
Polyspace® Bug Finder™
Reference

R2018b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Polyspace® Bug Finder™ Reference
© COPYRIGHT 2013–2018 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History
September 2013 Online Only New for Version 1.0 (Release 2013b)
March 2014 Online Only Revised for Version 1.1 (Release 2014a)
October 2014 Online Only Revised for Version 1.2 (Release 2014b)
March 2015 Online Only Revised for Version 1.3 (Release 2015a)
September 2015 Online Only Revised for Version 2.0 (Release 2015b)
October 2015 Online Only Rereleased for Version 1.3.1 (Release

2015aSP1)
March 2016 Online Only Revised for Version 2.1 (Release 2016a)
September 2016 Online Only Revised for Version 2.2 (Release 2016b)
March 2017 Online Only Revised for Version 2.3 (Release 2017a)
September 2017 Online Only Revised for Version 2.4 (Release 2017b)
March 2018 Online Only Revised for Version 2.5 (Release 2018a)
September 2018 Online Only Revised for Version 2.6 (Release 2018b)

v

Contents

Option Descriptions
1

Polyspace Command-Line Options
2

Defects
3

Functions, Properties, Classes, and Apps
4

MISRA C 2012
5

MISRA C++: 2008
6

Custom Coding Rules
7

Group 1: Files . 7-2

Group 2: Preprocessing . 7-3

vi Contents

Group 3: Type definitions . 7-4

Group 4: Structures . 7-5

Group 5: Classes (C++) . 7-6

Group 6: Enumerations . 7-7

Group 7: Functions . 7-8

Group 8: Constants . 7-9

Group 9: Variables . 7-10

Group 10: Name spaces (C++) . 7-11

Group 11: Class templates (C++) . 7-12

Group 12: Function templates (C++) . 7-13

Group 20: Style . 7-14

Code Metrics
8

Polyspace Report Components — Alphabetical List
9

Configuration Parameters
10

Product mode . 10-2
Settings . 10-2
Dependency . 10-2

vii

Command-Line Information . 10-2

Settings from (C) . 10-3
Settings . 10-3
Dependency . 10-4
Command-Line Information . 10-4

Settings from (C++) . 10-5
Settings . 10-5
Dependency . 10-5
Command-Line Information . 10-6

Use custom project file . 10-7
Settings . 10-7
Dependency . 10-7
Command-Line Information . 10-7

Project configuration . 10-8
Settings . 10-8
Dependency . 10-8
Command-Line Information . 10-8

Enable additional file list . 10-9
Settings . 10-9
Command-Line Information . 10-9

Stub lookup tables . 10-10
Settings . 10-10
Tips . 10-11
Command-Line Information . 10-11

Input . 10-12
Settings . 10-12
Command-Line Information . 10-12

Tunable parameters . 10-13
Settings . 10-13
Command-Line Information . 10-13

Output . 10-14
Settings . 10-14
Command-Line Information . 10-14

viii Contents

Model reference verification depth . 10-15
Settings . 10-15
Command-Line Information . 10-15

Model by model verification . 10-17
Settings . 10-17
Command-Line Information . 10-17

Output folder . 10-18
Settings . 10-18
Command-Line Information . 10-18

Make output folder name unique by adding a suffix 10-19
Settings . 10-19
Command-Line Information . 10-19

Add results to current Simulink project 10-20
Settings . 10-20
Dependencies . 10-20
Command-Line Information . 10-20

Open results automatically after verification 10-21
Settings . 10-21
Command-Line Information . 10-21

Check configuration before verification 10-22
Settings . 10-22
Command-Line Information . 10-22

Verify all occurrences . 10-23
Settings . 10-23
Command-Line Information . 10-23

Approximations Used During Bug Finder Analysis
11

Inputs in Polyspace Bug Finder . 11-2

Global Variables in Polyspace Bug Finder 11-3

ix

Option Descriptions

1

Source code language (-lang)
Specify language of source files

Description
Specify the language of your source files. Before specifying other configuration options,
choose this option because other options change depending on your language selection.

If you add files during project setup, the language selection can change from the default.

Files Added Source Code Language
Only files with extension .c C
Only files with extension .cpp or .cc CPP
Files with extension .c, .cpp, and .cc C-CPP

Set Option
User interface: In your project configuration, the option is on the Target & Compiler
node. See “Dependencies” on page 1-3 for ways in which the source code language can
be automatically determined.

Command line: Use the option -lang. See “Command-Line Information” on page 1-3.

Settings
Default: C-CPP for hand code and C for model-generated code

C
If your project contains only C files, choose this setting. This value restricts the
verification to C language conventions. All files are interpreted as C files, regardless
of their file extension.

1 Option Descriptions

1-2

CPP
If your project contains only C++ files, choose this setting. This value restricts the
verification to C++ language conventions. All files are interpreted as C++ files,
regardless of their file extension.

C-CPP
If your project contains C and C++ source files, choose this setting. This value allows
for C and C++ language conventions. .c files are interpreted as C files. Other file
extensions are interpreted as C++ files.

Dependencies
• The language option allows and disallows many options and option values. Some

options change depending on your language selection. For more information, see the
individual analysis option pages.

• If you create a Polyspace project or options file from your build system using the
polyspace-configure command or polyspaceConfigure function, the value of
this option is determined by the file extensions.

For a project with both .c and .cpp files, the language option C-CPP is used. In the
subsequent analysis, each file is compiled based on the language standard determined
by the file extensions.

Command-Line Information
Parameter: -lang
Value: c | cpp | c-cpp
Default: c-cpp
Example: polyspace-bug-finder-nodesktop -lang c-cpp -sources
"file1.c,file2.cpp"
Example: polyspace-bug-finder-nodesktop -lang c -sources
"file1.c,file2.c"

See Also
C standard version (-c-version) | C++ standard version (-cpp-version)

 Source code language (-lang)

1-3

Topics
“Specify Polyspace Analysis Options”
“Specify Target Environment and Compiler Behavior”

1 Option Descriptions

1-4

C standard version (-c-version)
Specify C language standard followed in source code

Description
Specify the C language standard that you follow in your source code.

Set Option
User interface: In your project configuration, the option is on the Target & Compiler
node. See “Dependencies” on page 1-6 for other options that you must enable.

Command line: Use the option -c-version. See “Command-Line Information” on page
1-6.

Why Use This Option
Use this option so that Polyspace can allow features specific to a C standard version
during compilation. For instance, if you compile with GCC using the flag -ansi or -
std=c90, specify c90 for this option. If you are not sure of the language standard, specify
defined-by-compiler.

For instance, suppose you use the boolean data type _Bool in your code. This type is
defined in the C99 standard but unknown in prior standards such as C90. If the Polyspace
compilation follows the C90 standard, you can see compilation errors.

Some MISRA C® rules are different based on whether you use the C90 or C99 standard.
For instance, MISRA C:2012 Rule 5.2 requires that identifiers in the same scope and
name space shall be distinct. If you use the C90 standard, different identifiers that have
the same first 31 characters violate this rule. If you use the C99 standard, the number of
characters increase to 63.

Settings
Default: defined-by-compiler

 C standard version (-c-version)

1-5

defined-by-compiler
The analysis uses a standard based on your specification for Compiler (-
compiler).

See “C/C++ Language Standard Used in Polyspace Analysis”.

c90
The analysis uses the C90 Standard (ISO®/IEC 9899:1990).

c99
The analysis uses the C99 Standard (ISO/IEC 9899:1999).

c11
The analysis uses the C11 Standard (ISO/IEC 9899:2011).

Dependencies
• This option is available only if you set Source code language (-lang) to C or C-

CPP.
• If you create a project or options file from your build system using the polyspace-

configure command or polyspaceConfigure function, the value of this option is
automatically determined from your build system.

If the build system uses different standards for different files, the subsequent
Polyspace analysis can emulate your build system and use different standards for
compiling those files. If you open such a project in the Polyspace user interface, the
option value is shown as defined-by-compiler. However, instead of one standard,
Polyspace uses the hidden option -options-for-sources to associate different
standards with different files.

Command-Line Information
Parameter: -c-version
Value: defined-by-compiler | c90 | c99 | c11
Default: defined-by-compiler
Example: polyspace-bug-finder-nodesktop -lang c -sources
"file1.c,file2.c" -c-version c90

1 Option Descriptions

1-6

See Also
C++ standard version (-cpp-version) | Source code language (-lang)

Topics
“C/C++ Language Standard Used in Polyspace Analysis”
“C11 Language Elements Supported in Polyspace”

 C standard version (-c-version)

1-7

C++ standard version (-cpp-version)
Specify C++ language standard followed in source code

Description
Specify the C++ language standard that you follow in your source code.

Set Option
User interface: In your project configuration, the option is on the Target & Compiler
node. See “Dependencies” on page 1-9 for other options that you must enable.

Command line: Use the option -cpp-version. See “Command-Line Information” on
page 1-10.

Why Use This Option
Use this option so that Polyspace can allow features from a specific version of the C++
language standard during compilation. For instance, if you compile with GCC using the
flag -std=c++11 or -std=gnu++11, specify cpp11 for this option. If you are not sure of
the language standard, specify defined-by-compiler.

For instance, suppose you use range-based for loops. This type of for loop is defined in
the C++11 standard but unrecognized in prior standards such as C++03. If the Polyspace
compilation uses the C++03 standard, you can see compilation errors.

To check if your compiler allows features specific to a standard, compile code with macros
specific to the standard using compiler settings that you typically use. For instance, to
check for C++11-specific features, compile this code. The code contains a C++11-specific
keyword nullptr. If the macro __cplusplus is not 201103L (indicating C++11), this
keyword is used and causes a compilation error.

#if defined(__cplusplus) && __cplusplus >= 201103L
 /* C++11 compiler */
#else
 void* ptr = nullptr;
#endif

1 Option Descriptions

1-8

If the code compiles, use cpp11 for this option.

Settings
Default: defined-by-compiler

defined-by-compiler
The analysis uses a standard based on your specification for Compiler (-
compiler).

See “C/C++ Language Standard Used in Polyspace Analysis”.

cpp03
The analysis uses the C++03 Standard (ISO/IEC 14882:2003).

cpp11
The analysis uses the C++11 Standard (ISO/IEC 14882:2011).

cpp14
The analysis uses the C++14 Standard (ISO/IEC 14882:2014).

Dependencies
• This option is available only if you set Source code language (-lang) to CPP or

C-CPP.
• If you create a project or options file from your build system using the polyspace-

configure command or polyspaceConfigure function, the value of this option is
automatically determined from your build system.

