Use the option -automatic-orange-tester-timeout. See
“Command-Line Information” on page 1-335.

Settings

Default: 5

Enter time in seconds. The maximum value that the software supports is 60.

Dependencies

This option is enabled only if you set the following options:

* Set Source code language (-lang) toC.
* Turn on Automatic Orange Tester (-automatic-orange-tester).

Maximum test time (-automatic-orange-tester-timeout)

Command-Line Information

Parameter: -automatic-orange-tester-timeout

Value: time

Default: 5

Example: polyspace-code-prover-nodesktop -sources file name -lang c -
automatic-orange-tester -automatic-orange-tester-test-timeout 10

See Also

Automatic Orange Tester (-automatic-orange-tester) |Number of
automatic tests (-automatic-orange-tester-tests-number) | Maximum loop
iterations (-automatic-orange-tester-loop-max-iteration)

Topics
“Test Orange Checks for Run-Time Errors” (Polyspace Code Prover)

1-335

1 Option Descriptions

1-336

Other

Specify additional flags for analysis

Description

Enter command-line-style flags such as -max-processes.

Set Option

In your project configuration, the option is on the Advanced Settings node. You can
enter multiple options in this field. If you enter the same option multiple times with
different arguments, the analysis uses your last argument.

Why Use This Option

Use this option to add nonofficial or command-line only options to the analyzer.

Tip

Nonofficial options: In rare circumstances, to work around very specific issues,
MathWorks Technical Support might provide you some undocumented options. If you are
running verification from the user interface, you use the Other field in the Configuration
pane to enter the options. Sometimes, the options and their arguments have to be
preceded by extra flags. When providing you the option, Technical Support will let you
know if the extra flags are required.

Possible Flags: -extra-flags | -c-extra-flags | -cpp-extra-flags | -
cfe-extra-flags | -il-extra-flags

Example: polyspace-bug-finder-nodesktop -extra-flags -option-name -
extra-flags option param

Oops! This page does not exist.

Oops! This page does not exist.

You are looking for a nonexistent resource.

Check Other Locations

You may be able to find what you need here:

» Full Bug Finder documentation
o Full Code Prover documentation

1-337

Polyspace Command-Line Options

2 Polyspace Command-Line Options

2-2

-asm-begin -asm-end

Exclude compiler-specific asm functions from analysis

Syntax

-asm-begin "markl[,mark2,...]" -asm-end "markl[,mark2,...]"

Description

-asm-begin "markl[,mark2,...]" -asm-end "markl[,mark2,...]" excludes
compiler-specific assembly language source code functions from the analysis. You must
use these two options together.

Polyspace recognizes most inline assemblers by default. Use the option only if compilation
errors occur due to introduction of assembly code.

Mark the offending code block by two #pragma directives, one at the beginning of the
assembly code and one at the end. In the command usage, give these marks in the same
order for -asm-begin as they are for -asm-end.

If you are running an analysis from the user interface, on the Configuration pane, you
can enter this option in the Other field. See Other.

Examples

A block of code is delimited by #pragma startl and #pragma endl. These names must
be in the same order for their respective options. Either:

-asm-begin "startl" -asm-end "endl"
or
-asm-begin "markl,...markN,startl" -asm-end "markl,...markN,endl"

The following example marks two functions for exclusion, foo 1 and foo 2.

-asm-begin -asm-end

Code:

#pragma asm _begin foo
int foo(void) { /* asm code to be ignored by Polyspace */ }
#pragma asm_end foo

#pragma asm _begin bar
void bar(void) { /* asm code to be ignored by Polyspace */ }
#pragma asm_end bar

Polyspace Command:

polyspace-bug-finder-nodesktop -lang c -asm-begin "asm_begin foo,asm begin bar"
-asm-end "asm_end foo,asm end bar"

asm_begin foo and asm_begin_ bar mark the beginning of the assembly source code
sections to be ignored. asm_end foo and asm_end bar mark the end of those
respective sections.

See Also
polyspace-bug-finder-nodesktop

Topics
“Run Polyspace Analysis from Command Line”

2-3

2 Polyspace Command-Line Options

2-4

-author

Specify project author

Syntax

-author "value"

Description

-author "value" assigns an author to the Polyspace project. The name appears as the
project owner in Polyspace Metrics and on generated reports.

The default value is the user name of the current user, given by the DOS or UNIX
command whoami.

In the Polyspace user interface, select 3 to specify the Project name, Version, and
Author parameters in the Polyspace Project - Properties dialog box.

Examples

Assign a project author to your Polyspace Project.

polyspace-bug-finder-nodesktop -author "John Smith"

See Also
-date | -prog | polyspace-bug-finder-nodesktop

Topics
“Run Polyspace Analysis from Command Line”

-date

-date

Specify date of analysis

Syntax

-date "date"

Description

-date "date" specifies the date stamp for the analysis in the format dd/mm/yyyy. By
default the value is the date the analysis starts.

Examples

Assign a date to your Polyspace Project.

polyspace-bug-finder-nodesktop -date "15/03/2012"

See Also
-author | -prog | polyspace-bug-finder-nodesktop

Topics
“Run Polyspace Analysis from Command Line”

2-5

2 Polyspace Command-Line Options

2-6

-function-behavior-specifications

Map imprecisely analyzed function to standard function for precise analysis

Syntax

-function-behavior-specifications file path

Description

-function-behavior-specifications file path specifies the path to an XML file.
You can use this XML file to map some of your functions to corresponding standard
functions that Polyspace recognizes. If you run verification from the command line,

file path is the absolute path or path relative to the folder from which you run the
command. If you run verification from the user interface, file path is the absolute path.

If you are running an analysis from the user interface, on the Configuration pane, you
can enter this option in the Other field. See Other.

Using Option for Precision Improvement
This section applies only to a Code Prover analysis.

Use this option to reduce the number of orange checks from imprecise analysis of your
function. Sometimes, the verification does not analyze certain kinds of functions precisely
because of inherent limitations in static verification. In those cases, if you find a standard
function that is a close analog of your function, use this mapping. Though your function
itself is not analyzed, the analysis is more precise at the locations where you call the
function. For instance, if the verification cannot analyze your function cos32 precisely
and considers full range for its return value, map it to the cos function for a return value
in [-1,1].

The verification ignores the body of your function. However, the verification emulates
your function behavior in the following ways:

* The verification assumes the same return values for your function as the standard
function.

-function-behavior-specifications

For instance, if you map your function cos32 to the standard function cos, the
verification assumes that cos32 returns values in [-1,1].

The verification checks for the same issues as it checks with the standard function.
For instance, if you map your function acos32 to the standard function acos,

the Invalid use of standard library routine check determines if the
argument of acos32 isin [-1,1].

A sample file function-behavior-specifications-sample.xml shows the
functions that you can map to. The file is in matlabroot\polyspace\verifier\cxx\
where matlabroot is the MATLAB installation folder. The functions that you can map to
include:

Standard library functions from math.h.
Memory management functions from string.h.
___ps_meminit: A function specific to Polyspace that initializes a memory area.

Sometimes, the verification does not recognize your memory initialization function and
produces an orange Non-initialized local variable check on a variable that
you initialized through this function. If you know that your memory initialization
function initializes the variable through its address, map your function to
__ps_meminit. The check turns green.

~_ps_lookup table clip: A function specific to Polyspace that returns a value
within the range of the input array.

Sometimes, the verification considers full range for the return values of functions that
look up values in large arrays (look-up table functions). If you know that the return
value of a look-up table function must be within the range of values in its input array,
map the function to _ps lookup table clip.

In code generated from models, the verification by default makes this assumption for
look-up table functions. To identify if the look-up table uses linear interpolation and no
extrapolation, the verification uses the function names. See “Stub lookup tables”
(Polyspace Code Prover). Use the mapping only for handwritten functions, for
instance, functions in a C/C++ S-Function block. The names of those functions do not
follow specific conventions. You must explicitly specify them.

Using Option for Concurrency Detection

This section applies both to a Bug Finder and a Code Prover analysis.

2-7

2 Polyspace Command-Line Options

2-8

Use this option for automatic detection of thread-creation functions and functions that
begin and end critical sections. Polyspace supports automatic detection for certain
families of multitasking primitives only. Extend the support using this option.

If your thread-creation function, for instance, does not belong to one of the supported
families, map your function to a supported concurrency primitive.

To find which multitasking primitives can be automatically detected, see “Auto-Detection
of Thread Creation and Critical Section in Polyspace”.

Examples

Specify Mapping to Standard Function

You can adapt the sample mapping XML file provided with your Polyspace installation and
map your function to a standard function.

Suppose the default verification produces an orange User assertion check on this
code:

double x = acos32(1.0) ;
assert(x <= 2.0);

Suppose you know that the function acos32 behaves like the function acos and the
return value is 0. You expect the check on the assert statement to be green. However,
the verification considers that acos32 returns any value in the range of type double
because acos32 is not precisely analyzed. The check is orange. To map your function
acos32 to acos:

1 Copy the file function-behavior-specifications-sample.xml from
matlabroot\polyspace\verifier\cxx\ to another location, for instance, "C:
\Polyspace projects\Common\Config files". Change the write permissions
on the file.

2 To map your function to a standard function, modify the contents of the XML file. To
map your function acos32 to the standard library function acos, change the
following code:

<function name="my lib cos" std="acos"> </function>

To:

-function-behavior-specifications

<function name="acos32" std="acos"> </function>
3 Specify the location of the file for verification.
polyspace-code-prover-nodesktop -function-behavior-specifications

"C:\Polyspace projects\Common\Config files
\function-behavior-specifications-sample.xml"

Specify Mapping to Standard Function with Argument
Remapping

Sometimes, the arguments of your function do not map one-to-one with arguments of the
standard function. In those cases, remap your function argument to the standard function
argument. For instance:

* ps_lookup table clip:

This function specific to Polyspace takes only a look-up table array as argument and
returns values within the range of the look-up table. Your look-up table function might
have additional arguments besides the look-up table array itself. In this case, use
argument remapping to specify which argument of your function is the look-up table
array.

For instance, suppose a function my lookup table has the following declaration:

double my lookup table(double u0®, const real T *table,
const double *bp0);

The second argument of your function my lookup table is the look-up table array.
In the file function-behavior-specifications-sample.xml, add this code:

<function name="my lookup_ table" std="_ps lookup table clip">
<mapping std arg="1" arg="2"></mapping>
</function>

When you call the function:
res = my lookup table(u, tablel®, bp);
The verification interprets the call as:

res = ps_lookup table clip(tablel0);

2-9

2 Polyspace Command-Line Options

2-10

The verification assumes that the value of res lies within the range of values in
tablelo.

__ps_meminit:

This function specific to Polyspace takes a memory address as the first argument and a
number of bytes as the second argument. The function assumes that the bytes in
memory starting from the memory address are initialized with a valid value. Your
memory initialization function might have additional arguments. In this case, use

argument remapping to specify which argument of your function is the starting
address and which argument is the number of bytes.

For instance, suppose a function my meminit has the following declaration:

void my meminit(enum InitKind k, void* dest, int is aligned,
unsigned int size);

The second argument of your function is the starting address and the fourth argument
is the number of bytes. In the file function-behavior-specifications-
sample.xml, add this code:

<function name="my meminit" std="_ps meminit">
<mapping std arg="1" arg="2"></mapping>
<mapping std arg="2" arg="4"></mapping>
</function>
When you call the function:
my meminit (INIT START BY END, &buffer, 0, sizeof(buffer));
The verification interprets the call as:

__ps_meminit(&buffer, sizeof(buffer));

The verification assumes that sizeof (buffer) number of bytes starting from
&buffer are initialized.

memset: Variable number of arguments.

If your function has variable number of arguments, you cannot map it directly to a
standard function without explicit argument remapping. For instance, say your
function is declared as:

void* my memset(void*, int, size t, ...)

To map the function to the memset function, use the following mapping:

-function-behavior-specifications

<function name="my memset" std="memset">
<mapping std _arg="1" arg="1"></mapping>
<mapping std _arg="2" arg="2"></mapping>
<mapping std _arg="3" arg="3"></mapping>
</function>

Effect of Mapping on Precision

These examples show the result of mapping certain functions to standard functions:

my acos — acos:

If you use the mapping, the User assertion check turns green. The verification
assumes that the return value of my acos is 0.

* Before mapping:

double x = my _acos(1.0);
assert(x <= 2.0);
* Mapping specification:
<function name="my acos" std="acos">
</function>
* After mapping:
double x = my _acos(1.0);
assert(x <= 2.0);
my sqrt - sqrt:
If you use the mapping, the Invalid use of standard library routine check

turns red. Otherwise, the verification does not check whether the argument of
my _sqrt is nonnegative.

* Before mapping:

res = my sqrt(-1.0);
* Mapping specification:

<function name="my sqrt" std="sqrt">
</function>

» After mapping:

res = my sqrt(-1.0);

2-11

2 Polyspace Command-Line Options

2-12

my lookup table (argument 2) - ps lookup table clip (argument 1):

If you use the mapping, the User assertion check turns green. The verification
assumes that the return value of my lookup table is within the range of the look-up
table array table.

Before mapping:
double table[3] = {1.1, 2.2, 3.3}

double res = my lookup table(u, table, bp);
assert(res >= 1.1 && res <= 3.3);

Mapping specification:

<function name="my lookup table" std=" ps lookup table clip">
<mapping std_arg="1" arg="2"></mapping>
</function>

After mapping:

double table[3] = {1.1, 2.2, 3.3}

res real = my lookup table(u, table9, bp);
assert(res _real >= 1.1 && res_real <= 3.3);

my_meminit - ps meminit:

If you use the mapping, the Non-initialized local variable check turns green.
The verification assumes that all fields of the structure x are initialized with valid
values.