If the build system uses different standards for different files, the subsequent
Polyspace analysis can emulate your build system and use different standards for
compiling those files. If you open such a project in the Polyspace user interface, the
option value is shown as defined-by-compiler. However, instead of one standard,
Polyspace uses multiple standards for compiling the files. However, instead of one
standard, Polyspace uses the hidden option -options-for-sources to associate
different standards with different files.

 C++ standard version (-cpp-version)

1-9

Command-Line Information
Parameter: -cpp-version
Value: defined-by-compiler | cpp03 | cpp11 | cpp14
Default: defined-by-compiler
Example: polyspace-bug-finder-nodesktop -lang c -sources
"file1.c,file2.c" -cpp-version cpp11

See Also
C standard version (-c-version) | Source code language (-lang)

Topics
“C/C++ Language Standard Used in Polyspace Analysis”
“C++11 Language Elements Supported in Polyspace”
“C++14 Language Elements Supported in Polyspace”

1 Option Descriptions

1-10

Compiler (-compiler)
Specify the compiler that you use to build your source code

Description
Specify the compiler that you use to build your source code.

Polyspace fully supports the most common compilers used to develop embedded
applications. See the list below. For these compilers, you can run analysis simply by
specifying your compiler and target processor. For other compilers, specify generic as
compiler name. If you face compilation errors, explicitly define compiler-specific
extensions to work around the errors.

Set Option
User interface: In your project configuration, the option is on the Target & Compiler
node.

Command line: Use the option -compiler. See “Command-Line Information” on page
1-17.

Why Use This Option
Polyspace uses this information to interpret syntax that is not part of the C/C++
Standard, but comes from language extensions.

For example, the option allows additional language keywords, such as sfr, sbit, and
bit. If you do not specify your compiler, these additional keywords can cause compilation
errors during Polyspace analysis.

Settings
Default: generic

 Compiler (-compiler)

1-11

generic
Analysis allows only standard syntax.

The language standard is determined by your choice for the following options:

• C standard version (-c-version)
• C++ standard version (-cpp-version)

If you do not specify a standard explicitly, the standard depends on your choice of
compiler.

gnu3.4
Analysis allows GCC 3.4 syntax.

gnu4.6
Analysis allows GCC 4.6 syntax.

gnu4.7
Analysis allows GCC 4.7 syntax.

For more information, see “Limitations” on page 1-15.
gnu4.8

Analysis allows GCC 4.8 syntax.

For more information, see “Limitations” on page 1-15.
gnu4.9

Analysis allows GCC 4.9 syntax.

For more information, see “Limitations” on page 1-15.
gnu5.x

Analysis allows GCC 5.1, 5.2, 5.3, and 5.4 syntax.

For more information, see “Limitations” on page 1-15.
gnu6.x

Analysis allows GCC 6.1, 6.2, and 6.3 syntax.

For more information, see “Limitations” on page 1-15.
clang3.x

Analysis allows Clang 3.5, 3.6, 3.7, 3.8, and 3.9 syntax.

1 Option Descriptions

1-12

visual9.0
Analysis allows Microsoft® Visual C++® 2008 syntax.

visual10.0
Analysis allows Microsoft Visual C++ 2010 syntax.

This option implicitly enables the option -no-stl-stubs.
visual11.0

Analysis allows Microsoft Visual C++ 2012 syntax.

This option implicitly enables the option -no-stl-stubs.
visual12.0

Analysis allows Microsoft Visual C++ 2013 syntax.

This option implicitly enables the option -no-stl-stubs.
visual14.0

Analysis allows Microsoft Visual C++ 2015 syntax (supports Microsoft Visual
Studio®update 2).

This option implicitly enables the option -no-stl-stubs.
keil

Analysis allows non-ANSI® C syntax and semantics associated with the Keil products
from ARM (www.keil.com).

iar
Analysis allows non-ANSI C syntax and semantics associated with the compilers from
IAR Systems (www.iar.com).

codewarrior
Analysis allows non-ANSI C syntax and semantics associated with the NXP
CodeWarrior® compiler.

If you select codewarrior, the option Target processor type (-target)
shows only the targets that are allowed for the NXP CodeWarrior compiler. See NXP
CodeWarrior Compiler (-compiler codewarrior)

diab
Analysis allows non-ANSI C syntax and semantics associated with the Wind River®

Diab compiler.

 Compiler (-compiler)

1-13

https://www.keil.com/
https://www.iar.com/

If you select diab, the option Target processor type (-target) shows only the
targets that are allowed for the NXP CodeWarrior compiler. See Diab Compiler (-
compiler diab).

greenhills
Analysis allows non-ANSI C syntax and semantics associated with a Green Hills®

compiler.

If you select greenhills, the option Target processor type (-target) shows
only the targets that are allowed for a Green Hills compiler. See Green Hills
Compiler (-compiler greenhills).

iar-ew
Analysis allows non-ANSI C syntax and semantics associated with the IAR Embedded
Workbench compiler.

If you select iar-ew, the option Target processor type (-target) shows only
the targets that are allowed for the IAR Embedded Workbench compiler. See IAR
Embedded Workbench Compiler (-compiler iar-ew).

renesas
Analysis allows non-ANSI C syntax and semantics associated with the Renesas®

compiler.

If you select renesas, the option Target processor type (-target) shows only
the targets that are allowed for the Renesas compiler. See Renesas Compiler (-
compiler renesas).

tasking
Analysis allows non-ANSI C syntax and semantics associated with the TASKING
compiler.

If you select tasking, the option Target processor type (-target) shows only
the targets that are allowed for the TASKING compiler. See TASKING Compiler (-
compiler tasking).

ti
Analysis allows non-ANSI C syntax and semantics associated with the Texas
Instruments™compiler.

If you select ti, the option Target processor type (-target) shows only the
targets that are allowed for the Texas Instruments compiler. See Texas
Instruments Compiler (-compiler ti).

1 Option Descriptions

1-14

Tips
• If you use a Visual Studio compiler, you must use a Target processor type (-

target) option that sets long long to 64 bits. Compatible targets include: i386,
sparc, m68k, powerpc, tms320c3x, sharc21x61, mpc5xx, x86_64, or mcpu with
long long set to 64 (-long-long-is-64bits at the command line).

• If you enable Check JSF C++ rules (-jsf-coding-rules), select the compiler
generic. If you use another compiler, Polyspace cannot check the JSF® coding rules
that require conforming to the ISO standard. For example, AV Rule 8: “All code shall
conform to ISO/IEC 14882:2002(E) standard C++.”

Limitations
Polyspace does not support certain features of these compilers:

• GNU® compilers (version 4.7 or later):

• Nested functions.

For instance, the function bar is nested in function foo:

int foo (int a, int b)
{
 int bar (int c) { return c * c; }

 return bar (a) + bar (b);
}

• Forward declaration of function parameters.

For instance, the parameter len is forward declared:

void func (int len; char data[len][len], int len)
{
 /* … */
}

• Complex integer data types.

However, complex floating point data types are supported.
• Initialization of structures with flexible array members using an initialization list.

 Compiler (-compiler)

1-15

For instance, the structure S has a flexible array member tab. A variable of type S
is directly initialized with an initialization list.

struct S {
 int x;
 int tab[]; /* flexible array member - not supported */
};
struct S s = { 0, 1, 2} ;

You see a warning during analysis and a red check in the results when you
dereference, for instance, s.tab[1].

• 128-bit variables.

Polyspace cannot analyze this data type semantically. Bug Finder allows use of 128-
bit data types, but Code Prover shows a compilation error if you use such a data
type, for instance, the GCC extension __float128.

• Visual Studio compilers:

• C++ Accelerated Massive Parallelism (AMP).

C++ AMP is a Visual Studio feature that accelerates your C++ code execution for
certain types of data-parallel hardware on specific targets. You typically use the
restrict keyword to enable this feature.

void Buffer() restrict(amp)
{
 ...
}

• __assume statements.

You typically use __assume with a condition that is false. The statement indicates
that the optimizer must assume the condition to be henceforth true. Code Prover
cannot reconcile this contradiction. You get the error:

Asked for compulsory presence of absent entity : assert

• Managed Extensions for C++ (required for the .NET Framework), or its successor,
C++/CLI (C++ modified for Common Language Infrastructure)

• __declspec keyword with attributes other than noreturn, nothrow, selectany
or thread.

1 Option Descriptions

1-16

Command-Line Information
Parameter: -compiler
Value: generic | gnu3.4 | gnu4.6 | gnu4.7 | gnu4.8 | gnu4.9 | gnu5.x |
gnu6.x | clang3.x | visual9.0 | visual10.0 | visual11.0 | visual12.0
| visual14.0 | keil | iar | codewarrior | diab | greenhills | iar-ew
| renesas | tasking | ti
Default: generic
Example: polyspace-bug-finder-nodesktop -lang c -sources
"file1.c,file2.c" -compiler gnu4.6
Example: polyspace-bug-finder-nodesktop -lang cpp -sources
"file1.cpp,file2.cpp" -compiler visual9.0

See Also
C standard version (-c-version) | C++ standard version (-cpp-version) |
Target processor type (-target)

Topics
“Troubleshoot Compilation Errors”
“Supported Keil or IAR Language Extensions”

 Compiler (-compiler)

1-17

Target processor type (-target)
Specify size of data types and endianness by using predefined target processor list

Description
Specify the processor on which you deploy your code.

The target processor determines the sizes of fundamental data types and the endianness
of the target machine. You can analyze code intended for an unlisted processor type by
using one of the other processor types, if they share common data properties.

Set Option
User interface: In your project configuration, the option is on the Target & Compiler
node. To see the sizes of types, click the Edit button to the right of the Target processor
type drop-down list.

For some compilers, in the user interface, you see only the processors allowed for that
compiler. For these compilers, you also cannot see the data type sizes in the user
interface. See the links in the table below for the data type sizes.

Command line: Use the option -target. See “Command-Line Information” on page 1-
21.

Why Use This Option
You specify a target processor so that some of the Polyspace run-time checks are tailored
to the data type sizes and other properties of that processor.

For instance, a variable can overflow for smaller values on a 32-bit processor such as i386
compared to a 64-bit processor such as x86_64. If you select x86_64 for your Polyspace
analysis, but deploy your code to the i386 processor, your Polyspace results are not
always applicable.

Once you select a target processor, you can specify if the default sign of char is signed or
unsigned. To determine which signedness to specify, compile this code using the compiler
settings that you typically use:

1 Option Descriptions

1-18

#include <limits.h>
int array[(char)UCHAR_MAX]; /* If char is signed, the array size is -1

If the code compiles, the default sign of char is unsigned. For instance, on a GCC
compiler, the code compiles with the -fsigned-char flag and fails to compile with the -
funsigned-char flag.

Settings
Default: i386

This table shows the size of each fundamental data type that Polyspace considers. For
some targets, you can modify the default size by clicking the Edit button to the right of
the Target processor type drop-down list. The optional values for those targets are
shown in [brackets] in the table.

Target cha
r

short int lon
g

long
long

flo
at

doubl
e

long
doublea

ptr Default
sign of
char

endian Align
ment

i386 8 16 32 32 64 32 64 96 32 signed Little 32
sparc 8 16 32 32 64 32 64 128 32 signed Big 64
m68kb 8 16 32 32 64 32 64 96 32 signed Big 64
powerpc 8 16 32 32 64 32 64 128 32 unsigne

d
Big 64

c-167 8 16 16 32 32 32 64 64 16 signed Little 64
tms320c3x 32 32 32 32 64 32 32 64 32 signed Little 32
sharc21x61 32 32 32 32 64 32 32

[64]
32 [64] 32 signed Little 32

necv850 8 16 32 32 32 32 32 64 32 signed Little 32
[16,
8]

hc08c 8 16 16
[32]

32 32 32 32
[64]

32 [64] 16d unsigne
d

Big 32
[16]

hc12 8 16 16
[32]

32 32 32 32
[64]

32 [64] 326 signed Big 32
[16]

 Target processor type (-target)

1-19

Target cha
r

short int lon
g

long
long

flo
at

doubl
e

long
doublea

ptr Default
sign of
char

endian Align
ment

mpc5xx 8 16 32 32 64 32 32
[64]

32 [64] 32 signed Big 32
[16]

c18 8 16 16 32
[24]
e

32 32 32 32 16
[24]

signed Little 8

x86_64 8 16 32 64
[32]
f

64 32 64 128 64 signed Little 64
[32]

mcpu...
(Advanced)g

8
[16]

8 [16] 16
[32]

32 32
[64]

32 32
[64]

32 [64] 16
[32]

signed Little 32
[16,
8]

Targets for
NPX
CodeWarrior
compiler

See NXP CodeWarrior Compiler (-compiler codewarrior).

Targets for
Diab compiler

See Diab Compiler (-compiler diab).

Targets for
Green Hills
compiler

See Green Hills Compiler (-compiler greenhills).

Targets for
IAR
Embedded
Workbench
compiler

See IAR Embedded Workbench Compiler (-compiler iar-ew).

Targets for
Renesas
compiler

See Renesas Compiler (-compiler renesas).

Targets for
TASKING
compiler

See TASKING Compiler (-compiler tasking).

1 Option Descriptions

1-20

Target cha
r

short int lon
g

long
long

flo
at

doubl
e

long
doublea

ptr Default
sign of
char

endian Align
ment

Targets for
Texas
Instruments
compiler

See Texas Instruments Compiler (-compiler ti).

a. For targets where the size of long double is greater than 64 bits, the size used for computations is not always the
same as the size listed in this table. The exceptions are:

• For targets i386, x86_64 and m68k, 80 bits are used for computations, following the practice in common
compilers.

• For the target tms320c3x, 40 bits are used for computation, following the TMS320C3x specifications.
• If you use a Visual compiler, the size of long double used for computations is the same as size of double,

following the specification of Visual C++ compilers.
b. The M68k family (68000, 68020, and so on) includes the “ColdFire” processor
c. Non-ANSI C specified keywords and compiler implementation-dependent pragmas and interrupt facilities are not taken

into account by this support
d. All kinds of pointers (near or far pointer) have 2 bytes (hc08) or 4 bytes (hc12) of width physically.
e. The c18 target supports the type short long as 24 bits in size.
f. Use option -long-is-32bits to support Microsoft C/C++ Win64 target.
g. mcpu is a reconfigurable Micro Controller/Processor Unit target. You can use this type to configure one or more

generic targets. For more information, see Generic target options.

Tips
If your processor is not listed, use a similar processor that shares the same
characteristics, or create an mcpu generic target processor. If your target processor does
not match the characteristics of a predefined processor, contact MathWorks® technical
support.

Command-Line Information
Parameter: -target
Value: i386 | sparc | m68k | powerpc | c-167 | tms320c3x | sharc21x61
| necv850 | hc08 | hc12 | mpc5xx | c18 | x86_64 | mcpu
Default: i386
Example: polyspace-bug-finder-nodesktop -target m68k

You can override the default values for some targets by using specific command-line
options. See the section Command-Line Options in Generic target options.

 Target processor type (-target)

1-21

See Also
Polyspace Results
Lower Estimate of Local Variable Size | Higher Estimate of Local
Variable Size

Topics
“Specify Polyspace Analysis Options”
“Specify Target Environment and Compiler Behavior”

1 Option Descriptions

1-22

NXP CodeWarrior Compiler (-compiler
codewarrior)
Specify NXP CodeWarrior compiler

Description
Specify codewarrior for Compiler (-compiler) if you compile your code using a
NXP CodeWarrior compiler. By specifying your compiler, you can avoid compilation errors
from syntax that is not part of the Standard but comes from language extensions.

Then, specify your target processor type. If you select codewarrior for Compiler, in the
user interface, you see only the processors allowed for a NXP CodeWarrior compiler. Your
choice of target processor determines the size of fundamental data types, the endianness
of the target machine and certain keyword definitions.

If you specify the codewarrior compiler, you must specify the path to your compiler
header files. See “Provide Standard Library Headers for Polyspace Analysis”.

Settings
To see the default sizes in bits for the fundamental types that the targets use, see the
contextual help.

Command-Line Information
Parameter: -compiler codewarrior -target
Value: s12z | powerpc
Default: s12z
Example: polyspace-bug-finder-nodesktop -compiler codewarrior -target
powerpc

See Also
Compiler (-compiler) | Target processor type (-target)

 NXP CodeWarrior Compiler (-compiler codewarrior)

1-23

Topics
“Specify Target Environment and Compiler Behavior”

Introduced in R2018a

1 Option Descriptions

1-24

Diab Compiler (-compiler diab)
Specify the Wind River Diab compiler

Description
Specify diab for Compiler (-compiler) if you compile your code using the Wind River
Diab compiler. By specifying your compiler, you can avoid compilation errors from syntax
that is not part of the Standard but comes from language extensions.

Then, specify your target processor type. If you select diab for Compiler, in the user
interface, you see only the processors allowed for the Diab compiler. Your choice of target
processor determines the size of fundamental data types, the endianness of the target
machine and certain keyword definitions.

If you specify the diab compiler, you must specify the path to your compiler header files.
See “Provide Standard Library Headers for Polyspace Analysis”.

The software supports version 5.9.6 and older versions of the Diab compiler.

Settings
To see the default sizes in bits for the fundamental types that the targets use, see the
contextual help.

Tips
If you encounter errors during Polyspace analysis, see “Errors Related to Diab Compiler”.

Command-Line Information
Parameter: -compiler diab -target
Value: i386 | powerpc | arm | coldfire | mips | mcore | rh850 | superh
| tricore

 Diab Compiler (-compiler diab)

1-25

Default: powerpc
Example: polyspace-bug-finder-nodesktop -compiler diab -target
tricore

See Also
Compiler (-compiler) | Target processor type (-target)

Topics
“Specify Target Environment and Compiler Behavior”

Introduced in R2016b

1 Option Descriptions

1-26

Green Hills Compiler (-compiler
greenhills)
Specify Green Hills compiler

Description
Specify greenhills for Compiler (-compiler) if you compile your code using a
Green Hills compiler. By specifying your compiler, you can avoid compilation errors from
syntax that is not part of the Standard but comes from language extensions.

Then, specify your target processor type. If you select greenhills for Compiler, in the
user interface, you see only the processors allowed for a Green Hills compiler. Your choice
of target processor determines the size of fundamental data types, the endianness of the
target machine and certain keyword definitions.

If you specify the greenhills compiler, you must specify the path to your compiler
header files. See “Provide Standard Library Headers for Polyspace Analysis”.

Settings
To see the default sizes in bits for the fundamental types that the targets use, see the
contextual help.

Tips
• If you encounter errors during a Polyspace analysis, see “Errors Related to Green Hills

Compiler”
• Polyspace supports the embedded configuration for the i386 target. If your x86 Green

Hills compiler is configured for native Windows® development, you can see
compilation errors or incorrect analysis results with Code Prover. Contact Technical
Support.

 Green Hills Compiler (-compiler greenhills)

1-27

For instance, Green Hills compilers consider a size of 12 bytes for long double for
embedded targets, but 8 bytes for native Windows. Polyspace considers 12 bytes by
default.

• If you create a Polyspace project from a build command that uses a Green Hills
compiler, the compiler options -filetype and -os_dir are not implemented in the
project. To emulate the -os_dir option, you can explicitly add the path argument of
the option as an include folder to your Polyspace project.

Command-Line Information
Parameter: -compiler greenhills -target
Value: powerpc | powerpc64 | arm | arm64 | tricore | rh850 | arm |
i386 | x86_64
Default: powerpc
Example: polyspace-bug-finder-nodesktop -compiler greenhills -target
arm

See Also
Compiler (-compiler) | Target processor type (-target)

Topics
“Specify Target Environment and Compiler Behavior”

Introduced in R2017b

1 Option Descriptions

1-28

IAR Embedded Workbench Compiler (-
compiler iar-ew)
Specify IAR Embedded Workbench compiler

Description
Specify iar-ew for Compiler (-compiler) if you compile your code using a IAR
Embedded Workbench compiler. By specifying your compiler, you can avoid compilation
errors from syntax that is not part of the Standard but comes from language extensions.

Then, specify your target processor type. If you select iar-ew for Compiler, in the user
interface, you see only the processors allowed for a IAR Embedded Workbench compiler.
Your choice of target processor determines the size of fundamental data types, the
endianness of the target machine and certain keyword definitions.

If you specify the iar-ew compiler, you must specify the path to your compiler header
files. See “Provide Standard Library Headers for Polyspace Analysis”.

Settings
To see the default sizes in bits for the fundamental types that the targets use, see the
contextual help.

Tips
Polyspace does not support some constructs specific to the IAR compiler.

For the list of unsupported constructs, see codeprover_limitations.pdf in
matlabroot\polyspace\verifier\code_prover. Here, matlabroot is the
MATLAB® installation folder, for instance, C:\Program Files\MATLAB\R2017b.