Before mapping:

struct X {
int fieldl ;
int field2 ;
b

struct X x;
my meminit(&x, sizeof(struct X));
return x.fieldl;

-function-behavior-specifications

Mapping specification:

<function name="my meminit" std="_ps meminit">
<mapping std _arg="1" arg="1"></mapping>
<mapping std_arg="2" arg="2"></mapping>
</function>

After mapping:

struct X {
int fieldl ;
int field2 ;
b

struct X x;
my meminit(&x, sizeof(struct X));
return x.fieldl;

my meminit-—_ ps meminit:

If you use the mapping, the Non-initialized local variable check turns red.
The verification assumes that only the field field1l of the structure x is initialized
with valid values.

Before mapping:

struct X {
int fieldl ;
int field2 ;
};

struct X x;
my meminit(&x, sizeof(int));
return x.field2;

Mapping specification:

<function name="my meminit" std="_ps meminit">
</function>

After mapping:

struct X {

int fieldl ;
int field2 ;

2-13

2 Polyspace Command-Line Options

2-14

+

struct X x;
my meminit(&x, sizeof(int));
return x.field2;

Effect of Mapping on Concurrency Detection

In this example, the Polyspace support for automatic concurrency detection is extended
by mapping unsupported functions to the supported Pthreads functions.

* Thread creation function: createTask — pthread create

» Function that begins critical section: takeLock —» pthread mutex lock
» Function that ends critical section: releaselLock — pthread mutex unlock

If you use the mapping, a Bug Finder analysis can determine the multitasking model used
in your code and find possible race conditions.

* Before mapping:
The analysis does not detect the data race on var2.
typedef void* (*FUNT) (void*);

extern int takelLock(int* t);

extern int releaselLock(int* t);

// First argument is the function, second the id
extern int createTask(FUNT,int*,int*,void*);

int t idl,t id2;
int lock;

int varl;
int var2;

void* taskl(void* a) {
takeLock(&lock);
varl++;
var2++;
releaselLock(&lock);
return 0;

-function-behavior-specifications

void* task2(void* a) {
takeLock(&lock);
varl++;
releaselLock(&lock);
var2++;
return 0;

}

void main() {
createTask(taskl,&t id1,0,0);
createTask(task2,&t id2,0,0);
}

Mapping specification:

Based on the number and type of parameters of the function createTask, it is
convenient to map createTask to the thread creation function pthread create.
The other available alternatives, createThread or 0STaskCreate, have different
argument types.

Even when mapping to pthread create, argument remapping is required, because
the arguments do not correspond exactly. The thread start routine is the third
argument of pthread create but the first argument of createTask.

<function name="createTask" std="pthread create" >
<mapping std arg="1" arg="2"></mapping>
<mapping std arg="3" arg="1"></mapping>
<mapping std arg="2" arg="3"></mapping>
<mapping std arg="4" arg="4"></mapping>
</function>
<function name="takeLock" std="pthread mutex lock" >
</function>
<function name="releaselLock" std="pthread mutex unlock" >
</function>

For the list of supported functions that you can map to, see the sample mapping file
function-behavior-specifications-sample.xml in matlabroot\polyspace
\verifier\cxx\. matlabroot is the MATLAB installation folder, such as C:
\Program Files\MATLAB\R2017b. See also “Auto-Detection of Thread Creation and
Critical Section in Polyspace”.

After mapping:

The analysis detects the data race on var2.

2-15

2 Polyspace Command-Line Options

typedef void* (*FUNT) (void*);

extern int takeLock(int* t);

extern int releaselLock(int* t);

// First argument is the function, second the id
extern int createTask(FUNT,int*,int*,void*);

int t idl,t id2;
int lock;

int varl;
int var2;

void* taskl(void* a) {
takeLock(&lock);
varl++;
var2++;
releaselLock(&lock);
return 0;

}

void* task2(void* a) {
takeLock(&lock);
varl++;
releaselLock(&lock);
var2++;
return 0;

}

void main() {
createTask(taskl,&t id1,0,0);
createTask(task2,&t id2,0,0);

See Also
“Stub lookup tables” (Polyspace Code Prover) | polyspace-bug-finder-nodesktop

Topics

“Reduce Orange Checks” (Polyspace Code Prover)
“Run Polyspace Analysis from Command Line”

2-16

-function-behavior-specifications

Introduced in R2016b

2-17

2 Polyspace Command-Line Options

2-18

-generate-launching-script-for

Extract information from project file

Syntax

-generate-launching-script-for PRJFILE

Description

-generate-launching-script-for PRJFILE extracts information from the project
file PRJFILE so that you can run an analysis from the command line. A folder is created
containing the following files:

* source_command.txt — List of source files for the -sources-1ist-file option.

* options command.txt — List of the analysis options for the -options-file
option.

* temporal exclusions.txt — List of temporal exclusions, generated only if you
specify the Temporally exclusive tasks (-temporal-exclusions-file)
option.

* .polyspace conf.psprj — A copy of the project file Polyspace used to generate the
scripting files.

* TlaunchingCommand. sh (UNIX) or launchingCommand.bat (DOS) — shell script
that calls the correct commands. The script also calls any options that cannot be given
to the -options-file command, such as -batch or -add-to-results-
repository. You can give this file additional analysis options as parameters.

Note The script that Polyspace generates runs the same analysis that Polyspace runs
from the user interface. If your project runs in the Polyspace user interface, the script will
run from the command line.

-generate-launching-script-for

Examples

Extract information to run myproject from the command line. Use this option with the
desktop binary polyspace.

polyspace -generate-launching-script-for myproject.psprj -bug-finder

See Also

Topics
“Create Command-Line Script from Project File”
“Run Polyspace Analysis from Command Line”

2-19

2 Polyspace Command-Line Options

-h[elpl

Display list of possible options

Syntax

-h

-help
Description

-h and -help display the list of possible options in the shell window and the argument
syntax.

Examples

Display the command-line help.

polyspace-bug-finder-nodesktop -h
polyspace-bug-finder-nodesktop -help

See Also
polyspace-bug-finder-nodesktop

Topics
“Run Polyspace Analysis from Command Line”

2-20

Specify include folder for compilation

Syntax

-I folder

Description

-I folder specifies a folder that contains include files required for compiling your
sources. You can specify only one folder for each instance of - I. However, you can specify
this option multiple times.

The analysis looks for include files relative to the folder paths that you specify. For
instance, if your code contains the preprocessor directive #include<. ./mylib.h> and
you include the folder:

C:\My Project\MySourceFiles\Includes

the folder C:\My Project\MySourceFiles must contain a file mylib.h.

The analysis automatically includes the ./sources folder (if it exists) after the include
folders that you specify.

Examples

Include two folders with the analysis.
polyspace-bug-finder-nodesktop -I /coml/inc -I /coml/sys/inc
Because . /sources is included automatically, this Polyspace command is equivalent to:

polyspace-bug-finder-nodesktop -I /coml/inc -I /coml/sys/inc
-I ./sources

2-21

2 Polyspace Command-Line Options

See Also
polyspace-bug-finder-nodesktop

Topics
“Run Polyspace Analysis from Command Line”

2-22

-import-comments

-import-comments

Import comments and justifications from previous analysis

Syntax

-import-comments resultsFolder

Description

-import-comments resultsFolder imports the comments and justifications from a
previous analysis, as specified by the results folder.

You can import comments from the same type of results only. For instance:

* You cannot import comments from a results of a Bug Finder checker to a Code Prover
run-time check. Even when the checker names sound similar, the underlying semantics
of Bug Finder and Code Prover can be different. The only exception is checkers for
coding rules. You can import comments between Bug Finder and Code Prover for
coding rule violations.

* You cannot import comments from results of a file-by-file verification in Code Prover to
results of a regular Code Prover verification.

If you are running an analysis from the user interface, on the Configuration pane, you
can enter this option in the Other field. See Other.

Examples

Increment your project’s version number (-version) and import comments from the
previous results.

polyspace-bug-finder-nodesktop -version 1.3
-import-comments C:\Results\myProj\1.2

2-23

2 Polyspace Command-Line Options

See Also

-version | polyspace-bug-finder-nodesktop

Topics
“Import Comments from Previous Polyspace Analysis”

2-24

-no-assumption-on-absolute-addresses

-no-assumption-on-absolute-addresses

Remove assumption that absolute address usage is valid

Syntax

-no-assumption-on-absolute-addresses

Description

This option affects Code Prover analysis only.

-no-assumption-on-absolute-addresses removes the default assumption that
absolute addresses used in your code are valid. If you use this option, the verification
produces an orange Absolute address usage check when you assign an absolute
address to a pointer. Otherwise, the check is green by default.

The type of the pointer to which you assign the address determines the initial value
stored in the address. For instance, if you assign the address to an int* pointer, following
this check, the verification assumes that the memory zone that the address points to is
initialized with an int value. The value can be anything allowed for the data type int.

If you are running an analysis from the user interface, on the Configuration pane, you
can enter this option in the Other field. See Other.

Examples

The use of option -no-assumption-on-absolute-addresses can increase the
number of orange checks in your code. For instance, the following table shows an
additional orange check with the option enabled.

2-25

2 Polyspace Command-Line Options

2-26

Absolute Address Usage Green

Absolute Address Usage Orange

void main() {
int *p = (int *)0x32;
int x;
X=*p;

}

In this example, the software produces:

void main() {
int *p = (int *)0x32;
int x;
X=*p;

}

In this example, the software produces:

* A green Absolute address usage check|* An orange Absolute address usage
when the address 0x32 is assigned to a check when the address 0x32 is

pointer p. assigned to a pointer p.

* A green Illegally dereferenced * A green Illegally dereferenced
pointer check when the pointer p is pointer check when the pointer p is
read. read.

x potentially has all values allowed for
an int variable.

x potentially has all values allowed for
an int variable.

For best use of the Absolute address usage check, leave this check green by default
during initial stages of development. During integration stage, use the option -no-
assumption-on-absolute-addresses and detect all uses of absolute memory
addresses. Browse through them and make sure that the addresses are valid.

See Also

polyspace-code-prover-nodesktop

Topics
“Run Polyspace Analysis from Command Line” (Polyspace Code Prover)

Introduced in R2016a

-MaX-processes

-MaXx-processes

Specify maximum number of processors for analysis

Syntax

-max-processes num

Description

-max-processes num specifies the maximum number of processes that you want the
analysis to use. On a multicore system, the software parallelizes the analysis and creates
the specified number of processes to speed up the analysis. The valid range of num is 1 to
128.

Unless you specify this option, the Bug Finder analysis uses the maximum number of
available processes. Use this option to restrict the number of processes used.

To use this option effectively, determine the number of processors available for use. If the
number of processes you create is greater than the number of processors available, the
analysis does not benefit from the parallelization. Check the system information in your
operating system. When you start a verification, a message states the number of logical
processors detected on your system.

If you are running an analysis from the user interface, on the Configuration pane, you
can enter this option in the Other field. See Other.

Examples

Disable parallel processing during the analysis.

polyspace-bug-finder-nodesktop -max-processes 1

2-27

2 Polyspace Command-Line Options

Tips

You must have at least 4 GB of RAM per processor for analysis. For instance, if your
machine has 16 GB of RAM, do not use this option to specify more than four processes.

See Also
polyspace-bug-finder-nodesktop

Topics
“Run Polyspace Analysis from Command Line”

2-28

-non-preemptable-tasks

-non-preemptable-tasks

Specify functions that represent nonpreemptable tasks

Syntax

-non-preemptable-tasks functionll[, function2[,...]]

Description

This option affects a Bug Finder analysis only.

-non-preemptable-tasks functionll[, function2l[,...]] specifies functions that
represent nonpreemptable tasks.

The functions cannot be interrupted by other noncyclic Tasks on page 1-119 and cyclic
tasks on page 1-121 but can be interrupted by interrupts on page 1-124, preemptable or
nonpreemptable.

To specify a function as a nonpreemptable cyclic task, you must first specify the following
options:

* Configure multitasking manually

* Tasks (-entry-points) or Cyclic tasks (-cyclic-tasks): Specify the
function name.

The functions that you specify must have the prototype:
void function _name(void);

If you are running an analysis from the user interface, on the Configuration pane, you
can enter this option in the Other field. See Other.

See Also

-preemptable-interrupts | Cyclic tasks (-cyclic-tasks) | Interrupts (-
interrupts) | Tasks (-entry-points) |Critical section details (-

2-29

2 Polyspace Command-Line Options

critical-section-begin -critical-section-end) | Temporally exclusive
tasks (-temporal-exclusions-file) | polyspace-bug-finder-nodesktop

Topics

“Specify Polyspace Analysis Options”

“Analyze Multitasking Programs in Polyspace”
“Configuring Polyspace Multitasking Analysis Manually”
“Protections for Shared Variables in Multitasking Code”

Introduced in R2016b

2-30

-options-file

-options-file

Run Polyspace using list of options

Syntax

-options-file file

Description

-options-file file specifies a file which lists your analysis options. The file must be
a text file with each option on a separate line. Use # to add comments to this file.