 IAR Embedded Workbench Compiler (-compiler iar-ew)

1-29

Command-Line Information
Parameter: -compiler iar-ew -target
Value: arm | avr | msp430 | rh850 | rl78
Default: arm
Example: polyspace-bug-finder-nodesktop -compiler iar-ew -target rl78

See Also
Compiler (-compiler) | Target processor type (-target)

Topics
“Specify Target Environment and Compiler Behavior”

Introduced in R2018a

1 Option Descriptions

1-30

Renesas Compiler (-compiler renesas)
Specify Renesas compiler

Description
Specify renesas for the Compiler (-compiler) option if you compile your code with a
Renesas compiler. By specifying your compiler, you can avoid compilation errors from
syntax that is not part of the Standard but comes from language extensions.

Then, specify your target processor type. If you select renesas for Compiler, in the user
interface, you see only the processors allowed for a Renesas compiler. Your choice of
target processor determines the size of fundamental data types, the endianness of the
target machine, and certain keyword definitions.

If you specify the renesas compiler, you must specify the path to your compiler header
files. See “Provide Standard Library Headers for Polyspace Analysis”.

Settings
To see the default sizes in bits for the fundamental types that the targets use, see the
contextual help.

Command-Line Information
Parameter: -compiler renesas -target
Value: rl78 | rh850 | rx
Default: rl78
Example: polyspace-bug-finder-nodesktop -compiler renesas -target rx

See Also
Compiler (-compiler) | Target processor type (-target)

 Renesas Compiler (-compiler renesas)

1-31

Topics
“Specify Target Environment and Compiler Behavior”

Introduced in R2018b

1 Option Descriptions

1-32

TASKING Compiler (-compiler tasking)
Specify the Altium TASKING compiler

Description
Specify tasking for Compiler (-compiler) if you compile your code using the
Altium® TASKING compiler. By specifying your compiler, you can avoid compilation errors
from syntax that is not part of the Standard but comes from language extensions.

Then, specify your target processor type. If you select tasking for Compiler, in the user
interface, you see only the processors allowed for the TASKING compiler. Your choice of
target processor determines the size of fundamental data types, the endianness of the
target machine and certain keyword definitions.

If you specify the tasking compiler, you must specify the path to your compiler header
files. See “Provide Standard Library Headers for Polyspace Analysis”.

The software supports different versions of the TASKING compiler, depending on the
target:

• TriCore: 6.0 and older versions
• C166: 4.0 and older versions
• ARM: 5.2 and older versions
• RH850: 2.2 and older versions

Settings
To see the default sizes in bits for the fundamental types that the targets use, see the
contextual help.

Tips
• Polyspace does not support some constructs specific to the TASKING compiler.

 TASKING Compiler (-compiler tasking)

1-33

For the list of unsupported constructs, see codeprover_limitations.pdf in
matlabroot\polyspace\verifier\code_prover. Here, matlabroot is the
MATLAB installation folder, for instance, C:\Program Files\MATLAB\R2017b.

• The CPU used is TC1793. If you use a different CPU, set the following analysis options
in your project:

• Disabled preprocessor definitions (-U): Undefine the macro
__CPU_TC1793B__.

• Preprocessor definitions (-D): Define the macro __CPU__. Enter
__CPU__=xxx, where xxx is the name of your CPU.

Additionally, define the equivalent of the macro __CPU_TC1793B__ for your CPU.
For instance, enter __CPU_TC1793A__.

Instead of manually specifying your compiler, if you trace your build command
(makefile), Polyspace can detect your CPU and add the required definitions in your
project.

• For some errors related to TASKING compiler-specific constructs, see solutions in
“Errors Related to TASKING Compiler”.

Command-Line Information
Parameter: -compiler tasking -target
Value: tricore | c166 | rh850 | arm
Default: tricore
Example: polyspace-bug-finder-nodesktop -compiler tasking -target
tricore

See Also
Compiler (-compiler) | Target processor type (-target)

Topics
“Specify Target Environment and Compiler Behavior”

Introduced in R2017a

1 Option Descriptions

1-34

Texas Instruments Compiler (-compiler ti)
Specify Texas Instruments compiler

Description
Specify ti for Compiler (-compiler) if you compile your code using a Texas
Instruments compiler. By specifying your compiler, you can avoid compilation errors from
syntax that is not part of the Standard but comes from language extensions.

Then, specify your target processor type. If you select ti for Compiler, in the user
interface, you see only the processors allowed for a Texas Instruments compiler. Your
choice of target processor determines the size of fundamental data types, the endianness
of the target machine and certain keyword definitions.

If you specify the ti compiler, you must specify the path to your compiler header files.
See “Provide Standard Library Headers for Polyspace Analysis”.

Settings
To see the default sizes in bits for the fundamental types that the targets use, see the
contextual help.

Tips
Polyspace does not support some constructs specific to the Texas Instruments compiler.

For the list of unsupported constructs, see codeprover_limitations.pdf in
matlabroot\polyspace\verifier\code_prover. Here, matlabroot is the MATLAB
installation folder, for instance, C:\Program Files\MATLAB\R2017b.

Command-Line Information
Parameter: -compiler ti -target

 Texas Instruments Compiler (-compiler ti)

1-35

Value: c28x | c6000 | arm | msp430
Default: c28x
Example: polyspace-bug-finder-nodesktop -compiler ti -target msp430

See Also
Compiler (-compiler) | Target processor type (-target)

Topics
“Specify Target Environment and Compiler Behavior”

Introduced in R2018a

1 Option Descriptions

1-36

Generic target options
Specify size of data types and endianness by creating your own target processor

Description
The Generic target options dialog box opens when you set the Target processor type
to mcpu.

Allows the specification of a generic “Micro Controller/Processor Unit" target. Use the
dialog box to specify the name of a new mcpu target, for example MyTarget. That new
target is added to the Target processor type option list.

Changing the genetic target has consequences for:

• Detection of overflow
• Computation of sizeof objects

The Target processor type option is available on the Target & Compiler node in the
Configuration pane.

Settings
Default characteristics of a new target: listed as type [size]

• char [8]
• short [16]
• int [16]
• long [32]
• long long [32]
• float [32]
• double [32]
• long double [32]

 Generic target options

1-37

• pointer [16]
• char is signed
• endianness is little-endian

Dependency
A custom target can only be created when Target processor type (-target) is set
to mcpu.

A custom target is not available when Compiler (-compiler) is set to one of the
visual* options.

Command-Line Options
When using the command line, specify your target with the other target specification
options.

Option Description Available
With

Example

-little-endian Little-endian
architectures are
Less Significant byte
First (LSF). For
example: i386.

Specifies that the
less significant byte
of a short integer
(e.g. 0x00FF) is
stored at the first
byte (0xFF) and the
most significant byte
(0x00) at the second
byte.

mcpu polyspace-bug-finder-
nodesktop -target mcpu -
little-endian

1 Option Descriptions

1-38

Option Description Available
With

Example

-big-endian Big-endian
architectures are
Most Significant
byte First (MSF). For
example: SPARC,
m68k.

Specifies that the
most significant byte
of a short integer
(e.g. 0x00FF) is
stored at the first
byte (0x00) and the
less significant byte
(0xFF) at the second
byte.

mcpu polyspace-bug-finder-
nodesktop -target mcpu -
big-endian

-default-sign-of-char
[signed | unsigned]

Specify default sign
of char.

signed: Specifies
that char is signed,
overriding target’s
default.

unsigned: Specifies
that char is
unsigned, overriding
target’s default.

All targets polyspace-bug-finder-
nodesktop -default-sign-
of-char unsigned -target
mcpu

-char-is-16bits char defined as 16
bits and all objects
have a minimum
alignment of 16 bits

Incompatible with -
short-is-8bits
and -align 8

mcpu polyspace-bug-finder-
nodesktop -target mcpu -
char-is-16bits

 Generic target options

1-39

Option Description Available
With

Example

-short-is-8bits Define short as 8
bits, regardless of
sign

mcpu polyspace-bug-finder-
nodesktop -target mcpu -
short-is-8bits

-int-is-32bits Define int as 32
bits, regardless of
sign. Alignment is
also set to 32 bits.

mcpu, hc08,
hc12,
mpc5xx

polyspace-bug-finder-
nodesktop -target mcpu -
int-is-32bits

-long-is-32bits Define long as 32
bits, regardless of
sign. Alignment is
also set to 32 bits.

If your project sets
int to 64 bits, you
cannot use this
option.

All targets polyspace-bug-finder-
nodesktop -target mcpu -
long-is-32bits

-long-long-is-64bits Define long long
as 64 bits,
regardless of sign.
Alignment is also set
to 64 bits.

mcpu polyspace-bug-finder-
nodesktop -target mcpu -
long-long-is-64bits

-double-is-64bits Define double and
long double as 64
bits, regardless of
sign.

mcpu,
sharc21x6
1, hc08,
hc12,
mpc5xx

polyspace-bug-finder-
nodesktop -target mcpu -
double-is-64bits

-pointer-is-24bits Define pointer as 24
bits, regardless of
sign.

c18 polyspace-bug-finder-
nodesktop -target c18 -
pointer-is-24bits

-pointer-is-32bits Define pointer as 32
bits, regardless of
sign.

mcpu polyspace-bug-finder-
nodesktop -target mcpu -
pointer-is-32bits

1 Option Descriptions

1-40

Option Description Available
With

Example

-align [32|16|8] Specifies the largest
alignment of struct
or array objects to
the 32, 16 or 8 bit
boundaries.

Consequently, the
array or struct
storage is strictly
determined by the
size of the individual
data objects without
member and end
padding.

mcpu, hc08,
hc12,
mpc5xx.

Other than
mcpu, all
targets
support only
16 or 32
bits.

polyspace-bug-finder-
nodesktop -target mcpu -
align 16

Common Generic Targets
The following tables describe the characteristics of common generic targets.

ST7 (Hiware C compiler : HiCross for ST7)

ST7 char short int long long
long

float doubl
e

long
doubl
e

ptr char is endia
n

size 8 16 16 32 32 32 32 32 16/32 unsigne
d

Big

alignment 8 16/8 16/8 32/16/8 32/16/8 32/16/8 32/16/
8

32/16/
8

32/16/
8

N/A N/A

 Generic target options

1-41

ST9 (GNU C compiler : gcc9 for ST9)

ST9 char short int long long
long

float doubl
e

long
doubl
e

ptr char is endia
n

size 8 16 16 32 32 32 64 64 16/64 unsigne
d

Big

alignment 8 8 8 8 8 8 8 8 8 N/A N/A

Hitachi H8/300, H8/300L

Hitachi
H8/300,
H8/300L

char short int long long
long

float doubl
e

long
doubl
e

ptr char is endia
n

size 8 16 16/3
2

32 64 32 654 64 16 unsigne
d

Big

alignment 8 16 16 16 16 16 16 16 16 N/A N/A

Hitachi H8/300H, H8S, H8C, H8/Tiny

Hitachi
H8/300H
, H8S,
H8C, H8/
Tiny

char short int long long
long

float doubl
e

long
doubl
e

ptr char is endia
n

size 8 16 16/
32

32 64 32 64 64 32 unsigne
d

Big

alignment 8 16 32/
16

32/16 32/16 32/16 32/16 32/16 32/16 N/A N/A

See Also
Target processor type (-target)

Topics
“Specify Target Environment and Compiler Behavior”

1 Option Descriptions

1-42

Sfr type support (-sfr-types)
Specify sizes of sfr types for code developed with Keil or IAR compilers

Description
Specify sizes of sfr types (types that define special function registers).

Set Option
User interface: In your project configuration, the option is on the Target & Compiler
node. See “Dependency” on page 1-43 for other options you must also enable.

Command line: Use the option -sfr-types. See “Command-Line Information” on page
1-44.

Why Use This Option
Use this option if you have statements such as sfr addr = 0x80; in your code. sfr
types are not standard C types. Therefore, you must specify their sizes explicitly for the
Polyspace analysis.

Settings
No Default

List each sfr name and its size in bits.

Dependency
This option is available only when Compiler (-compiler) is set to keil or iar.

 Sfr type support (-sfr-types)

1-43

Command-Line Information
Syntax: -sfr-types sfr_name=size_in_bits,...
No Default
Name Value: an sfr name such as sfr16.
Size Value: 8 | 16 | 32
Example: polyspace-bug-finder-nodesktop -lang c -compiler iar -sfr-
types sfr=8,sfr16=16 ...

See Also

Topics
“Specify Polyspace Analysis Options”
“Specify Target Environment and Compiler Behavior”
“Supported Keil or IAR Language Extensions”

1 Option Descriptions

1-44

Division round down (-div-round-down)
Round down quotients from division or modulus of negative numbers instead of rounding
up

Description
Specify whether quotients from division and modulus of negative numbers are rounded up
or down.

Note a = (a / b) * b + a % b is always true.

Set Option
User interface: In your project configuration, the option is on the Target & Compiler
node.

Command line: Use the option -div-round-down. See “Command-Line Information” on
page 1-46.

Why Use This Option
Use this option to emulate your compiler.

The option is relevant only for compilers following C90 standard (ISO/IEC 9899:1990).
The standard stipulates that "if either operand of / or % is negative, whether the result of
the / operator, is the largest integer less or equal than the algebraic quotient or the
smallest integer greater or equal than the quotient, is implementation defined, same for
the sign of the % operator". The standard allows compilers to choose their own
implementation.

For compilers following the C99 standard ((ISO/IEC 9899:1999), this option is not
required. The standard enforces division with rounding towards zero (section 6.5.5).

 Division round down (-div-round-down)

1-45

Settings
 On

If either operand / or % is negative, the result of the / operator is the largest integer
less than or equal to the algebraic quotient. The result of the % operator is deduced
from a % b = a - (a / b) * b.

Example: assert(-5/3 == -2 && -5%3 == 1); is true.
 Off (default)

If either operand of / or % is negative, the result of the / operator is the smallest
integer greater than or equal to the algebraic quotient. The result of the % operator is
deduced from a % b = a - (a / b) * b.

This behavior is also known as rounding towards zero.

Example: assert(-5/3 == -1 && -5%3 == -2); is true.

Command-Line Information
Parameter: -div-round-down
Default: Off
Example: polyspace-bug-finder-nodesktop -div-round-down

See Also

Topics
“Specify Polyspace Analysis Options”
“Specify Target Environment and Compiler Behavior”

1 Option Descriptions

1-46

Enum type definition (-enum-type-
definition)
Specify how to represent an enum with a base type

Description
Allow the analysis to use different base types to represent an enumerated type, depending
on the enumerator values and the selected definition. When using this option, each enum
type is represented by the smallest integral type that can hold its enumeration values.

This option is available on the Target & Compiler node in the Configuration pane.

Set Option
User interface: In your project configuration, the option is on the Target & Compiler
node.

Command line: Use the option -enum-type-definition. See “Command-Line
Information” on page 1-49.

Why Use This Option
Your compiler represents enum variables as constants of a base integer type. Use this
option so that you can emulate your compiler.

To check your compiler settings, compile this code using the compiler settings that you
typically use:

#include <assert.h>
#include <limits.h>

enum { MAXSIGNEDBYTE=127 } mysmallenum_t;
int dummy[(int)sizeof(mysmallenum_t) - (int)sizeof(int)]; /* Breakpoint 1 */

enum { MYMAXINT = INT_MAX } myintenum_t;
int main(void) {

 Enum type definition (-enum-type-definition)

1-47

 assert((MYMAXINT + 1) < 0); /* Breakpoint 2 */
 assert((MYMAXINT + 1) >= 0); /* Breakpoint 3 */
 assert(0); /* Breakpoint 4 */

 return 0;
}

If compilation does not fail even at breakpoint 4, your assert statements do not behave
as expected. Check your compiler documentation and change your compiler settings. If
compilation fails at:

• Breakpoint 1: Use defined-by-compiler for this option.
• Breakpoint 2: Use auto-signed-first for this option.
• Breakpoint 3: Use auto-unsigned-first for this option.

Settings
Default: defined-by-compiler

defined-by-compiler
Uses the signed integer type for all compilers except gnu, clang and tasking.

For the gnu and clang compilers, it uses the first type that can hold all of the
enumerator values from this list: signed int, unsigned int, signed long,
unsigned long, signed long long, and unsigned long long.

For the tasking compiler, it uses the first type that can hold all of the enumerator
values from this list: char, unsigned char, short, unsigned short, int, and
unsigned int.

auto-signed-first
Uses the first type that can hold all of the enumerator values from this list: signed
char, unsigned char, signed short, unsigned short, signed int, unsigned
int, signed long, unsigned long, signed long long, and unsigned long
long.

auto-unsigned-first
Uses the first type that can hold all of the enumerator values from these lists:

1 Option Descriptions

1-48

• If enumerator values are positive: unsigned char, unsigned short, unsigned
int, unsigned long, and unsigned long long.

• If one or more enumerator values are negative: signed char, signed short,
signed isnt, signed long, and signed long long.

Command-Line Information
Parameter: -enum-type-definition
Value: defined-by-compiler | auto-signed-first | auto-unsigned-first
Default: defined-by-compiler
Example: polyspace-bug-finder-nodesktop -enum-type-definition auto-
signed-first

See Also

Topics
“Specify Polyspace Analysis Options”
“Specify Target Environment and Compiler Behavior”

 Enum type definition (-enum-type-definition)

1-49

Signed right shift (-logical-signed-right-
shift)
Specify how to treat the sign bit for logical right shifts on signed variables

Description
Choose between arithmetic and logical shift for right shift operations on negative values.

This option does not modify compile-time expressions. For more details, see “Limitation”
on page 1-51.

Set Option
User interface: In your project configuration, the option is on the Target & Compiler
node.

Command line: Use the option -logical-signed-right-shift. See “Command-Line
Information” on page 1-51.

Why Use This Option
The C99 Standard (sec 6.5.7) states that for a right-shift operation x1>>x2, if x1 is signed
and has negative values, the behavior is implementation-defined. Different compilers
choose between arithmetic and logical shift. Use this option to emulate your compiler.

Settings
Default: Arithmetical

Arithmetical
The sign bit remains:

(-4) >> 1 = -2
(-7) >> 1 = -4
 7 >> 1 = 3

1 Option Descriptions

1-50

Logical
0 replaces the sign bit:

(-4) >> 1 = (-4U) >> 1 = 2147483646
(-7) >> 1 = (-7U) >> 1 = 2147483644
 7 >> 1 = 3

Limitation
In compile-time expressions, this Polyspace option does not change the standard behavior
for right shifts.

For example, consider this right shift expression:

int arr[((-4) >> 20)];

The compiler computes array sizes, so the expression (-4) >> 20 is evaluated at
compilation time. Logically, this expression is equivalent to 4095. However, arithmetically,
the result is -1. This statement causes a compilation error (arrays cannot have negative
size) because the standard right-shift behavior for signed integers is arithmetic.

Command-Line Information
When using the command line, arithmetic is the default computation mode. When this
option is set, logical computation is performed.
Parameter: -logical-signed-right-shift
Default: Arithmetic signed right shifts
Example: polyspace-bug-finder-nodesktop -logical-signed-right-shift

See Also

Topics
“Specify Polyspace Analysis Options”
“Specify Target Environment and Compiler Behavior”

 Signed right shift (-logical-signed-right-shift)

1-51

Block char16/32_t types (-no-uliterals)
Disable Polyspace definitions for char16_t or char32_t

Description
Specify that the analysis must not define char16_t or char32_t types.

Set Option
User interface: In your project configuration, the option is on the Target & Compiler
node. See “Dependencies” on page 1-53 for other options you must also enable.

Command line: Use the option -no-uliterals. See “Command-Line Information” on
page 1-53.

Why Use This Option
If your compiler defines char16_t and/or char32_t through a typedef statement or by
using includes, use this option to turn off the standard Polyspace definition of char16_t
and char32_t.

To check if your compiler defines these types, compile this code using the compiler
settings that you typically use:

typedef unsigned short char16_t;
typedef unsigned long char32_t;

If the file compiles, it means that your compiler has already defined char16_t and
char32_t. Enable this Polyspace option.

Settings
 On

The analysis does not allow char16_t and char32_t types.

1 Option Descriptions

1-52

 Off (default)
The analysis allows char16_t and char32_t types.

Dependencies
You can select this option only when these conditions are true:

• Source code language (-lang) is CPP or C-CPP.
• Compiler (-compiler) is either generic or a gnu version.

Command-Line Information
Parameter: -no-uliterals
Default: off
Example: polyspace-bug-finder-nodesktop -lang cpp -compiler gnu4.7 -
cpp-version cpp11 -no-uliterals

See Also
C++ standard version (-cpp-version) | Compiler (-compiler)

Topics
“Specify Polyspace Analysis Options”
“Specify Target Environment and Compiler Behavior”

 Block char16/32_t types (-no-uliterals)

1-53

Pack alignment value (-pack-alignment-
value)
Specify default structure packing alignment for code developed in Visual C++

Description
Specify the default packing alignment (in bytes) for structures, unions, and class
members.

Set Option
User interface: In your project configuration, the option is on the Target & Compiler
node.

Command line: Use the option -pack-alignment-value. See “Command-Line
Information” on page 1-55.

Why Use This Option
If you use compiler options to specify how members of a structure are packed into
memory, use this option to emulate your compiler.

For instance, if you use the Visual Studio option /Zp to specify an alignment, use this
option for your Polyspace analysis.