Examples

1

Create an options file called listofoptions. txt with your options. For example:

#These are the options for MyBugFinderProject
-lang c

-prog MyBugFinderProject

-author jsmith

-sources "mymain.c,funAlgebra.c, funGeometry.c"
-target x86 64

-compiler generic

-dos

-misra2 required-rules
-do-not-generate-results-for all-headers
-checkers default

-disable-checkers concurrency

-results-dir C:\Polyspace\MyBugFinderProject

Run Polyspace using options in the file listofoptions.txt

polyspace-bug-finder-nodesktop -options-file listofoptions.txt

2-31

2 Polyspace Command-Line Options

See Also
polyspace-bug-finder-nodesktop | polyspaceConfigure

Topics
“Run Polyspace Analysis from Command Line”

2-32

-options-for-sources

-options-for-sources

Specify analysis options specific to a source file

Syntax

-options-for-sources filename options

Description

-options-for-sources filename options associates a semicolon-separated list of
Polyspace analysis options with the source file specified by filename..

This option is primarily used when the polyspace-configure command creates an
options file for the subsequent Polyspace analysis. The option -options-for-sources
associates a group of analysis options such as include folders and macro definitions with
specific source files.

However, you can directly enter this option when manually writing options files. This
option is useful in situations where you want to associate a group of options with a
specific source file without applying it to other files.

Instead of an options file, you can also create a Polyspace project from your build
command. See “Add Sources from Build Command”. The project uses the option -
options-for-sources to associate specific Polyspace analysis options with specific
files. However, when you open the project in the Polyspace user interface, you cannot see
the use of this option. Open the project in a text editor to see this option.

Examples

In this sample options file, the include folder /usr/1ib/gcc/x86 64-1inux-gnu/6/
include and the macros STDC VERSION and GNUC are associated only with
the source file file.c and not fileAnother.c.

2-33

2 Polyspace Command-Line Options

-options-for-sources file.c;-I /usr/lib/gcc/x86 64-linux-gnu/6/include;
-options-for-sources file.c;-D _ STDC VERSION =201112L;-D GNUC_ =6;
-sources file.c

-sources fileAnother.c

For the options used in this example, see:

e -sources
e -I
* Preprocessor definitions (-D)

See Also

-options-file | polyspace-bug-finder-nodesktop

Topics
“Run Polyspace Analysis from Command Line”

2-34

-preemptable-interrupts

-preemptable-interrupts

Specify functions that represent preemptable interrupts

Syntax

-preemptable-interrupts functionll[, function2[,...]]

Description

This option affects a Bug Finder analysis only.

-preemptable-interrupts functionl[, function2[, ...]] specifies functions
that represent preemptable interrupts.

The function acts as an interrupt in every way except that it can be interrupted by other
interrupts on page 1-124, preemptable or nonpreemptable.

To specify a function as a preemptable interrupt, you must first specify the following
options:

* Configure multitasking manually
* Interrupts (-interrupts): Specify the function name.
The functions that you specify must have the prototype:

void function _name(void);

If you are running an analysis from the user interface, on the Configuration pane, you
can enter this option in the Other field. See Other.

See Also

-non-preemptable-tasks | Cyclic tasks (-cyclic-tasks) | Interrupts (-
interrupts) | Tasks (-entry-points) |Critical section details (-
critical-section-begin -critical-section-end) | Temporally exclusive
tasks (-temporal-exclusions-file) | polyspace-bug-finder-nodesktop

2-35

2 Polyspace Command-Line Options

Topics
“Specify Polyspace Analysis Options”
“Analyze Multitasking Programs in Polyspace”

“Configuring Polyspace Multitasking Analysis Manually”
“Protections for Shared Variables in Multitasking Code”

Introduced in R2016b

2-36

-prog

-prog

Specify name of project

Syntax

-prog projectName

Description

-prog projectName specifies the name of your Polyspace project. This name must use
only letters, numbers, underscores (_), dashes (-), or periods (.).

Examples

Assign a session name to your Polyspace Project.

polyspace-bug-finder-nodesktop -prog MyApp

See Also
-author | -date | polyspace-bug-finder-nodesktop

Topics
“Run Polyspace Analysis from Command Line”

2-37

2 Polyspace Command-Line Options

2-38

-regex-replace-rgx -regex-replace-fmt

Make replacements in preprocessor directives

Syntax

-regex-replace-rgx matchFileName -regex-replace-fmt
replacementFileName

Description

-regex-replace-rgx matchFileName -regex-replace-fmt
replacementFileName replaces tokens in preprocessor directives for the purposes of
Polyspace analysis. The original source code is unchanged. You match a token using a
regular expression in the file matchFileName and replace the token using a replacement
in the file replacementFileName.

Use this option only to replace or remove tokens in the preprocessor directives before
preprocessing. If a token in your source code causes a compilation error, you can typically
replace or remove the token from the preprocessed code. Use the more convenient option
Command/script to apply to preprocessed files (-post-preprocessing-
command). You cannot make the replacements in preprocessed code only for tokens in
preprocessor directives.

If you are running an analysis from the user interface, on the Configuration pane, you
can enter this option in the Other field. See Other.

In the user interface, specify absolute paths to the text files with the search and replace
patterns.

Examples

Suppose you want to replace rom_beg in this #define directive:

#define ROM BEG ADDR (uintl6*) (& rom beg)

-regex-replace-rgx -regex-replace-fmt

and modify the directive to:

#define ROM_BEG ADDR (0x4000u)

Specify this regular expression in a file match. txt:
“\s*#define\s+ROM BEG ADDR\s+\ (uint16 t*\)\(\& rom beg\)
These elements are used in the regular expression:

» ” asserts position at the start of a line.
* \s* represents zero or more whitespace characters.
* \s+ represents one or more whitespace characters.

The characters *, &, (and) in the original expression are escaped with \. For a complete
list of regular expressions, see Perl documentation.

Specify the replacement in a file replace. txt.

#define ROM_BEG_ADDR \ (0x4000u\)

Specify the two text files during analysis with the options - regex-replace-rgx and -
regex-replace-fmt.

polyspace-code-prover-nodesktop -sources filename
-regex-replace-rgx match.txt
-regex-replace-fmt replace.txt

See Also

Command/script to apply to preprocessed files (-post-preprocessing-
command) | polyspace-bug-finder-nodesktop

Topics
“Run Polyspace Analysis from Command Line”

2-39

https://perldoc.perl.org/perlre.html#Regular-Expressions

2 Polyspace Command-Line Options

2-40

-report-output-name

Specify name of report

Syntax

-report-output-name reportName

Description

-report-output-name reportName specifies the name of an analysis report.

The default name for a report is Prog Template.Format:

* Prog is the name of the project specified by -prog.
* TemplateName is the type of report template specified by -report-template.
* Format is the file extension for the report specified by - report-output-format.

If you are running an analysis from the user interface, on the Configuration pane, you
can enter this option in the Other field. See Other.

Examples

Specify the name of the analysis report.

polyspace-bug-finder-nodesktop -report-template Developer
-report-output-name Airbag v3.doc

See Also

OQutput format (-report-output-format) |Bug Finder and Code Prover
report (-report-template) | polyspace-bug-finder-nodesktop

-report-output-name

Topics
“Generate Reports”

2-41

2 Polyspace Command-Line Options

2-42

-results-dir

Specify the results folder

Syntax

-results-dir

Description

-results-dir specifies where to save the analysis results. The default location at the
command line is the current folder.

If you are running analysis in the user interface, see “Run Polyspace Analysis on
Desktop”.

Examples

Specify to store your results in the RESULTS folder.

polyspace-bug-finder-nodesktop -results-dir RESULTS ...
export RESULTS=results 'date + %d%B SHH%M %A’
polyspace-bug-finder-nodesktop -results-dir 'pwd'/$RESULTS

See Also
polyspace-bug-finder-nodesktop

Topics
“Run Polyspace Analysis from Command Line”

-scheduler

-scheduler

Specify cluster or job scheduler

Syntax

-scheduler schedulingOption

Description

-scheduler schedulingOption specifies the head node of the cluster or MATLAB job
scheduler on the node host. Use this command to manage the cluster, or to specify where
to run batch analyses.

Examples

Run a batch analysis on a remote server.

polyspace-bug-finder-nodesktop -batch -scheduler NodeHost
polyspace-bug-finder-nodesktop -batch -scheduler 192.168.1.124:12400
polyspace-bug-finder-nodesktop -batch -scheduler MISName@NodeHost

polyspace-job-manager listjobs -scheduler NodeHost

See Also
polyspace-bug-finder-nodesktop | polyspaceJobsManager

Topics
“Run Polyspace Analysis on Remote Clusters Using Scripts”

2-43

2 Polyspace Command-Line Options

2-44

-sources

Specify source files

Syntax

-sources filel[,file2,...]
-sources filel -sources file2

Description

-sources filel[,file2,...] or -sources filel -sources fileZ2 specifies the
list of source files that you want to analyze. You can use standard UNIX wildcards with
this option to specify your sources.

The source files are compiled in the order in which they are specified.

Examples

Analyze the files mymain.c, funAlgebra.c, and funGeometry.c.

polyspace-bug-finder-nodesktop -sources mymain.c
-sources funAlgebra.c -sources funGeometry.c

See Also
polyspace-bug-finder-nodesktop

Topics
“Run Polyspace Analysis from Command Line”

-sources-list-file

-sources-list-file

Specify file containing list of sources

Syntax

-sources-list-file file path

Description

-sources-list-file file path specifies the absolute path to a text file that lists
each file name that you want to analyze.

To specify your sources in the text file, on each line, specify the absolute path to a source
file. For example:

C:\Sources\myfile.c
C:\Sources2\myfile2.c

Examples

Run analysis on files listed in files. txt.

polyspace-bug-finder-nodesktop -batch -scheduler NODEHOST
-sources-list-file "C:\Analysis\files.txt"

polyspace-bug-finder-nodesktop -batch -scheduler NODEHOST
-sources-list-file "/home/polyspace/files.txt"

See Also
polyspace-bug-finder-nodesktop

Topics
“Run Polyspace Analysis on Remote Clusters Using Scripts”

2-45

2 Polyspace Command-Line Options

2-46

-submit-job-from-previous-compilation-
results

Specify that the analysis job must be resubmitted without recompilation

Syntax

-submit-job-from-previous-compilation-results

Description

-submit-job-from-previous-compilation-results specifies that the Polyspace
analysis must start after the compilation phase with compilation results from a previous
analysis. If a remote analysis stops after compilation, for instance because of
communication problems between the server and client computers, use this option.

When you perform a remote analysis:

1 On the local host computer, the Polyspace software performs code compilation and
coding rule checking.

2 The Parallel Computing Toolbox™ software submits the analysis job to the MATLAB
job scheduler (M]S) on the head node of the MATLAB Distributed Computing Server
cluster.

3 The head node of the MATLAB Distributed Computing Server cluster assigns the
verification job to a worker node, where the remaining phases of the Polyspace
analysis occur.

If an analysis stops after completing the first step and you restart the analysis, use this
option to reuse compilation results from the previous analysis. You thereby avoid
restarting the analysis from the compilation phase.

If previous compilation results do not exist in the current folder, an error occurs. Remove
the option and restart analysis from the compilation phase.

If you are running an analysis from the user interface, on the Configuration pane, you
can enter this option in the Other field. See Other.

-submit-job-from-previous-compilation-results

Examples

Specify remote analysis with compilation results from a previous analysis.

polyspace-bug-finder-nodesktop -batch -scheduler localhost
-submit-job-from-previous-compilation-results

See Also
polyspace-bug-finder-nodesktop

Topics
“Run Polyspace Analysis on Remote Clusters”
“Run Polyspace Analysis on Remote Clusters Using Scripts”

2-47

2 Polyspace Command-Line Options

2-48

-termination-functions

Specify process termination functions

Syntax

-termination-functions functionll[, function2[,...]]

Description

-termination-functions functionll, function2[,...]] specifies functions that

behave like the exit function and terminate your program.

Use this option to specify program termination functions that are declared but not defined
in your code.

If you are running an analysis from the user interface, on the Configuration pane, you
can enter this option in the Other field. See Other.

Examples

Polyspace detects an Integer division by zero defect in the following code because it
does not recognize that my exit terminates the program.

void my exit();

double reciprocal(int val) {
if(val==0)
my exit();
return (1/val);

}

To prevent Polyspace from flagging the division operation, use the -termination-
functions option:

polyspace-bug-finder-nodesktop -termination-functions my exit

http://www.cplusplus.com/reference/cstdlib/exit/

-termination-functions

See Also
polyspaceBugFinder

Topics
“Run Polyspace Analysis from Command Line”

2-49

2 Polyspace Command-Line Options

2-50

-tmp-dir-in-results-dir

Keep temporary files in results folder

Syntax

-tmp-dir-in-results-dir

Description

-tmp-dir-in-results-dir specifies that temporary files must be stored in a subfolder
of the results folder. Use this option only when the standard temporary folder does not
have enough disk space. If the results folder is mounted on a network drive, this option
can slow down your processor.

To learn how Polyspace determines the temporary folder location, see “Storage of
Temporary Files”.

If you are running an analysis from the user interface, on the Configuration pane, you
can enter this option in the Other field. See Other.

Examples

Store temporary files in the results folder.

polyspace-bug-finder-nodesktop -tmp-dir-in-results-dir

See Also
polyspace-bug-finder-nodesktop

Topics
“Run Polyspace Analysis from Command Line”

-v[ersion]

-v[ersion]

Display Polyspace version number

Syntax

-V
-version

Description

-v or -version displays the version number of your Polyspace product.