If you use #pragma pack directives in your code to specify alignment, and also specify
this option for analysis, the #pragma pack directives take precedence. See “#pragma
Directives” (Polyspace Code Prover).

Settings
Default: 8

You can enter one of these values:

1 Option Descriptions

1-54

https://msdn.microsoft.com/en-us/library/xh3e3fd0.aspx

• 1
• 2
• 4
• 8
• 16

Command-Line Information
Parameter: -pack-alignment-value
Value: 1 | 2 | 4 | 8 | 16
Default: 8
Example: polyspace-bug-finder-nodesktop -compiler visual10 -pack-
alignment-value 4

See Also

Topics
“Specify Polyspace Analysis Options”
“Specify Target Environment and Compiler Behavior”

 Pack alignment value (-pack-alignment-value)

1-55

Ignore pragma pack directives (-ignore-
pragma-pack)
Ignore #pragma pack directives

Description
Specify that the analysis must ignore #pragma pack directives in the code.

Set Option
User interface: In your project configuration, the option is on the Target & Compiler
node.

Command line: Use the option -ignore-pragma-pack. See “Command-Line
Information” on page 1-57.

Why Use This Option
Use this option if #pragma pack directives in your code cause linking errors.

For instance, you have two structures with the same name in your code, but one
declaration follows a #pragma pack(2) statement. Because the default alignment is 8
bytes, the different packing for the two structures causes a linking error. Use this option
to avoid such errors. See also “#pragma Directives” (Polyspace Code Prover).

Settings
 On

The analysis ignores the #pragma directives.

 Off (default)
The analysis takes into account specifications in the #pragma directives.

1 Option Descriptions

1-56

Command-Line Information
Parameter: -ignore-pragma-pack
Default: Off
Example: polyspace-bug-finder-nodesktop -ignore-pragma-pack

See Also

 Ignore pragma pack directives (-ignore-pragma-pack)

1-57

Management of size_t (-size-t-type-is)
Specify the underlying data type of size_t

Description
Specify the underlying data type of size_t explicitly: unsigned int, unsigned long
or unsigned long long. If you do not specify this option, your choice of compiler
determines the underlying type.

Set Option
User interface: In your project configuration, the option is on the Target & Compiler
node.

Command line: Use the option -size-t-type-is. See “Command-Line Information” on
page 1-59.

Why Use This Option
The analysis associates a data type with size_t when you specify your compiler. If you
use a compiler option that changes this default type, emulate your compiler option by
using this analysis option.

If you run into compilation errors during Polyspace analysis and trace the error to the
definition of size_t, it is possible that you use a compiler option and change your
compiler default. To probe further, compile this code with your compiler using the options
that you typically use:

/* Header defines malloc as void* malloc (size_t size)
#include <stdio.h>

void* malloc (unsigned int size);

If the file does not compile, your compiler options cause size_t to be defined as
unsigned long or unsigned long long. Replace unsigned int with unsigned
long and try again.

1 Option Descriptions

1-58

Settings
Default: defined-by-compiler

defined-by-compiler
Your specification for Compiler (-compiler) determines the underlying type of
size_t.

unsigned-int
The analysis considers unsigned int as the underlying type of size_t.

unsigned-long
The analysis considers unsigned long as the underlying type of size_t.

unsigned-long-long
The analysis considers unsigned long long as the underlying type of size_t.

Command-Line Information
Parameter: -size-t-type-is
Value: defined-by-compiler | unsigned-int | unsigned-long | unsigned-long-
long
Default: defined-by-compiler
Example: polyspace-bug-finder-nodesktop -size-t-type-is unsigned-long

See Also

Topics
“Specify Polyspace Analysis Options”
“Specify Target Environment and Compiler Behavior”

 Management of size_t (-size-t-type-is)

1-59

Management of wchar_t (-wchar-t-type-is)
Specify the underlying data type of wchar_t

Description
Specify the underlying data type of wchar_t explicitly. If you do not specify this option,
your choice of compiler determines the underlying type.

Set Option
User interface: In your project configuration, the option is on the Target & Compiler
node.

Command line: Use the option -wchar-t-type-is. See “Command-Line Information”
on page 1-61.

Why Use This Option
The analysis associates a data type with wchar_t when you specify your compiler. If you
use a compiler option that changes this default type, emulate your compiler option by
using this analysis option.

Settings
Default: defined-by-compiler

defined-by-compiler
Your specification for Compiler (-compiler) determines the underlying type of
wchar_t.

signed-short
The analysis considers signed short as the underlying type of wchar_t.

unsigned-short
The analysis considers unsigned short as the underlying type of wchar_t.

1 Option Descriptions

1-60

signed-int
The analysis considers signed int as the underlying type of wchar_t.

unsigned-int
The analysis considers unsigned int as the underlying type of wchar_t.

signed-long
The analysis considers signed long as the underlying type of wchar_t.

unsigned-long
The analysis considers unsigned long as the underlying type of wchar_t.

Command-Line Information
Parameter: -wchar-t-type-is
Value: defined-by-compiler | signed-short | unsigned-short | signed-
int | unsigned-int | signed-long | unsigned-long
Default: defined-by-compiler
Example: polyspace-bug-finder-nodesktop -wchar-t-type-is signed-int

See Also

Topics
“Specify Polyspace Analysis Options”
“Specify Target Environment and Compiler Behavior”

 Management of wchar_t (-wchar-t-type-is)

1-61

Ignore link errors (-no-extern-c)
Ignore certain linking errors

Description
Specify that the analysis must ignore certain linking errors.

Set Option
User interface: In your project configuration, the option is on the Environment
Settings node. See “Dependency” on page 1-63 for other options that you must also
enable.

Command line: Use the option -no-extern-C. See “Command-Line Information” on
page 1-63.

Why Use This Option
Some functions may be declared inside an extern "C" { } block in some files and not
in others. Then, their linkage is not the same and it causes a link error according to the
ANSI standard.

Applying this option will cause Polyspace to ignore this error. This permissive option may
not resolve all the extern C linkage errors.

Settings
 On

Ignore linking errors if possible.

 Off (default)
Stop analysis for linkage errors.

1 Option Descriptions

1-62

Dependency
This option is available only if you set Source code language (-lang) to CPP or C-
CPP.

Command-Line Information
Parameter: -no-extern-C
Default: off
Example: polyspace-bug-finder-nodesktop -lang cpp -no-extern-C

See Also

Topics
“Specify Polyspace Analysis Options”

 Ignore link errors (-no-extern-c)

1-63

Preprocessor definitions (-D)
Replace macros in preprocessed code

Description
Replace macros with their definitions in preprocessed code.

Set Option
User interface: In your project configuration, the option is on the Macros node.

Command line: Use the option -D. See “Command-Line Information” on page 1-66.

Why Use This Option
Use this option to emulate your compiler behavior. For instance, if your compiler
considers a macro _WIN32 as defined when you build your code, it executes code in a
#ifdef _WIN32 statement. If Polyspace does not consider that macro as defined, you
must use this option to replace the macro with 1.

Depending on your settings for Compiler (-compiler), some macros are defined by
default. Use this option to define macros that are not implicitly defined.

Typically, you recognize from compilation errors that a certain macro is not defined. For
instance, the following code does not compile if the macro _WIN32 is not defined.

#ifdef _WIN32
 int env_var;
#endif

void set() {
 env_var=1;
}

The error message states that env_var is undefined. However, the definition of env_var
is in the #ifdef _WIN32 statement. The underlying cause for the error is that the macro
_WIN32 is not defined. You must define _WIN32.

1 Option Descriptions

1-64

Settings
No Default

Using the button, add a row for the macro you want to define. The definition must be
in the format Macro=Value. If you want Polyspace to ignore the macro, leave the Value
blank.

For example:

• name1=name2 replaces all instances of name1 by name2.
• name= instructs the software to ignore name.
• name with no equals sign or value replaces all instances of name by 1. To define a

macro to execute code in a #ifdef macro_name statement, use this syntax.

Tips
• If Polyspace does not support a non-ANSI keyword and shows a compilation error, use

this option to replace all occurrences of the keyword with a blank string in
preprocessed code. The replacement occurs only for the purposes of the analysis. Your
original source code remains intact.

For instance, if your compiler supports the __far keyword, to avoid compilation
errors:

• In the user interface, enter __far=.
• On the command line, use the flag -D __far=.

The software replaces the __far keyword with a blank string during preprocessing.
For example:

int __far* pValue;

is converted to:

int * pValue;
• Polyspace recognizes keywords such as restrict and does not allow their use as
identifiers. If you use those keywords as identifiers (because your compiler does not
recognize them as keywords), replace the disallowed name with another name using

 Preprocessor definitions (-D)

1-65

this option. The replacement occurs only for the purposes of the analysis. Your original
source code remains intact.

For instance, to allow use of restrict as identifier:

• In the user interface, enter restrict=my_restrict.
• On the command line, use the flag -D restrict=my_restrict.

Command-Line Information
You can specify only one flag with each -D option. However, you can specify the option
multiple times.
Parameter: -D
No Default
Value: flag=value
Example: polyspace-bug-finder-nodesktop -D HAVE_MYLIB -D int32_t=int

See Also
Disabled preprocessor definitions (-U)

Topics
“Specify Polyspace Analysis Options”

1 Option Descriptions

1-66

Disabled preprocessor definitions (-U)
Undefine macros in preprocessed code

Description
Undefine macros in preprocessed code.

Set Option
User interface: In your project configuration, the option is on the Macros node.

Command line: Use the option -U. See “Command-Line Information” on page 1-68.

Why Use This Option
Use this option to emulate your compiler behavior. For instance, if your compiler
considers a macro _WIN32 as undefined when you build your code, it executes code in a
#ifndef _WIN32 statement. If Polyspace considers that macro as defined, you must
explicitly undefine the macro.

Some settings for Compiler (-compiler) enable certain macros by default. This option
allows you undefine the macros.

Typically, you recognize from compilation errors that a certain macro must be undefined.
For instance, the following code does not compile if the macro _WIN32 is defined.

#ifndef _WIN32
 int env_var;
#endif

void set() {
 env_var=1;
}

The error message states that env_var is undefined. However, the definition of env_var
is in the #ifndef _WIN32 statement. The underlying cause for the error is that the
macro _WIN32 is defined. You must undefine _WIN32.

 Disabled preprocessor definitions (-U)

1-67

Settings
No Default

Using the button, add a new row for each macro being undefined.

Command-Line Information
You can specify only one flag with each -U option. However, you can specify the option
multiple times.
Parameter: -U
No Default
Value: macro
Example: polyspace-bug-finder-nodesktop -U HAVE_MYLIB -U USE_COM1

See Also
Preprocessor definitions (-D)

Topics
“Specify Polyspace Analysis Options”

1 Option Descriptions

1-68

Code from DOS or Windows file system (-
dos)
Consider that file paths are in MS-DOS style

Description
Specify that DOS or Windows files are provided for analysis.