Examples

Display the version number and release of your Polyspace product.

polyspace-bug-finder-nodesktop -v

See Also
polyspace-bug-finder-nodesktop

Topics
“Run Polyspace Analysis from Command Line”

2-51

2 Polyspace Command-Line Options

2-52

-xml-annotations-description

Apply custom code annotations to Polyspace analysis results

Syntax

-xml-annotations-description file path

Description

-xml-annotations-description file path uses the annotation syntax defined in
the XML file located in file path to interpret code comments in your source files. You
can use the XML file to specify an annotation syntax and map it to the Polyspace
annotation syntax. When you run an analysis by using this option, you can justify and hide
results with annotations that use your syntax. If you run Polyspace at the command line,
file path is the absolute path or path relative to the folder from which you run the
command. If you run Polyspace through the user interface, file path is the absolute
path.

If you are running an analysis through the user interface, you can enter this option in the
Other field, under the Advanced Settings node on the Configuration pane. See Other.

Why Use This Option

If you have existing annotations from previous code reviews, you can import these
annotations to Polyspace. You do not have to review and justify results that you have
already annotated. Similarly, if your code comments must adhere to a specific format, you
can map and import that format to Polyspace.

-xml-annotations-description

Examples

Import Existing Annotations for Coding Rule Violations

Suppose that you have previously reviewed source file zero div. c containing the
following code, and justified certain MISRA C: 2012 violations by using custom
annotations.

#include <stdio.h>

/* Violation of Misra C:2012
rules 8.4 and 8.7 on the next
line of code. */

int func(int p) //My_rule 50, 51

{
int i;
int j = 1;
i=1024 /7 (j - p);
return i;
}

/* Violation of Misra C:2012
rule 8.4 on the next line of
code */

int main(void){ //My rule 50
int x=func(2);
return x;

}

The code comments My_rule 50, 51 and My_rule 50 do not use the Polyspace
annotation syntax. Instead, you use a convention where you place all MISRA rules in a
single numbered list. In this list, rules 8.4 and 8.7 correspond to the numbers 50 and
51.You can check this code for MISRA C: 2012 violations by typing the command:

polyspace-bug-finder-nodesktop -sources source path -misra3 all

source path is the path to zero div.c.

The annotated violations appear in the Results List pane. You must review and justify
them again.

2-53

2 Polyspace Command-Line Options

All results v | Ve New v <@ 5> (& showing9/s = Jzero_div.c X|

#include <stdic.h>

Family « Information # 5. = Status = Comment
[1-MISRA C:2012 9
[1.Dir 4 Code desian 6 /* WVipolation of Misra C:2012
#).Dir 4.6 typedefs that indicate size and signedness should be used in place of the basic numerical types. & rules 2.4 and 2.7 on the next
£-8.4 A compatible dedaration shall be visible when an ebject or function with external linkage is defined, 2
Category: Required Unset Unreviewed vim: Vt"1:|.nc: {vim: p) //My_rule 50, 51
Category: Reguired Unzet Unreviewed I
é!--B.? Functions and objects should not be defined with external linkage if they are referenced in only one translatior] vim: ir
e Category: Advisory Unset Unreviewed vim: 3= 1:

i=1024 7/ (] - p)s
return ir

f* WVipolation of Misra C:2012
rule §.4 on the next line of

code */

¥ ¥
int main{void){ //My rule 50
7
int x=funci{2);

return x;

This XML example defines the annotation format used in zero _div.c and maps it to the
Polyspace annotation syntax:

* The format of the annotation is the keyword My rule, followed by a space and one or
more comma-separated alphanumeric rule identifiers.

* Rule identifiers 50 and 51 are mapped to MISRA C: 2012 rules 8.4 and 8.7
respectively. The mapping uses the Polyspace annotation syntax.

<?xml version="1.0" encoding="UTF-8"?>
<Annotations xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="annotations xml schema.xsd"
Group="example annotation">
<Expressions Search For Keywords="My rule"
Separator Result Name="," >

<!-- This section defines the annotation syntax format -->
<Expression Mode="SAME LINE"

2-54

-xml-annotations-description

Regex="My rule\s (\w+(\s*,\s*\w+)*)"
Rule Identifier Position="1"

/>
</Expressions>
<!-- This section maps the user annotation to the Polyspace
annotation syntax -->

<Mapping>

<Result Name Mapping Rule Identifier="50" Family="MISRA-C3" Result Name="8.4"/>
<Result Name Mapping Rule Identifier="51" Family="MISRA-C3" Result Name="8.7"/>
</Mapping>

</Annotations>

To import the existing annotations and apply them to the corresponding Polyspace results:

1 Copy the preceding code example to a text editor and save it on your machine as
annotations description.xml, for instance in C:\Polyspace workspace
\annotations\.

2 Rerun the analysis on zero div.c by using the command:
polyspace-bug-finder-nodesktop -sources source path -misra3 all ©
-xml-annotations-desription *

C:\Polyspace workspace\annotations\annotations description.xml

Polyspace considers the annotated results justified and hides them in the Results List
pane.

2-55

2 Polyspace Command-Line Options

ts List

All results o | T Mew v <E 5 @‘ Showing 6/9 +

Family ¥ Information # 5. @ Status & Comment
[E-MISRA C:2012 6

= Dir 4 Code design
[&-Dir 4.6 typedefs that indicate size and signedness should be used in place of the basic numerical types. &

zero_div.c X

#include <stdio.h>

/* Viclation of Misra C:2012
rules £.4 and £.7 on the next
line of code. */

7 7
int func(int p) //My rule 50, 51
{

v .

int i

v)

int j = 1;

i=1024 7 (3 - p):
return i;

/* Viclation of Misra C:2012
rule 8.4 on the next line of
code */

7

int main{veid){ //My_rule 50
int x=func(2):
return x;

See Also
polyspace-bug-finder-nodesktop

Topics
“Define Custom Annotation Format”

“Annotation Description Full XML Template”

Introduced in R2017b

2-56

Defects

3 Defects

3-2

*this not returned in copy assignment
operator

operator=method does not return a pointer to the current object

Description

*this not returned from copy assignment operator occurs when assignment
operators such as operator= and operator+= do not return a reference to *this,
where this is a pointer to the current object. If the operator= method does not return
*this, it means that a=b or a.operator=(b) is not returning the assignee a following
the assignment.

For instance:
» The operator returns its parameter instead of a reference to the current object.

That is, the operator has a form MyClass & operator=(const MyClass & rhs)
{ ... return rhs; } instead of MyClass & operator=(const My(Class &
rhs) { ... return *this; }.

» The operator returns by value and not reference.

That is, the operator has a form MyClass operator=(const MyClass & rhs)

{ ... return *this; } instead of MyClass & operator=(const MyClass &
rhs) { ... return *this; }.
Risk

Users typically expect object assignments to behave like assignments between built-in
types and expect an assignment to return the assignee. For instance, a right-associative
chained assignment a=b=c requires that b=c return the assignee b following the
assignment. If your assignment operator behaves differently, users of your class can face
unexpected consequences.

The unexpected consequences occur when the assignment is part of another statement.
For instance:

*this not returned in copy assignment operator

» Ifthe operator=returns its parameter instead of a reference to the current object,
the assignment a=b returns b instead of a. If the operator= performs a partial
assignment of data members, following an assignment a=b, the data members of a and
b are different. If you or another user of your class read the data members of the
return value and expect the data members of a, you might have unexpected results.
For an example, see “Return Value of operator= Same as Argument” on page 3-3.

» Ifthe operator= method returns *this by value and not reference, a copy of *this
is returned. If you expect to modify the result of the assignment using a statement
such as (a=b) .modifyValue(), you modify a copy of a instead of a itself.

Fix

Return *this from your assignment operators.

Examples

Return Value of operator= Same as Argument

class MyClass {
public:
MyClass(bool b, int i): m_|
const MyClass& operator=(c
if (&obj!=this) {
/* Note: Only m i is copied. m b retains its original value. */
m i = obj.mi;

b(b), m_i(i) {}
onst MyClass& obj) {

}
return obj;
}
bool isOk() const { return m b;}
int getI() const { return m i;}
private:
bool m_b;
int m i;

+

void main() {
MyClass rO(true, 0), rl(false, 1);
/* Object calling isOk is r@ and the if block executes. */
if ((rl = r0).is0k()) {
/* Do something */

3-3

3 Defects

In this example, the operator operator= returns its current argument instead of a
reference to *this.

Therefore, in main, the assignment r1 = r0 returns r@ and not rl. Because the
operator= does not copy the data member m_b, the value of r@.m b and rl.m b are
different. The following unexpected behavior occurs.

What You Might Expect What Actually Happens

* The statement (rl = r0).is0k() e The statement (rl = r0).is0k()
returns r1.m b which has value false returns r0.m b which has value true

e The if block does not execute. ¢ The if block executes.

One possible correction is to return *this from operator=.

class MyClass {
public:
MyClass(bool b, int i): m_|
const MyClass& operator=(c
if (&obj!=this) {

b(b), m_i(i) {}
onst MyClass& obj) {

/* Note: Only m i is copied. m_b retains its original value.

mi = obj.mi;

}

return *this;
}
bool isOk() const { return m b;}
int getI() const { return m i;}

private:

bool m_b;
int m i;

+

void main() {
MyClass rO(true, 0), rl(false, 1);
/* Object calling isOk is r@ and the if block executes. */
if ((rl = r0).is0k()) {
/* Do something */
}

3-4

*/

*this not returned in copy assignment operator

Result Information

Group: Object oriented

Language: C++

Default: Off

Command-Line Syntax: RETURN NOT REF TO THIS
Impact: Low

See Also

Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2015b

3 Defects

3-6

Abnormal termination of exit handler

Exit handler function interrupts the normal execution of a program

Description

Abnormal termination of exit handler looks for registered exit handlers. Exit handlers
are registered with specific functions such as atexit, (WinAPI) onexit, or

at quick exit(). If the exit handler calls a function that interrupts the program’s
expected termination sequence, Polyspace raises a defect. Some functions that can cause
abnormal exits are exit, abort, Longjmp, or (WinAPI) onexit.

Risk

If your exit handler terminates your program, you can have undefined behavior. Abnormal
program termination means other exit handlers are not invoked. These additional exit
handlers may do additional clean up or other required termination steps.

Fix

In inside exit handlers, remove calls to functions that prevent the exit handler from
terminating normally.

Examples

Exit Handler With Call to exit
#include <stdlib.h>

volatile int some condition = 1;
void demo exitl(void)
{
/* ... Cleanup code ... */
return;

Abnormal termination of exit handler

void exitabnormalhandler(void)

{
if (some_condition)
/* Clean up */
exit(0);
}
return;
}
int demo install exitabnormalhandler(void)
{
if (atexit(demo exitl) != 0) /* demo _exitl() performs additional cleanup */
/* Handle error */
}
if (atexit(exitabnormalhandler) != 0)
/* Handle error */
¥
/* ... Program code ... */
return 0;
}

In this example, demo_install exitabnormalhandler registers two exit handlers,
demo exitl and exitabnormalhandler. Exit handlers are invoked in the reverse
order of which they are registered. When the program ends, exitabnormalhandler
runs, then demo_exitl. However, exitabnormalhandler calls exit interrupting the
program exit process. Having this exit inside an exit handler causes undefined behavior
because the program is not finished cleaning up safely.

One possible correction is to let your exit handlers terminate normally. For this example,
exit is removed from exitabnormalhandler, allowing the exit termination process to
complete as expected.

#include <stdlib.h>

volatile int some condition = 1;
void demo exitl(void)
{
/* ... Cleanup code ... */
return;

3 Defects

}
void exitabnormalhandler(void)
{
if (some_condition)
/* Clean up */
/* Return normally */
}
return;
}
int demo install exitabnormalhandler(void)
{
if (atexit(demo exitl) != 0) /* demo exitl() continues clean up */
/* Handle error */
}
if (atexit(exitabnormalhandler) != 0)
/* Handle error */
¥
/* ... Program code ... */
return 0;
}

Result Information

Group: Programming

Language: C | C++

Default: Off
Command-Line Syntax: EXIT ABNORMAL HANDLER
Impact: Medium

CWE ID: 705

CERT C ID: ENV32-C

CERT C++ ID: ENV32-C

3-8

https://cwe.mitre.org/data/definitions/705.html
https://www.securecoding.cert.org/confluence/x/voAg
https://wiki.sei.cmu.edu/confluence/x/KdYxBQ

Abnormal termination of exit handler

See Also

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2016b

3-9

3 Defects

3-10

Absorption of float operand

One addition or subtraction operand is absorbed by the other operand

Description

Absorption of float operand occurs when one operand of an addition or subtraction
operation is always negligibly small compared to the other operand. Therefore, the result
of the operation is always equal to the value of the larger operand, making the operation
redundant.

Risk
Redundant operations waste execution cycles of your processor.

The absorption of a float operand can indicate design issues elsewhere in the code. It is
possible that the developer expected a different range for one of the operands and did not
expect the redundancy of the operation. However, the operand range is different from
what the developer expects because of issues elsewhere in the code.

Fix

See if the operand ranges are what you expect. To see the ranges, place your cursor on
the operation.

+ If the ranges are what you expect, justify why you have the redundant operation in
place. For instance, the code is only partially written and you anticipate other values
for one or both of the operands from future unwritten code.

If you cannot justify the redundant operation, remove it.

+ If the ranges are not what you expect, in your code, trace back to see where the
ranges come from. To begin your traceback, search for instances of the operand in
your code. Browse through previous instances of the operand and determine where
the unexpected range originates.