Set Option
User interface: In your project configuration, the option is on the Environment
Settings node.

Command line: Use the option -dos. See “Command-Line Information” on page 1-70.

Why Use This Option
Use this option if the contents of the Include or Source folder come from a DOS or
Windows file system. The option helps you resolve case sensitivity and control character
issues.

Settings
 On (default)

Analysis understands file names and include paths for Windows/DOS files

For example, with this option,

#include "..\mY_TEst.h"^M

#include "..\mY_other_FILE.H"^M

resolves to:

 Code from DOS or Windows file system (-dos)

1-69

#include "../my_test.h"

#include "../my_other_file.h"

In this mode, you see an error if your include folder has header files whose names
differ only in case.

 Off
Characters are not controlled for files names or paths.

Command-Line Information
Parameter: -dos
Default: Off
Example: polyspace-bug-finder-nodesktop -dos -I ./
my_copied_include_dir -D test=1

See Also

Topics
“Specify Polyspace Analysis Options”

1 Option Descriptions

1-70

Stop analysis if a file does not compile (-
stop-if-compile-error)
Specify that a compilation error must stop the analysis

Description
Specify that even a single compilation error must stop the analysis.

Set Option
User interface: In the Configuration pane, the option is on the Environment Settings
node.

Command line: Use the option -stop-if-compile-error. See “Command-Line
Information” on page 1-72.

Why Use This Option
Use this option to first resolve all compilation errors and then perform the Polyspace
analysis. This sequence ensures that all files are analyzed.

Otherwise, only files without compilation errors are fully analyzed. The analysis might
return some results for files that do not compile. If a file with compilation errors contains
a function definition, the analysis considers the function undefined. This assumption can
sometimes make the analysis less precise.

The option is more useful for a Code Prover analysis because the Code Prover run-time
checks rely more heavily on range propagation across functions.

Settings
 On

The analysis stops even if a single compilation error occurs.

 Stop analysis if a file does not compile (-stop-if-compile-error)

1-71

You see the compilation errors on the Output Summary pane.

For information on how to resolve the errors, see “Troubleshoot Compilation and
Linking Errors” (Polyspace Code Prover).

Despite compilation errors, you can see some analysis results, for instance, coding
rule violations.

 Off (default)
The analysis does not stop because of compilation errors, but only files without
compilation errors are analyzed. The analysis does not consider files that do not
compile. If a file with compilation errors contains a function definition, the analysis
considers the function undefined. If the analysis needs the definition of such a
function, it makes broad assumptions about the function.

• The function return value can take any value in the range allowed by its data type.
• The function can modify arguments passed by reference so that they can take any

value in the range allowed by their data types.

If the assumptions are too broad, the analysis can be less precise. For instance, a run-
time check can flag an operation in orange even though it does not fail in practice.

If compilation errors occur, the Dashboard pane has a link, which shows that some
files failed to compile. You can click the link and see the compilation errors on the
Output Summary pane.

Command-Line Information
Parameter:-stop-if-compile-error
Default: Off
Example: polyspace-bug-finder-nodesktop -sources filename -stop-if-
compile-error

1 Option Descriptions

1-72

See Also

Topics
“Specify Polyspace Analysis Options”

Introduced in R2017a

 Stop analysis if a file does not compile (-stop-if-compile-error)

1-73

Command/script to apply to preprocessed
files (-post-preprocessing-command)
Specify command or script to run on source files after preprocessing phase of analysis

Description
Specify a command or script to run on each source file after preprocessing.

Set Option
User interface: In your project configuration, the option is on the Environment
Settings node.

Command line: Use the option -post-preprocessing-command. See “Command-Line
Information” on page 1-76.

Why Use This Option
You can run scripts on preprocessed files to work around compilation errors or
imprecisions of the analysis while keeping your original source files untouched. For
instance, suppose Polyspace does not recognize a compiler-specific keyword. If you are
certain that the keyword is not relevant for the analysis, you can run a Perl script to
remove all instances of the keyword. When you use this option, the software removes the
keyword from your preprocessed code but keeps your original code untouched.

Use a script only if the existing analysis options do not meet your requirements. For
instance:

• For direct replacement of one keyword with another, use the option Preprocessor
definitions (-D).

However, the option does not allow search and replacement involving regular
expressions. For regular expressions, use a script.

• For mapping your library function to a standard library function, use the option -
function-behavior-specifications.

1 Option Descriptions

1-74

However, the option supports mapping to only a subset of standard library functions.
To map to an unsupported function, use a script.

If you are unsure about removing or replacing an unsupported construct, do not use this
option. Contact MathWorks Support for guidance.

Settings
No Default

Enter full path to the command or script or click to navigate to the location of the
command or script. This script is executed before verification.

Tips
• Your script must be designed to process the standard output from preprocessing and

produce its results in accordance with that standard output.
• Your script must preserve the number of lines in the preprocessed file. In other words,

it must not add or remove entire lines to or from the file.

Adding a line or removing one can potentially result in some unpredictable behavior
on the location of checks and macros in the Polyspace user interface.

• For a Perl script, in Windows, specify the full path to the Perl executable followed by
the full path to the script.

For example:

• To specify a Perl command that replaces all instances of the far keyword, enter
matlabroot\sys\perl\win32\bin\perl.exe -p -e "s/far//g".

• To specify a Perl script replace_keyword.pl that replaces all instances of a
keyword, enter matlabroot\sys\perl\win32\bin\perl.exe
absolute_path\replace_keyword.pl.

Here, matlabroot is the location of the current MATLAB installation such as C:
\Program Files\MATLAB\R2015b\ and absolute_path is the location of the Perl
script. If the paths contain spaces, use quotes to enclose the full path names.

 Command/script to apply to preprocessed files (-post-preprocessing-command)

1-75

• Use this Perl script as template. The script removes all instances of the far keyword.

#!/usr/bin/perl

binmode STDOUT;

Process every line from STDIN until EOF
while ($line = <STDIN>)
{

 # Remove far keyword
 $line =~ s/far//g;

 # Print the current processed line to STDOUT
 print $line;
}

You can use Perl regular expressions to perform substitutions. For instance, you can
use the following expressions.

Expression Meaning
. Matches any single character except newline
[a-z0-9] Matches any single letter in the set a-z, or digit in the set

0-9
[^a-e] Matches any single letter not in the set a-e
\d Matches any single digit
\w Matches any single alphanumeric character or _
x? Matches 0 or 1 occurrence of x
x* Matches 0 or more occurrences of x
x+ Matches 1 or more occurrences of x

For complete list of regular expressions, see Perl documentation.
• When you specify this option, the Compilation Assistant is automatically disabled.

Command-Line Information
Parameter: -post-preprocessing-command
Value: Path to executable file or command in quotes

1 Option Descriptions

1-76

https://perldoc.perl.org/perlre.html#Regular-Expressions

No Default
Example in Linux®: polyspace-bug-finder-nodesktop -sources file_name -
post-preprocessing-command `pwd`/replace_keyword.pl
Example in Windows: polyspace-bug-finder-nodesktop -sources file_name
-post-preprocessing-command "C:\Program Files\MATLAB\R2015b\sys\perl
\win32\bin\perl.exe" "C:\My_Scripts\replace_keyword.pl"

See Also
-regex-replace-rgx -regex-replace-fmt | Command/script to apply after
the end of the code verification (-post-analysis-command)

Topics
“Specify Polyspace Analysis Options”

 Command/script to apply to preprocessed files (-post-preprocessing-command)

1-77

Include (-include)
Specify files to be #include-ed by each C file in analysis

Description
Specify files to be #include-ed by each C file involved in the analysis. The software
enters the #include statements in the preprocessed code used for analysis, but does not
modify the original source code.

Set Option
User interface: In your project configuration, the option is on the Environment
Settings node.

Command line: Use the option -include. See “Command-Line Information” on page 1-
79.

Why Use This Option
There can be many reasons why you want to #include a file in all your source files.

For instance, you can collect in one header file all workarounds for compilation errors.
Use this option to provide the header file for analysis. Suppose you have compilation
issues because Polyspace does not recognize certain compiler-specific keywords. To work
around the issues, #define the keywords in a header file and provide the header file with
this option.

Settings
No Default

Specify the file name to be included in every file involved in the analysis.

Polyspace still acts on other directives such as #include <include_file.h>.

1 Option Descriptions

1-78

Command-Line Information
Parameter: -include
Default: None
Value: file (Use -include multiple times for multiple files)
Example: polyspace-bug-finder-nodesktop -include `pwd`/sources/
a_file.h -include /inc/inc_file.h

See Also

Topics
“Gather Compilation Options Efficiently”
“Specify Polyspace Analysis Options”

 Include (-include)

1-79

Include folders (-I)
View include folders used for analysis

Description
View the include folders used for analysis.

Set Option
This is not an option that you set in your project configuration. You can only view the
include folders in the configuration associated with a result. For instance, in the user
interface:

• To add include folders, on the Project Browser, right-click your project. Select Add
Source.

• To view the include folders that you used, with your results open, select Window >
Show/Hide View > Configuration. Under the node Environment Settings, you see
the folders listed under Include folders.

Settings
This is a read-only option available only when viewing results. Unlike other options, you
do not specify include folders on the Configuration pane. Instead, you add your include
folders on the Project Browser pane.

Command-Line Information
Parameter: -I
Value: Folder name
Example: polyspace-bug-finder-nodesktop -I /com1/inc -I /com1/sys/inc

1 Option Descriptions

1-80

See Also
-I | Include (-include)

 Include folders (-I)

1-81

Constraint setup (-data-range-
specifications)
Constrain global variables, function inputs and return values of stubbed functions

Description
This option applies primarily to a Code Prover analysis. In Bug Finder, you can only
specify external constraints on global variables.

Specify constraints (also known as data range specifications or DRS) for global variables,
function inputs and return values of stubbed functions using a Constraint Specification
template file. The template file is an XML file that you can generate in the Polyspace user
interface.

Set Option
User interface: In your project configuration, the option is on the Inputs & Stubbing
node.

Command line: Use the option -data-range-specifications. See “Command-Line
Information” on page 1-83.

Why Use This Option
Use this option for specifying constraints outside your code.

Polyspace uses the code that you provide to make assumptions about items such as
variable ranges and allowed buffer size for pointers. Sometimes the assumptions are
broader than what you expect because:

• You have not provided the complete code. For example, you did not provide some of
the function definitions.