To determine when one operand is negligible compared to the other operand, the defect
uses rules based on IEEE 754 standards. To fix the defect, instead of using the actual

Absorption of float operand

rules, you can use this heuristic: the ratio of the larger to the smaller operand must be
less than 2P-! at least for some values. Here, p is equal to 24 for 32-bit precision and 53
for 64-bit precision. To determine the precision, the defect uses your specification for
Target processor type (-target).

This defect appears only if one operand is always negligibly smaller than the other
operand. To see instances of subnormal operands or results, use the check Subnormal
Float in Polyspace Code Prover.

Examples

One Addition Operand Negligibly Smaller Than The Other
Operand

#include <stdlib.h>

float get signal(void);
void do operation(float);

float input signall(void) {
float temp = get signal();
if(temp > 0. && temp < le-30)
return temp;
else {
/* Reject value */
exit (EXIT FAILURE);
}
}

float input signal2(void) {
float temp = get signal();
if(temp > 1.)
return temp;
else {
/* Reject value */
exit (EXIT FAILURE);
}
}

void main() {
float signall = input signall();

3-11

3 Defects

float signal2 = input signal2();
float super signal = signall + signal2;
do operation(super signal);

}

In this example, the defect appears on the addition because the operand signall is in
the range (0, 1le-30) but signal2 is greater than 1.

One possible correction is to remove the redundant addition operation. In the following
corrected code, the operand signal2 and its associated code is also removed from
consideration.

#include <stdlib.h>

float get signal(void);
void do operation(float);

float input signall(void) {
float temp = get signal();
if(temp > 0. && temp < le-30)
return temp;
else {
/* Reject value */
exit (EXIT FAILURE);
}
}

void main() {
float signall = input signall();
do operation(signall);

Another possible correction is to see if the operand ranges are what you expect. For
instance, if one of the operand range is not supposed to be negligibly small, fix the issue
causing the small range. In the following corrected code, the range (0, 1e-2) is imposed
on signal2 so that it is not always negligibly small as compared to signall.

#include <stdlib.h>

float get signal(void);
void do operation(float);

3-12

Absorption of float operand

float input signall(void) {
float temp = get signal();
if(temp > 0. && temp < le-2)
return temp;
else {
/* Reject value */
exit (EXIT FAILURE);
}
}

float input signal2(void) {
float temp = get signal();
if(temp > 1.)
return temp;
else {
/* Reject value */
exit (EXIT FAILURE);
}
}

void main() {
float signall input_signall();
float signal2 input_signal2();
float super signal = signall + signal2;
do operation(super signal);

Result Information

Group: Numerical

Language: C | C++

Default: On
Command-Line Syntax: FLOAT ABSORPTION
Impact: High

CWE ID: 189, 682, 873

CERT C ID: FLP00-C

See Also

Polyspace Analysis Options
Find defects (-checkers)

3-13

https://cwe.mitre.org/data/definitions/189.html
https://cwe.mitre.org/data/definitions/682.html
https://cwe.mitre.org/data/definitions/873.html
https://www.securecoding.cert.org/confluence/x/VQIFAQ

3 Defects

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2016b

3-14

Accessing object with temporary lifetime

Accessing object with temporary lifetime

Read or write operations on the object are undefined behavior

Description

Accessing object with temporary lifetime occurs when you attempt to read from or
write to an object with temporary lifetime that is returned by a function call. In a
structure or union returned by a function, and containing an array, the array members are
temporary objects. The lifetime of temporary objects ends:

* When the full expression or full declarator containing the call ends, as defined in the
C11 Standard.

» After the next sequence point, as defined in the C90 and C99 Standards. A sequence
point is a point in the execution of a program where all previous evaluations are
complete and no subsequent evaluation has started yet.

For C++ code, Accessing object with temporary lifetime raises a defect only when
you write to an object with a temporary lifetime.

If the temporary lifetime object is returned by address, no defect is raised.

Risk

Modifying objects with temporary lifetime is undefined behavior and can cause abnormal
program termination and portability issues.

Fix

Assign the object returned from the function call to a local variable. The content of the
temporary lifetime object is copied to the variable. You can now modify it safely.

3-15

3 Defects

3-16

Examples

Modifying Temporary Lifetime Object Returned by Function

Call

#include <stdio.h>
#include <assert.h>
#include <stdlib.h>
#include <string.h>

#define SIZE6 6

struct S _Array
{

int t;

int a[SIZE6];
b

struct S Array func temp(void);

/* func_temp() returns a struct value containing
* an array with a temporary lifetime.

*/

int func(void) {

/*Writing to temporary lifetime object is
undefined behavior
*/
return ++(func_temp().al[0]);
}

void main(void) {
(void) func();

}

In this example, func_temp() returns by value a structure with an array member a. This
member has temporary lifetime. Incrementing it is undefined behavior.

One possible correction is to assign the return of the call to func_temp() to a local
variable. The content of the temporary object a is copied to the variable, which you can

safely increment.

Accessing object with temporary lifetime

#include <stdio.h>
#include <assert.h>
#include <stdlib.h>
#include <string.h>

#define SIZE6 6

struct S Array
{

int t;

int a[SIZE6];
b

struct S Array func temp(void);
int func(void) {

/* Assign object returned by function call to
*local variable
*/
struct S Array s = func_temp();

/* Local variable can safely be
*incremented
*/

++(s.a[0]);

return s.al[0];

}

void main(void) {
(void) func();
}

Result Information

Group: Programming

Language: C | C++

Default: On
Command-Line Syntax: TEMP_OBJECT ACCESS
Impact: Low

CWE ID: 825

CERT C ID: EXP35-C

3-17

https://cwe.mitre.org/data/definitions/825.html
https://www.securecoding.cert.org/confluence/x/pYEt

3 Defects

CERT C++ ID: EXP35-C, EXP54-CPP

See Also

Topics

Large pass-by-value argument

Misuse of structure with flexible array member
Write without a further read

“Interpret Polyspace Bug Finder Results”

“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2018a

3-18

https://wiki.sei.cmu.edu/confluence/x/utUxBQ
https://wiki.sei.cmu.edu/confluence/x/OXw-BQ

Alignment changed after memory reallocation

Alignment changed after memory
reallocation

Memory reallocation changes the originally stricter alignment of an object

Description

Alignment changed after memory reallocation occurs when you use realloc() to
modify the size of objects with strict memory alignment requirements.

Risk

The pointer returned by realloc() can be suitably assigned to objects with less strict
alignment requirements. A misaligned memory allocation can lead to buffer underflow or
overflow, an illegally dereferenced pointer, or access to arbitrary memory locations. In
processors that support misaligned memory, the allocation impacts the performance of
the system.

Fix
To reallocate memory:

1 Resize the memory block.

* In Windows, use aligned realloc() with the alignment argument used in
_aligned malloc() to allocate the original memory block.

* In UNIX/Linux, use the same function with the same alignment argument used to
allocate the original memory block.

Copy the original content to the new memory block.
Free the original memory block.

Note This fix has implementation-defined behavior. The implementation might not
support the requested memory alignment and can have additional constraints for the size
of the new memory.

3-19

3 Defects

Examples

Memory Reallocated Without Preserving the Original
Alignment

#include <stdio.h>
#include <stdlib.h>

#define SIZE1024 1024

void func(void)

{
size t resize = SIZE1024;
size t alignment = 1 << 12; /* 4096 bytes alignment */
int *ptr = NULL;
int *ptrl;
/* Allocate memory with 4096 bytes alignment */
if (posix_memalign((void **)&ptr, alignment, sizeof(int)) != 0)
/* Handle error */
}
/*Reallocate memory without using the original alignment.
ptrl may not be 4096 bytes aligned. */
ptrl = (int *)realloc(ptr, sizeof(int) * resize);
if (ptrl == NULL)
/* Handle error */
}
/* Processing using ptrl */
/* Free before exit */
free(ptrl);
}

3-20

Alignment changed after memory reallocation

In this example, the allocated memory is 4096-bytes aligned. realloc() then resizes the
allocated memory. The new pointer ptrl might not be 4096-bytes aligned.

When you reallocate the memory, use posix memalign() and pass the alignment
argument that you used to allocate the original memory.

#include <stdio.h>
#include <stdlib.h>

#define SIZE1024 1024

void func(void)

{
size t resize = SIZE1024;

size t alignment = 1 << 12; /* 4096 bytes alignment */
int *ptr = NULL;

/* Allocate memory with 4096 bytes alignment */
if (posix_memalign((void **)&ptr, alignment, sizeof(int)) != 0)

{
}

/* Reallocate memory using the original alignment. */
if (posix_memalign((void **)&ptr, alignment, sizeof(int) * resize) != 0)

/* Handle error */

/* Handle error */
free(ptr);
ptr = NULL;

}

/* Processing using ptr */

/* Free before exit */
free(ptr);

Result Information

Group: Dynamic memory
Language: C | C++
Default: On

3-21

3 Defects

Command-Line Syntax: ALIGNMENT CHANGE
Impact: Low

CERT C ID: MEM36-C

CERT C++ ID: MEM36-C

See Also

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2017b

3-22

https://www.securecoding.cert.org/confluence/x/4YEzAg
https://wiki.sei.cmu.edu/confluence/x/f9YxBQ

Alternating input and output from a stream without flush or positioning call

Alternating input and output from a stream
without flush or positioning call

Undefined behavior for input or output stream operations

Description

Alternating input and output from a stream without flush or positioning call
occurs when:

* You do not perform a flush or function positioning call between an output operation
and a following input operation on a file stream in update mode.

* You do not perform a function positioning call between an input operation and a
following output operation on a file stream in update mode.

Risk

Alternating input and output operations on a stream without an intervening flush or
positioning call is undefined behavior.

Fix

Call fflush() or a file positioning function such as fseek() or fsetpos() between
output and input operations on an update stream.

Call a file positioning function between input and output operations on an update stream.

Examples
Read After Write Without Intervening Flush

#include <stdio.h>
#define SIZE20 20

3-23

3 Defects

3-24

void initialize data(char* data, size t s) {};
const char *temp filename = "/tmp/demo.txt";

void func()

{
char data[SIZE20];
char append data[SIZE20];
FILE *file;

file = fopen(temp filename, "a+");
if (file == NULL)

/* Handle error. */;

}
initialize data(append data, SIZE20);
if (fwrite(append data, 1, SIZE20, file) != SIZE20)

(void) fclose(file);
/* Handle error. */;

/* Read operation after write without
intervening flush. */
if (fread(data, 1, SIZE20, file) < SIZE20)

(void)fclose(file);
/* Handle error. */;

}
if (fclose(file) == EOF)

/* Handle error. */;

}

In this example, the file demo. txt is opened for reading and appending. After the call to
fwrite(), acall to fread() without an intervening flush operation is undefined
behavior.

After writing data to the file, before calling fread (), perform a flush call.

Alternating input and output from a stream without flush or positioning call

#include <stdio.h>
#define SIZE20 20

void initialize data(char* data, size t s) {};
const char *temp filename = "/tmp/demo.txt";

void func()

{

char data[SIZE20];
char append data[SIZE20];
FILE *file;

file = fopen(temp filename, "a+");
if (file == NULL)

/* Handle error. */;

}
initialize data(append data, SIZE20);
if (fwrite(append data, 1, SIZE20, file) != SIZE20)

(void)fclose(file);
/* Handle error. */;

/* Buffer flush after write and before read */
if (fflush(file) != 0)

(void) fclose(file);
/* Handle error. */;

}
if (fread(data, 1, SIZE20, file) < SIZE20)
(void) fclose(file);

/* Handle error. */;

}
if (fclose(file) == EOF)

/* Handle error. */;

}

3-25

3 Defects

3-26

Result Information
Group:Programming

Language: C | C++

Default: On

Command-Line Syntax: 10 INTERLEAVING
Impact: Low

CERT C ID: FIO39-C

CERT C++ ID: FIO39-C

ISO/IEC TS 17961 ID: ioileave

See Also

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2017b

https://www.securecoding.cert.org/confluence/x/tQA1
https://wiki.sei.cmu.edu/confluence/x/L9YxBQ

Arithmetic operation with NULL pointer

Arithmetic operation with NULL pointer

Arithmetic operation performed on NULL pointer

Description

Arithmetic operation with NULL pointer occurs when an arithmetic operation
involves a pointer whose value is NULL.

Examples

Arithmetic Operation with NULL Pointer Error
#include<stdlib.h>
int Check Next Value(int *loc, int val)

{

int *ptr = loc, found = 0;

if (ptr==NULL)

{
ptr++;
/* Defect: NULL pointer shifted */
if (*ptr==val) found=1;

}

return(found);

}

When ptr is a NULL pointer, the code enters the if statement body. Therefore, a NULL
pointer is shifted in the statement ptr++.

One possible correction is to perform the arithmetic operation when ptr is not NULL.

#include<stdlib.h>

3-27

3 Defects

int Check Next Value(int *loc, int val)

{

int *ptr = loc, found = 0;

/* Fix: Perform operation when ptr is not NULL */
if (ptr!=NULL)
{

ptr++;

if (*ptr==val) found=1;
}

return(found);

}

Check Information

Group: Static memory

Language: C | C++

Default: Off

Command-Line Syntax: NULL PTR_ARITH
Impact: Low

CERT C ID: EXP34-C

CERT C++ ID: EXP34-C

ISO/IEC TS 17961 ID: nullref

See Also

Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Null pointer

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments

”

Introduced in R2013b

3-28

https://www.securecoding.cert.org/confluence/x/PAw
https://wiki.sei.cmu.edu/confluence/x/QdcxBQ

Array access out of bounds

Array access out of bounds

Array index outside bounds during array access

Description

Array access out of bounds occurs when an array index falls outside the range
[0...array _size-1] during array access.

Examples

Array Access Out of Bounds Error
#include <stdio.h>

void fibonacci(void)

{
int i;
int fib[10];
for (i = 0; i < 10; i++)
{
if (i < 2)
fib[i] = 1;
else
fib[i] = fib[i-1] + fib[i-2];
}
printf("The 10-th Fibonacci number is %i .\n", fib[i]);
/* Defect: Value of i is greater than allowed value of 9 */
}

The array fib is assigned a size of 10. An array index for fib has allowed values of
[0,1,2,...,9]. The variable i has a value 10 when it comes out of the for-loop.
Therefore, the printf statement attempts to access fib[10] through i.

One possible correction is to print fib[i-1] instead of fib[i] after the for-loop.

3-29

3 Defects

3-30

#include <stdio.h>

void fibonacci(void)

{
int i;
int fib[10];
for (i = 0; i < 10; i++)
{
if (1 < 2)
fib[i] = 1;
else
fib[i] = fib[i-1] + fib[i-2];
}
/* Fix: Print fib[9] instead of fib[10] */
printf("The 10-th Fibonacci number is %i .\n", fib[i-1]);
}

The printf statement accesses fib[9] instead of fib[10].

Check Information

Group: Static memory

Language: C | C++

Default: On

Command-Line Syntax: OUT_BOUND_ARRAY

Impact: High

CWE ID: 119, 131, 466

CERT C ID: API02-C, ARR00O-C, ARR30-C, ARR38-C, FI037-C, MSC15-C, STR31-C
CERT C++ ID: ARR30-C, ARR38-C, CTR50-CPP, FI037-C, STR31-C, STR50-CPP, STR53-
CPP

ISO/IEC TS 17961 ID: invptr

See Also

Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Pointer access out of bounds

https://cwe.mitre.org/data/definitions/119.html
https://cwe.mitre.org/data/definitions/131.html
https://cwe.mitre.org/data/definitions/466.html
https://wiki.sei.cmu.edu/confluence/x/otYxBQ
https://wiki.sei.cmu.edu/confluence/x/9dUxBQ
https://wiki.sei.cmu.edu/confluence/x/wtYxBQ
https://wiki.sei.cmu.edu/confluence/x/W9UxBQ
https://wiki.sei.cmu.edu/confluence/x/JtcxBQ
https://wiki.sei.cmu.edu/confluence/x/stUxBQ
https://wiki.sei.cmu.edu/confluence/x/sNUxBQ
https://wiki.sei.cmu.edu/confluence/x/wtYxBQ
https://wiki.sei.cmu.edu/confluence/x/W9UxBQ
https://wiki.sei.cmu.edu/confluence/x/cHw-BQ
https://wiki.sei.cmu.edu/confluence/x/JtcxBQ
https://wiki.sei.cmu.edu/confluence/x/sNUxBQ
https://wiki.sei.cmu.edu/confluence/x/i3w-BQ
https://wiki.sei.cmu.edu/confluence/x/h3s-BQ
https://wiki.sei.cmu.edu/confluence/x/h3s-BQ

Array access out of bounds

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2013b

3-31

3 Defects

3-32

Array access with tainted index

Array index from unsecure source possibly outside array bounds

Description

Array access with tainted index detects reading or writing to an array by using a
tainted index that has not been validated.

Risk

The index might be outside the valid array range. If the tainted index is outside the array
range, it can cause:

» Buffer underflow/underwrite — writing to memory before the beginning of the buffer.
» Buffer overflow — writing to memory after the end of a buffer.
* Over-reading a buffer — accessing memory after the end of the targeted buffer.

* Under-reading a buffer, or accessing memory before the beginning of the targeted
buffer.

An attacker can use an invalid read or write operation create to problems in your
program.

Fix

Before using the index to access the array, validate the index value to make sure that it is
inside the array range.

Examples

Use Index to Return Buffer Value

#define SIZE100 100
extern int tab[SIZE100];

Array access with tainted index

int taintedarrayindex(int num) {
return tab[num];
}

In this example, the index num accesses the array tab. The function does not check to see
if num is inside the range of tab.

One possible correction is to check that num is in range before using it.

#define SIZE100 100
extern int tab[SIZE100];

int taintedarrayindex(int num) {
if (num >= 0 && num < SIZE100) {
return tab[num];
} else {
return -9999;
}

Result Information

Group: Tainted Data

Language: C | C++

Default: Off

Command-Line Syntax: TAINTED ARRAY INDEX
Impact: Medium

CWE ID: 121, 124, 125, 129

CERT C ID: INT04-C, ARR30-C, API00-C, AP102-C
CERT C++ ID: ARR30-C, CTR50-CPP, STR53-CPP
ISO/IEC TS 17961 ID: invptr

See Also

Loop bounded with tainted value|Pointer dereference with tainted
offset | Tainted size of variable length array

Topics
“Interpret Polyspace Bug Finder Results”

3-33

https://cwe.mitre.org/data/definitions/121.html
https://cwe.mitre.org/data/definitions/124.html
https://cwe.mitre.org/data/definitions/125.html
https://cwe.mitre.org/data/definitions/129.html
https://www.securecoding.cert.org/confluence/x/kgI
https://www.securecoding.cert.org/confluence/x/DYDXAg
https://www.securecoding.cert.org/confluence/x/egAV
https://www.securecoding.cert.org/confluence/x/oIAzAg
https://wiki.sei.cmu.edu/confluence/x/wtYxBQ
https://wiki.sei.cmu.edu/confluence/x/cHw-BQ
https://wiki.sei.cmu.edu/confluence/x/h3s-BQ

3 Defects

“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2015b

3-34

Assertion

Assertion

Failed assertion statement

Description

Assertion occurs when you use an assert, and the asserted expression is or could be
false.

Note Polyspace does not flag assert(0) as an assertion defect because these
statements are commonly used to disable certain sections of code.

Examples

Check Assertion on Unsigned Integer
#include <assert.h>

void asserting x(unsigned int theta) {
theta =+ 5;
assert(theta < 0);

}

In this example, the assert function checks if the input variable, theta, is less than or
equal to zero. The assertion fails because theta is an unsigned integer, so the value at
the beginning of the function is at least zero. The += statement increases this positive
value by five. Therefore, the range of thetais [5..MAX INT]. theta is always greater
than zero.

One possible correction is to change the assertion expression. By changing the less-than-
or-equal-to sign to a greater-than-or-equal-to sign, the assertion does not fail.

#include <assert.h>

void asserting x(unsigned int theta) {

3-35

3 Defects

3-36

theta =+ 5;
assert(theta > 0);

One possible correction is to fix the code related to the assertion expression. If the
assertion expression is true, fix your code so the assertion passes.

#include <assert.h>
#include <stdlib.h>

void asserting x(int theta) {
theta = -abs(theta);
assert(theta < 0);

Asserting Zero
#include <assert.h>
#define FLAG 0

int main(void){
int i test z

= 0;
float f test z =

(float)i test z;

assert(i_test z);
assert(f _test z);
assert(FLAG);

return 0;

}

In this example, Polyspace does not flag assert (FLAG) as a violation because a macro
defines FLAG as 0. The Polyspace Bug Finder assertion checker does not flag assertions
with a constant zero parameter, assert (0). These types of assertions are commonly
used as dynamic checks during runtime. By inserting assert(0), you indicate that the
program must not reach this statement during run time, otherwise the program crashes.

However, the assertion checker does flag failed assertions caused by a variable value
equal to zero, as seen in the example with assert(i test z) and assert(f test z).

Assertion

Check Information
Group: Programming
Language: C | C++

Default: On

Command-Line Syntax: ASSERT
Impact: High

See Also

Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments

”

Introduced in R2013b

3-37

3 Defects

Atomic load and store sequence not atomic

Variable accessible between load and store operations

Description

Atomic load and store sequence not atomic occurs when you use these functions to
load, and then store an atomic variable.

e C functions:

* atomic load()

+ atomic load explicit()

* atomic store()

* atomic store explicit()
¢ C++ functions:

* std::atomic load()

+ std::atomic load explicit()
* std::atomic_store()

* std::atomic store explicit()
* std::atomic::load()

+ std::atomic::store()

A thread cannot interrupt an atomic load or an atomic store operation on a variable, but a
thread can interrupt a store, and then load sequence.

Risk

A thread can modify a variable between the load and store operations, resulting in a data
race condition.

3-38

Atomic load and store sequence not atomic

Fix

To read, modify, and store a variable atomically, use a compound assignment operator
such as +=, atomic_compare exchange() or atomic_ fetch *-family functions.

Examples

Loading Then Storing an Atomic Variable

#include <stdatomic.h>
#include <stdbool.h>

static atomic_bool flag = ATOMIC VAR INIT(false);

void init flag(void)

{
atomic init(&flag, false);
}
void toggle flag(void)
{
bool temp flag = atomic_ load(&flag);
temp flag = !temp flag;
atomic_store(&flag, temp flag);
}
bool get flag(void)
{
return atomic_load(&flag);
}

In this example, variable flag of type atomic bool is referenced twice inside the
toggle flag() function. The function loads the variable, negates its value, then stores
the new value back to the variable. If two threads call toggle flag(), the second
thread can access flag between the load and store operations of the first thread. flag
can end up in an incorrect state.

One possible correction is to use a compound assignment operator to toggle the value of
flag. The C standard defines the operation by using "= as atomic.

3-39

3 Defects

#include <stdatomic.h>
#include <stdbool.h>

static atomic bool flag = ATOMIC VAR INIT(false);

void toggle flag(void)

{
flag ™= 1;
}
bool get flag(void)
{
return flag;
}

Result Information

Group: Concurrency

Language: C | C++

Default: On

Command-Line Syntax: ATOMIC_ VAR SEQUENCE_NOT ATOMIC
Impact: Medium

CERT C ID: CON40-C

CERT C++ ID: CON40-C

See Also

Atomic variable accessed twice in an expression |Data race|Data race
including atomic operations

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2018b

3-40

https://wiki.sei.cmu.edu/confluence/x/MtUxBQ
https://wiki.sei.cmu.edu/confluence/x/MtUxBQ

Atomic variable accessed twice in an expression

Atomic variable accessed twice in an
expression

Variable can be modified between accesses

Description

Atomic variable accessed twice in an expression occurs when C atomic types or C++
std: :atomic class variables appear twice in an expression and there are:

* Two atomic read operations on the variable.
* An atomic read and a distinct atomic write operation on the variable.

The C standard defines certain operations on atomic variables that are thread safe and do
not cause data race conditions. Unlike individual operations, a pair of operations on the
same atomic variable in an expression is not thread safe.

Risk

A thread can modify the atomic variable between the pair of atomic operations, which can
result in a data race condition.

Fix
Do not reference an atomic variable twice in the same expression.

Examples

Referencing Atomic Variable Twice in an Expression
#include <stdatomic.h>

atomic_int n = ATOMIC VAR INIT(O);

3-41

https://en.cppreference.com/w/c/atomic
https://en.cppreference.com/w/cpp/atomic/atomic
https://en.cppreference.com/w/cpp/atomic/atomic

3 Defects

3-42

int compute sum(void)

{
}

return n * (n + 1) / 2;

In this example, the global variable n is referenced twice in the return statement of
compute sum(). The value of n can change between the two distinct read operations.
compute sum() can return an incorrect value.

One possible correction is to pass the variable as a function argument n. The variable is
copied to memory and the read operations on the copy guarantee that compute sum()
returns a correct result. If you pass a variable of type int instead of type atomic_ int,
the correction is still valid.

#include <stdatomic.h>

int compute sum(atomic int n)

{
}

return n * (n + 1) / 2;

Result Information

Group: Concurrency

Language: C | C++

Default: On

Command-Line Syntax: ATOMIC VAR ACCESS TWICE
Impact: Medium

CERT C ID: CON40-C

CERT C++ ID: CON40-C

See Also

Atomic load and store sequence not atomic |Data race|Data race
including atomic operations

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

https://wiki.sei.cmu.edu/confluence/x/MtUxBQ
https://wiki.sei.cmu.edu/confluence/x/MtUxBQ

Atomic variable accessed twice in an expression

Introduced in R2018b

3-43

3 Defects

3-44

Bad file access mode or status

Access mode argument of function in fopen or open group is invalid

Description

Bad file access mode or status occurs when you use functions in the fopen or open
group with invalid or incompatible file access modes, file creation flags, or file status flags
as arguments. For instance, for the open function, examples of valid:

* Access modes include 0 RDONLY, O_WRONLY, and O_RDWR

» File creation flags include 0 CREAT, 0 _EXCL, 0 _NOCTTY, and O TRUNC.

* File status flags include 0 APPEND, O ASYNC, 0 CLOEXEC, 0 DIRECT, 0 DIRECTORY,
0 LARGEFILE, O NOATIME, O NOFOLLOW, O NONBLOCK, O NDELAY, 0 SHLOCK,
0 EXLOCK, 0 FSYNC, 0 SYNC and so on.

The defect can occur in the following situations.

Situation Risk Fix
You pass an empty or invalid | fopen has undefined Pass a valid access mode to
access mode to the fopen |behavior for invalid access |fopen.
function. modes.
According to the ANSI C Some implementations allow
standard, the valid access |extension of the access
modes for fopen are: mode such as:
* Inr+ e GNU:rb
+cmxe, ccs=utf

° wW,w+H
. * Visual C++: a+t, where

chizhs t specifies a text mode.
* rb, wb, ab

However, your access mode
string must begin with one
* rb+, wb+, ab+ of the valid sequences.

* r+b, wtb, a+b

Bad file access mode or status

Situation

Risk

Fix

You pass the status flag

0 _APPEND to the open
function without combining
it with either 0 WRONLY or
0_RDWR.

0 _APPEND indicates that
you intend to add new
content at the end of a file.
However, without 0 WRONLY
or 0 RDWR, you cannot write
to the file.

The open function does not
return -1 for this logical
€error.

Pass either 0 APPEND |
0_WRONLY or O_APPEND |
0 _RDWR as access mode.

You pass the status flags
0 _APPEND and 0 TRUNC
together to the open
function.

0 APPEND indicates that
you intend to add new
content at the end of a file.
However, 0 TRUNC indicates
that you intend to truncate
the file to zero. Therefore,
the two modes cannot
operate together.

The open function does not
return -1 for this logical
error.

Depending on what you
intend to do, pass one of the
two modes.

You pass the status flag
0_ASYNC to the open
function.

On certain implementations,
the mode 0 ASYNC does not
enable signal-driven I/O
operations.

Use the fcntl(pathname,
F SETFL, 0 ASYNC);
instead.

Examples

Invalid Access Mode with fopen

#include <stdio.h>

void func(void) {

FILE *file = fopen("data.txt", "rw");

if(file!=NULL) {

fputs("new data",file);

3-45

3 Defects

3-46

fclose(file);
}

In this example, the access mode rw is invalid. Because r indicates that you open the file
for reading and w indicates that you create a new file for writing, the two access modes
are incompatible.

One possible correction is to use the access mode corresponding to what you intend to do.
#include <stdio.h>

void func(void) {
FILE *file = fopen("data.txt", "w");
if(file!=NULL) {
fputs("new data",file);
fclose(file);

Result Information

Group: Programming

Language: C | C++

Default: Off

Command-Line Syntax: BAD FILE ACCESS MODE STATUS
Impact: Medium

CWE ID: 628, 686

CERT C ID: EXP37-C, FIO11-C

CERT C++ ID: EXP37-C

See Also

Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

https://cwe.mitre.org/data/definitions/628.html
https://cwe.mitre.org/data/definitions/686.html
https://www.securecoding.cert.org/confluence/x/VQBc
https://www.securecoding.cert.org/confluence/x/swA1
https://wiki.sei.cmu.edu/confluence/x/49UxBQ

Bad file access mode or status

Introduced in R2015b

3-47

3 Defects

3-48

Bad order of dropping privileges

Dropped higher elevated privileges before dropping lower elevated privileges

Description

Bad order of dropping privileges checks the order of privilege drops. If you drop
higher elevated privileges before dropping lower elevated privileges, Polyspace raises a
defect. For example dropping elevated primary group privileges before dropping elevated
ancillary group privileges.

Risk

If you drop privileges in the wrong order, you can potentially drop higher privileges that
you need to drop lower privileges. The incorrect order can mean, privileges are not
dropped, compromising the security of your program.

Fix
Respect this order of dropping elevated privileges:

* Drop (elevated) ancillary group privileges, then drop (elevated) primary group
privileges.

* Drop (elevated) primary group privileges, then drop (elevated) user privileges.

Examples

Dropping User Privileges First

#define BSD SOURCE

#include <sys/types.h>
#include <unistd.h>

#include <grp.h>

#include <stdlib.h>

#define fatal error() abort()

Bad order of dropping privileges

static void sanitize privilege drop check(uid t olduid, gid t oldgid)

{
if (seteuid(olduid) != -1)

/* Privileges can be restored, handle error */
fatal error();

}
if (setegid(oldgid) != -1)
{
/* Privileges can be restored, handle error */
fatal error();
}
void badprivilegedroporder(void) {
uid t
newuid = getuid(),
olduid = geteuid();
gid t
newgid = getgid(),
oldgid = getegid();
if (setuid(newuid) == -1) {

/* handle error condition */
fatal error();

}
if (setgid(newgid) == -1) {
/* handle error condition */
fatal error();
}
if (olduid == 0) {
/* drop ancillary groups IDs only possible for root */
if (setgroups(1l, &newgid) == -1) {
/* handle error condition */
fatal error();
}
}

sanitize privilege drop check(olduid, oldgid);

}

In this example, there are two privilege drops made in the incorrect order. setgid
attempts to drop group privileges. However, setgid requires the user privileges, which
were dropped previously using setuid, to perform this function. After dropping group

3-49

3 Defects

privileges, this function attempts to drop ancillary groups privileges by using setgroups.
This task requires the higher primary group privileges that were dropped with setgid.
At the end of this function, it is possible to regain group privileges because the order of
dropping privileges was incorrect.

One possible correction is to drop the lowest level privileges first. In this correction,
ancillary group privileges are dropped, then primary group privileges are dropped, and
finally user privileges are dropped.

#define BSD SOURCE

#include <sys/types.h>
#include <unistd.h>

#include <grp.h>

#include <stdlib.h>

#define fatal error() abort()

static void sanitize privilege drop check(uid t olduid, gid t oldgid)

{

if (seteuid(olduid) != -1)

/* Privileges can be restored, handle error */
fatal error();

}
if (setegid(oldgid) !'= -1)
{

/* Privileges can be restored, handle error */
fatal error();

}

void badprivilegedroporder(void) {

3-50

uid t
newuid
olduid

gid t
newgid
oldgid

getuid()
(

geteuid();

getgid(),
getegid();
if (olduid == 0) {
/* drop ancillary groups IDs only possible for root */
if (setgroups(1l, &newgid) == -1) {
/* handle error condition */
fatal error();

Bad order of dropping privileges

}

if (setgid(getgid()) == -1) {
/* handle error condition */
fatal error();

}

if (setuid(getuid()) == -1) {
/* handle error condition */
fatal error();

}

sanitize privilege drop check(olduid, oldgid);

Result Information

Group: Security

Language: C | C++

Default: Off

Command-Line Syntax: BAD PRIVILEGE DROP ORDER
Impact: High

CWE ID: 250, 696

CERT C ID: POS36-C

CERT C++ ID: POS36-C

See Also

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2016b

3-51

https://cwe.mitre.org/data/definitions/250.html
https://cwe.mitre.org/data/definitions/696.html
https://www.securecoding.cert.org/confluence/x/dgL7
https://wiki.sei.cmu.edu/confluence/x/y9YxBQ

3 Defects

3-52

Base class assignment operator not called

Copy assignment operator does not call copy assignment operators of base subobjects

Description

Base class assignment operator not called occurs when a derived class copy
assignment operator does not call the copy assignment operator of its base class.

Risk

If this defect occurs, unless you are initializing the base class data members explicitly in
the derived class assignment operator, the operator initializes the members implicitly by
using the default constructor of the base class. Therefore, it is possible that the base class
data members do not get assigned the right values.

If users of your class expect your assignment operator to perform a complete assignment
between two objects, they can face unintended consequences.

Fix

Call the base class copy assignment operator from the derived class copy assignment
operator.

Even if the base class data members are not private, and you explicitly initialize the
base class data members in the derived class copy assignment operator, replace this
explicit initialization with a call to the base class copy assignment operator. Otherwise,
determine why you retain the explicit initialization.

Examples

Base Class Copy Assignment Operator Not Called

class Base0 {
public:

Base class assignment operator not called

BaseO();

virtual ~BaseO();

Base0& operator=(const Base0&);
private:

int i;

}

class Basel {
public:

Basel();

virtual ~Basel();

Basel& operator=(const Baselé&);
private:

int i;

}

class Derived: public Base0®, Basel {
public:
Derived();
~Derived();
Derived& operator=(const Derived& d) {
if (&d == this) return *this;
Base0: :operator=(d);
o =d._3;
return *this;

}
private:
int j;
b
In this example, the class Derived is derived from two classes Base0 and Basel. In the

copy assignment operator of Derived, only the copy assignment operator of Base0 is
called. The copy assignment operator of Basel is not called.

The defect appears on the copy assignment operator of the derived class. Following are
some tips for navigating in the source code:

* To find the derived class definition, right-click the derived class name and select Go To
Definition.

* To find the base class definition, first navigate to the derived class definition. In the
derived class definition, right-click the base class name and select Go To Definition.

3-53

3 Defects

» To find the definition of the base class copy assignment operator, first navigate to the
base class definition. In the base class definition, right-click the operator name and
select Go To Definition.

If you want your copy assignment operator to perform a complete assignment, one
possible correction is to call the copy assignment operator of class Basel.

class Base0® {
public:

BaseO();

virtual ~Base0O()

Base0& operator=
private:

int 1i;

(const Base0&);

}

class Basel {
public:

Basel();

virtual ~Basel();

Basel& operator=(const Basel&);
private:

int i;

+

class Derived: public Base0, Basel {
public:
Derived();
~Derived();
Derived& operator=(const Derived& d) {
if (&d == this) return *this;
Base0: :operator=(d);
Basel: :operator=(d);
_J=d._3;
return *this;
}
private:
int j;

+

3-54

Base class assignment operator not called

Result Information

Group: Object oriented

Language: C++

Default: On

Command-Line Syntax: MISSING BASE_ASSIGN OP CALL
Impact: High

See Also

Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Copy constructor not called in initialization list

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2015b

3-55

3 Defects

3-56

Base class destructor not virtual

Class cannot behave polymorphically for deletion of derived class objects

Description

Base class destructor not virtual occurs when a class has virtual functions but not a
virtual destructor.

Risk

The presence of virtual functions indicates that the class is intended for use as a base
class. However, if the class does not have a virtual destructor, it cannot behave
polymorphically for deletion of derived class objects.

If a pointer to this class refers to a derived class object, and you use the pointer to delete
the object, only the base class destructor is called. Additional resources allocated in the
derived class are not released and can cause a resource leak.

Fix

One possible fix is to always use a virtual destructor in a class that contains virtual
functions.

Examples

Base Class Destructor Not Virtual

class Base {
public:
Base(): b(0) {};
virtual void update() { b += 1;};
private:
int b;

}

Base class destructor not virtual

class Derived: public Base {
public:
Derived(): d(0) {};
~Derived() { d = 0;};
virtual void update() { d += 1;};
private:
int d;

}

In this example, the class Base does not have a virtual destructor. Therefore, if a
Base* pointer points to a Derived object that is allocated memory dynamically, and the
delete operation is performed on that Base* pointer, the Base destructor is called. The
memory allocated for the additional member d is not released.

The defect appears on the base class definition. Following are some tips for navigating in
the source code:

» To find classes derived from the base class, right-click the base class name and select
Search For All References. Browse through each search result to find derived class
definitions.

* To find if you are using a pointer or reference to a base class to point to a derived class
object, right-click the base class name and select Search For All References. Browse
through search results that start with Base* or Base& to locate pointers or references
to the base class. You can then see if you are using a pointer or reference to point to a
derived class object.

One possible correction is to declare a virtual destructor for the class Base.

class Base {

public:
Base(): b(0) {};
virtual ~Base() { b = 0;};
virtual void update() { b += 1;};
private:
int b;
}
class Derived: public Base {
public:

Derived(): d(0) {};
~Derived() { d = 0;};
virtual void update() { d += 1;};

3-57

3 Defects

3-58

private:
int d;

+

Result Information

Group: Object oriented

Language: C++

Default: On

Command-Line Syntax: DTOR_NOT VIRTUAL
Impact: Medium

CERT C++ ID: OOP52-CPP

See Also

Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

External Websites
CERT C++ OOP52-CPP

Introduced in R2015b

https://wiki.sei.cmu.edu/confluence/x/5Xs-BQ
https://www.securecoding.cert.org/confluence/x/UQBO

Bitwise and arithmetic operation on the same data

Bitwise and arithmetic operation on the
same data

Statement with mixed bitwise and arithmetic operations

Description

Bitwise and arithmetic operation on a same data detects statements with bitwise and
arithmetic operations on the same variable or expression.

Risk

Mixed bitwise and arithmetic operations do compile. However, the size of integer types
affects the result of these mixed operations. Mixed operations also reduce readability and
maintainability.

Fix

Separate bitwise and arithmetic operations, or use only one type of operation per
statement.

Examples

Shift and Addition

unsigned int bitwisearithmix()

{
unsigned int var = 50;
var += (var << 2) + 1;
return var;

}

This example shows bitwise and arithmetic operations on the variable var. var is shifted
by two (bitwise), then increased by 1 and added to itself (arithmetic).

3-59

3 Defects

You can reduce this expression to arithmetic-only operations: var + (var << 2)is
equivalent to var * 5.

unsigned int bitwisearithmix()

{
unsigned int var = 50;
var = var * 5 +1;
return var;

}

Result Information

Group: Good Practice

Language: C | C++

Default: Off

Command-Line Syntax: BITWISE ARITH MIX
Impact: Low

CWE ID: 710

CERT C ID: INT14-C

See Also

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2016b

3-60

https://cwe.mitre.org/data/definitions/710.html
https://www.securecoding.cert.org/confluence/x/dgAV

Bitwise operation on negative value

Bitwise operation on negative value

Undefined behavior for bitwise operations on negative values

Description

Bitwise operation on negative value detects bitwise operators (>>, *, |, ~, but, not,
&) used on signed integer variables with negative values.

Risk

If the value of the signed integer is negative, bitwise operation results can be unexpected
because:

* Bitwise operations on negative values are compiler-specific.
* Unexpected calculations can lead to additional vulnerabilities, such as buffer overflow.

Fix

When performing bitwise operations, use unsigned integers to avoid unexpected results.

Examples

Right-Shift of Negative Integer

#include <stdio.h>
#include <stdarg.h>

static void demo sprintf(const char *format, ...)
{

int rc;

va list ap;

char buf[sizeof("256")];

va_start(ap, format);
rc = vsprintf(buf, format, ap);

3-61

3 Defects

3-62

if (rc == -1 || rc >= sizeof(buf)) {
/* Handle error */
}
va_end(ap);
}
void bug bitwiseneg()
{
int stringify = 0x80000000;
demo _sprintf("su", stringify >> 24);
}

In this example, the statement demo _sprintf("%su", stringify >> 24) stops the
program unexpectedly. You expect the result of stringify >> 24 to be 0x80. However,
the actual result is Oxffffff80 because stringify is signed and negative. The sign bit
is also shifted.

By adding the unsigned keyword, stringify is not negative and the right-shift
operation gives the expected result of 0x80.

#include <stdio.h>
#include <stdarg.h>

static void demo sprintf(const char *format, ...)
{

int rc;

va list ap;

char buf[sizeof("256")];

va_start(ap, format);

rc = vsprintf(buf, format, ap);

if (rc == -1 || rc >= sizeof(buf)) {
/* Handle error */

}
va_end(ap);
}
void corrected bitwiseneg()
{
unsigned int stringify = 0x80000000;
demo _sprintf("su", stringify >> 24);
}

Bitwise operation on negative value

Result Information
Group: Numerical

Language: C | C++

Default: Off

Command-Line Syntax: BITWISE NEG
Impact: Medium

CWE ID: 682, 758

CERT C ID: INT13-C

See Also

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2016b

3-63

https://cwe.mitre.org/data/definitions/682.html
https://cwe.mitre.org/data/definitions/758.html
https://www.securecoding.cert.org/confluence/x/BoAD

3 Defects

Blocking operation while holding lock

Task performs lengthy operation while holding a lock

Description

Blocking operation while holding lock occurs when a task (thread) performs a
potentially lengthy operation while holding a lock.

The checker considers calls to these functions as potentially lengthy:

* Functions that access a network such as recv

* System call functions such as fork, pipe and system

* Functions for I/O operations such as getchar and scanf

 File handling functions such as fopen, remove and lstat

* Directory manipulation functions such as mkdir and rmdir

The checker automatically detects certain primitives that hold and release a lock, for
instance, pthread mutex lock and pthread mutex unlock. For the full list of

primitives that are automatically detected, see “Auto-Detection of Thread Creation and
Critical Section in Polyspace”.

Risk

If a thread performs a lengthy operation when holding a lock, other threads that use the
lock have to wait for the lock to be available. As a result, system performance can slow
down or deadlocks can occur.

Fix
Perform the blocking operation before holding the lock or after releasing the lock.

Some functions detected by this checker can be called in a way that does not make them
potentially lengthy. For instance, the function recv can be called with the parameter

0 NONBLOCK which causes the call to fail if no message is available. When called with this
parameter, recv does not wait for a message to become available.

3-64

Blocking operation while holding lock

Examples

Network I/0O Operations with recv While Holding Lock

#include <pthread.h>
#include <sys/socket.h>

pthread mutexattr t attr;
pthread mutex t mutex;

void thread foo(void *ptr) {
unsigned int num;
int result;
int sock;

/* sock is a connected TCP socket */

if ((result = pthread mutex lock(&mutex)) != 0) {
/* Handle Error */
}

if ((result = recv(sock, (void *)&num, sizeof(unsigned int), 0)) < 0) {
/* Handle Error */
}

/* o0 %/

if ((result = pthread mutex unlock(&mutex)) != 0) {
/* Handle Error */
}

}

int main() {
pthread t thread;
int result;

if ((result = pthread mutexattr_settype(
&attr, PTHREAD MUTEX_ERRORCHECK)) != 0) {
/* Handle Error */

}

if ((result = pthread mutex init(&mutex, &attr)) != 0) {
/* Handle Error */

3-65

3 Defects

}

if (pthread create(&thread, NULL, (void*(*)(void*))& thread foo, NULL) '= 0) {
/* Handle Error */
}

/* L. %/
pthread join(thread, NULL);

if ((result = pthread mutex destroy(&mutex)) != 0) {
/* Handle Error */
}

return 0;

}

In this example, in each thread created with pthread create, the function thread foo
performs a network I/O operation with recv after acquiring a lock with

pthread mutex lock. Other threads using the same lock variable mutex have to wait
for the operation to complete and the lock to become available.

One possible correction is to call recv before acquiring the lock.

#include <pthread.h>
#include <sys/socket.h>

pthread mutexattr t attr;
pthread mutex t mutex;

void thread foo(void *ptr) {
unsigned int num;
int result;
int sock;

/* sock is a connected TCP socket */

if ((result = recv(sock, (void *)&num, sizeof(unsigned int), 0)) < 0) {
/* Handle Error */

}

if ((result = pthread mutex lock(&mutex)) != 0) {
/* Handle Error */
}

3-66

Blocking operation while holding lock

/* o0/

if ((result = pthread mutex unlock(&mutex)) != 0) {
/* Handle Error */
}
}

int main() {
pthread t thread;
int result;

if ((result = pthread mutexattr_settype(
&attr, PTHREAD MUTEX_ERRORCHECK)) != 0) {
/* Handle Error */

}

if ((result = pthread mutex init(&mutex, &attr)) != 0) {
/* Handle Error */

}

if (pthread create(&thread, NULL, (void*(*)(void*))& thread foo, NULL) '= 0) {
/* Handle Error */

}
/* L. %/
pthread join(thread, NULL);

if ((result = pthread mutex destroy(&mutex)) != 0) {
/* Handle Error */

}

return 0;

Result Information

Group: Concurrency

Language: C | C++

Default: Off

Command-Line Syntax: BLOCKING WHILE LOCKED
Impact: Low

CWE ID: 667

3-67

https://cwe.mitre.org/data/definitions/667.html

3 Defects

CERT C ID: CONO05-C, POS52-C
CERT C++ ID: POS52-C

See Also

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2018b

3-68

https://wiki.sei.cmu.edu/confluence/x/bdUxBQ
https://wiki.sei.cmu.edu/confluence/x/mdUxBQ
https://wiki.sei.cmu.edu/confluence/x/y9YxBQ

Buffer overflow from incorrect string format specifier

Buffer overflow from incorrect string format
specifier

String format specifier causes buffer argument of standard library functions to overflow

Description

Buffer overflow from incorrect string format specifier occurs when the format
specifier argument for functions such as sscanf leads to an overflow or underflow in the
memory buffer argument.

Risk

If the format specifier specifies a precision that is greater than the memory buffer size, an
overflow occurs. Overflows can cause unexpected behavior such as memory corruption.

Fix

Use a format specifier that is compatible with the memory buffer size.

Examples

Memory Buffer Overflow
#include <stdio.h>
void func (char *str[]) {

char buf[32];
sscanf(str[1], "%33c", buf);

}

In this example, buf can contain 32 char elements. Therefore, the format specifier %33c¢
causes a buffer overflow.

3-69

3 Defects

One possible correction is to use a smaller precision in the format specifier.

#include <stdio.h>

void func (char *str[]) {
char buf[32];
sscanf(str[1], "%32c", buf);

Result Information

Group: Static memory

Language: C | C++

Default: On

Command-Line Syntax: STR_FORMAT BUFFER OVERFLOW
Impact: High

CWE ID: 124, 125, 126, 127

CERT C ID: ARR38-C, STR03-C, STR31-C

CERT C++ ID: ARR38-C, STR31-C, STR50-CPP

ISO/IEC TS 17961 ID: taintformatio

See Also

Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2015b

3-70

https://cwe.mitre.org/data/definitions/124.html
https://cwe.mitre.org/data/definitions/125.html
https://cwe.mitre.org/data/definitions/126.html
https://cwe.mitre.org/data/definitions/127.html
https://www.securecoding.cert.org/confluence/x/EYCGB
https://www.securecoding.cert.org/confluence/x/LQY
https://www.securecoding.cert.org/confluence/x/KAE
https://wiki.sei.cmu.edu/confluence/x/W9UxBQ
https://wiki.sei.cmu.edu/confluence/x/sNUxBQ
https://wiki.sei.cmu.edu/confluence/x/i3w-BQ

Call through non-prototyped function pointer

Call through non-prototyped function
pointer

Function pointer declared without its type or number of parameters causes unexpected
behavior

Description

Call through non-prototyped function pointer detects a call to a function through a
pointer without a prototype. A function prototype specifies the type and number of
parameters.

Risk

Arguments passed to a function without a prototype might not match the number and
type of parameters of the function definition, which can cause undefined behavior. If the
parameters are restricted to a subset of their type domain, arguments from untrusted
sources can trigger vulnerabilities in the called function.

Fix

Before calling the function through a pointer, provide a function prototype.

Examples

Argument Does Not Match Parameter Restriction

#include <stdio.h>
#include <limits.h>
#define SIZE2 2

typedef void (*func_ptr)();

extern int getchar wrapper(void);
extern void restricted int sink(int 1i);
/* Integer value restricted to

3-71

3 Defects

3-72

range [-1, 255] */
extern void restricted float sink(double 1i);
/* Double value restricted to > 0.0 */

func_ptr generic callback[SIZE2] =

{
(func_ptr)restricted int sink,
(func_ptr)restricted float sink

b

void func(void)

{
int ic;
ic = getchar wrapper();
/* Wrong index used for generic_callback.
Negative 'int' passed to restricted float sink. */
(*generic_callback[1]) (ic);

}

In this example, a call through func_ptr passes ic as an argument to function
generic_callback[1]. The type of ic can have negative values, while the parameter of
generic callback[1] is restricted to float values greater than 0. 0. Typically,
compilers and static analysis tools cannot perform type checking when you do not provide
a pointer prototype.

Pass the argument ic to a function with a parameter of type int, by using a properly
prototyped pointer.

#include <stdio.h>
#include <limits.h>
#define SIZE2 2

typedef void (*func ptr proto) (int);

extern int getchar wrapper(void);

extern void restricted int sink(int 1i);

/* Integer value restricted to

range [-1, 255] */

extern void restricted float sink(double 1i);
/* Double value restricted to > 0.0 */

Call through non-prototyped function pointer

func_ptr _proto generic callback[SIZE2] =
{

(func_ptr proto)restricted int sink,
(func_ptr proto)restricted float sink

+

void func(void)

{
int ic;
ic = getchar wrapper();
/* ic passed to function through
properly prototyped pointer. */
(*generic_callback[0]) (ic);
}

Result Information

Group: Programming

Language: C

Default: On

Command-Line Syntax: UNPROTOTYPED FUNC CALL
Impact: Medium

ISO/IEC TS 17961 ID: taintnoproto

See Also

Declaration mismatch |Unreliable cast of function pointer

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2017b

3-73

3 Defects

3-74

Call to memset with unintended value

memset or wnemset used with possibly incorrect arguments

Description

Call to memset with unintended value occurs when Polyspace Bug Finder detects a
use of the memset or wmemset function with possibly incorrect arguments.

void *memset (void *ptr, int value, size t num) fills the first num bytes of
the memory block that ptr points to with the specified value. If the argument value is
incorrect, the memory block is initialized with an unintended value.

The unintended initialization can occur in the following cases.

Issue

Risk

Possible Fix

The second argument is '0"
instead of @ or '\0".

The ASCII value of
character '0"' is 48
(decimal), Ox30
(hexadecimal), 069 (octal)
but not 0 (or '\0"') .

If you want to initialize with
'0', use one of the ASCII
values. Otherwise, use 0 or
"\O"'.

The second and third
arguments are probably
reversed. For instance, the
third argument is a literal
and the second argument is
not a literal.

If the order is reversed, a
memory block of unintended
size is initialized with
incorrect arguments.

Reverse the order of the
arguments.

Call to memset with unintended value

Issue Risk Possible Fix

The second argument If the second argument Apply a bit mask to the
cannot be represented in a |cannot be represented in a |argument to produce a
byte. byte, and you expect each |wrapped or truncated result

byte of a memory block to |that can be represented in a
be filled with that argument, |byte. When you apply a bit
the initialization does not mask, make sure that it
occur as intended. produces an expected
result.

For instance, replace
memset(a, -13,
sizeof(a)) with
memset(a, (-13) &
OXFF, sizeof(a)).

Examples

Value Cannot Be Represented in a Byte
#include <string.h>

#define SIZE 32
void func(void) {
char buf[SIZE];
int ¢ = -2;
memset (buf, (char)c, sizeof(buf));

}

In this example, (char) c cannot be represented in a byte.

One possible correction is to apply a cast so that the result can be represented in a byte.
However, check that the result of the cast is an acceptable initialization value.

#include <string.h>
#define SIZE 32

void func(void) {
char buf[SIZE 1;

3-75

3 Defects

3-76

int ¢ = -2;
memset (buf, (unsigned char)c, sizeof(buf));

Result Information

Group: Programming

Language: C | C++

Default: Off

Command-Line Syntax: MEMSET INVALID VALUE
Impact: Low

CWE ID: 665, 683

CERT C ID: INT31-C

CERT C++ ID: INT31-C

See Also

Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Use of memset with size argument zero

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2015b

https://cwe.mitre.org/data/definitions/665.html
https://cwe.mitre.org/data/definitions/683.html
https://www.securecoding.cert.org/confluence/x/RQE
https://wiki.sei.cmu.edu/confluence/x/U9YxBQ

Character value absorbed into EOF

Character value absorbed into EOF

Data type conversion makes a valid character value same as End-of-File (EOF)

Description

Character value absorbed into EOF occurs when yo