• Some of the information about variables is available only at run time. For example,
some variables in your code obtain values from the user at run time.

Because of these broad assumptions:

1 Option Descriptions

1-82

• Code Prover can consider more execution paths than those paths that occur at run
time. If an operation fails along one of the execution paths, Polyspace places an orange
check on the operation. If that execution path does not occur at run time, the orange
check indicates a false positive.

• Bug Finder can sometimes produce false positives.

To reduce the number of such false positives, you can specify additional constraints on
global variables, function inputs, and return values of stubbed functions.

After you specify your constraints, you can save them as an XML file to use them for
subsequent analyses. If your source code changes, you can update the previous
constraints. You do not have to create a new constraint template.

Settings
No Default

Enter full path to the template file. Alternately, click to open a Constraint
Specification wizard. This wizard allows you to generate a template file or navigate to an
existing template file.

For more information, see “Specify External Constraints”.

Command-Line Information
Parameter: -data-range-specifications
Value: file
No Default
Example: polyspace-bug-finder-nodesktop -sources file_name -data-
range-specifications "C:\DRS\range.xml"

See Also
Functions to stub (-functions-to-stub)

Topics
“Specify Polyspace Analysis Options”

 Constraint setup (-data-range-specifications)

1-83

“Specify External Constraints”

1 Option Descriptions

1-84

Ignore default initialization of global
variables (-no-def-init-glob)
Consider global variables as uninitialized

Description
This option applies to Code Prover only. It does not affect a Bug Finder analysis.

Specify that Polyspace must not consider global and static variables as initialized.

Set Option
User interface: In your project configuration, the option is on the Inputs & Stubbing
node.

Command line: Use the option -no-def-init-glob. See “Command-Line Information”
on page 1-86.

Why Use This Option
The C99 Standard specifies that global variables are implicitly initialized. The default
analysis follows the Standard and considers this implicit initialization.

If you want to initialize specific global variables explicitly, use this option to find the
instances where global variables are not explicitly initialized.

Settings
 On

Polyspace ignores implicit initialization of global and static variables. The verification
generates a red Non-initialized variable error if your code reads a global or static
variable before writing to it.

 Ignore default initialization of global variables (-no-def-init-glob)

1-85

 Off (default)
Polyspace considers global variables and static variables to be initialized according to
C99 or ISO C++ standards. For instance, the default values are:

• 0 for int
• 0 for char
• 0.0 for float

Tips
• If you initialize a global variable using the generated main:

• Polyspace does not produce a red Non-initialized variable error if your code
reads the variable before writing to it. The error is not produced even if you turn
on the option Ignore default initialization of global variables.

• Polyspace considers that before the first write operation on the variable in a
function, the variable can take any value allowed by its type.

For more information on initializing global variables using the generated main, see
Variables to initialize (-main-generator-writes-variables).

• Static local variables have the same lifetime as global variables even though their
visibility is limited to the function where they are defined. Therefore, the option
applies to static local variables.

Command-Line Information
Parameter: -no-def-init-glob
Default: Off

See Also

Topics
“Specify Polyspace Analysis Options”

1 Option Descriptions

1-86

No STL stubs (-no-stl-stubs)
Do not use Polyspace implementations of functions in the Standard Template Library

Description
This option applies to Code Prover only. It does not affect a Bug Finder analysis.

Specify that the verification must not use Polyspace implementations of the Standard
Template Library.

Set Option
User interface: In your project configuration, the option is on the Inputs & Stubbing
node. See “Dependency” on page 1-88 for other options that you must also enable.

Command line: Use the option -no-stl-stubs. See “Command-Line Information” on
page 1-88.

Why Use This Option
The analysis uses an efficient implementation of all class templates from the Standard
Template Library (STL). If your compiler redefines the templates, in some cases, your
compiler implementation can conflict with the Polyspace implementation.

Use this option to prevent Polyspace from using its implementations of STL templates.
You must also explicitly provide the path to your compiler includes. See “C++ Standard
Template Library Stubbing Errors” (Polyspace Code Prover).

Settings
 On

The verification does not use Polyspace implementations of the Standard Template
Library.

 No STL stubs (-no-stl-stubs)

1-87

 Off (default)
The verification uses efficient Polyspace implementations of the Standard Template
Library.

Dependency
This option is available only if you set Source code language (-lang) to CPP or C-
CPP.

Command-Line Information
Parameter: -no-stl-stubs
Default: Off

See Also

1 Option Descriptions

1-88

Functions to stub (-functions-to-stub)
Specify functions to stub during analysis

Description
This option applies primarily to a Code Prover analysis.

Specify functions to stub during analysis.

For specified functions, Polyspace :

• Ignores the function definition even if it exists.
• Assumes that the function inputs and outputs have full range of values allowed by

their type.

Set Option
User interface: In your project configuration, the option is on the Inputs & Stubbing
node.

Command line: Use the option -functions-to-stub. See “Command-Line
Information” on page 1-91.

Why Use This Option
If you want the analysis to ignore the code in a function body, you can stub the function.

For instance:

• Suppose you have not completed writing the function and do not want the analysis to
consider the function body. You can use this option to stub the function and then
specify constraints on its return value and modifiable arguments.

• Suppose the analysis of a function body is imprecise. The analysis assumes that the
function returns all possible values that the function return type allows. You can use
this option to stub the function and then specify constraints on its return value.

 Functions to stub (-functions-to-stub)

1-89

Settings
No Default

Enter function names or choose from a list.

•
Click to add a field and enter the function name.

• Click to list functions in your code. Choose functions from the list.

When entering function names, use either the basic syntax or, to differentiate overloaded
functions, the argument syntax. For the argument syntax, separate function arguments
with semicolons. See the following code and table for examples.

//simple function

void test(int a, int b);

//C++ template function

Template <class myType>
myType test(myType a, myType b);

//C++ class method

class A {
 public:
 int test(int var1, int var2);
};

//C++ template class method

template <class myType> class A
{
 public:
 myType test(myType var1, myType var2);
};

Function Type Basic Syntax Argument Syntax
Simple function test test(int; int)

1 Option Descriptions

1-90

Function Type Basic Syntax Argument Syntax
C++ template function test test(myType; myType)
C++ class method A::test A::test(int;int)
C++ template class
method

A<myType>::test A<myType>::test(myType;my
Type)

Command-Line Information
Parameter: -functions-to-stub
No Default
Value: function1[,function2[,...]]
Example: polyspace-bug-finder-nodesktop -sources file_name -
functions-to-stub function_1,function_2

See Also
Constraint setup (-data-range-specifications)

Topics
“Specify Polyspace Analysis Options”

 Functions to stub (-functions-to-stub)

1-91

Generate stubs for Embedded Coder lookup
tables (-stub-embedded-coder-lookup-
table-functions)
Stub autogenerated functions that use lookup tables and model them more precisely

Description
This option is available only for model-generated code. The option is relevant only if you
generate code from a Simulink® model that uses Lookup Table blocks using MathWorks
code generation products.

Specify that the verification must stub autogenerated functions that use certain kinds of
lookup tables in their body. The lookup tables in these functions use linear interpolation
and do not allow extrapolation. That is, the result of using the lookup table always lies
between the lower and upper bounds of the table.

Set Option
If you are running verification from Simulink, use the option “Stub lookup tables”
(Polyspace Code Prover) in Simulink Configuration Parameters, which performs the same
task.

User interface: In your Polyspace project configuration, the option is on the Inputs &
Stubbing node.

Command line: Use the option -stub-embedded-coder-lookup-table-functions.
See “Command-Line Information” on page 1-94.

Why Use This Option
If you use this option, the verification is more precise and has fewer orange checks. The
verification of lookup table functions is usually imprecise. The software has to make
certain assumptions about these functions. To avoid missing a run-time error, the
verification assumes that the result of using the lookup table is within the full range

1 Option Descriptions

1-92

allowed by the result data type. This assumption can cause many unproven results
(orange checks) when a lookup table function is called. By using this option, you narrow
down the assumption. For functions that use lookup tables with linear interpolation and
no extrapolation, the result is at least within the bounds of the table.

The option is relevant only if your model has Lookup Table blocks. In the generated code,
the functions corresponding to Lookup Table blocks also use lookup tables. The function
names follow specific conventions. The verification uses the naming conventions to
identify if the lookup tables in the functions use linear interpolation and no extrapolation.
The verification then replaces such functions with stubs for more precise verification.

Settings
 On (default)

For autogenerated functions that use lookup tables with linear interpolation and no
extrapolation, the verification:

• Does not check for run-time errors in the function body.
• Calls a function stub instead of the actual function at the function call sites. The

stub ensures that the result of using the lookup table is within the bounds of the
table.

To identify if the lookup table in the function uses linear interpolation and no
extrapolation, the verification uses the function name. In your analysis results, you
see that the function is not analyzed. If you place your cursor on the function name,
you see the following message:

 Function has been recognized as an Embedded Coder Lookup-Table function.
 It was stubbed by Polyspace to increase precision.
 Unset the -stub-embedded-coder-lookup-table-functions option to analyze
 the code below.

 Off
The verification does not stub autogenerated functions that use lookup tables.

 Generate stubs for Embedded Coder lookup tables (-stub-embedded-coder-lookup-table-functions)

1-93

Tips
• The option applies to only autogenerated functions. If you integrate your own C/C++

S-Function using lookup tables with the model, these functions do not follow the
naming conventions for autogenerated functions. The option does not cause them to
be stubbed. If you want the same behavior for your handwritten lookup table functions
as the autogenerated functions, use the option -function-behavior-
specifications and map your function to the __ps_lookup_table_clip function.

• If you run verification from Simulink, the option is on by default. For certification
purposes, if you want your verification tool to be independent of the code generation
tool, turn off the option.

Command-Line Information
Parameter: -stub-embedded-coder-lookup-table-functions
Default: On
Example: polyspace-code-prover-nodesktop -sources file_name -stub-
embedded-coder-lookup-table-functions

See Also
Introduced in R2016b

1 Option Descriptions

1-94

Generate results for sources and (-
generate-results-for)
Specify files on which you want analysis results

Description
Specify files on which you want analysis results.

Set Option
User interface: In your project configuration, the option is on the Inputs & Stubbing
node.

Command line: Use the option -generate-results-for. See “Command-Line
Information” on page 1-97.

Why Use This Option
Use this option to see results in header files that are most relevant to you.

For instance, by default, results are generated on header files that are located in the same
folder as the source files. Often, other header files belong to a third-party library. Though
these header files are required for a precise analysis, you are not interested in reviewing
findings in those headers. Therefore, by default, results are not generated for those
headers. If you are interested in certain headers from third-party libraries, change the
default value of this option.

Settings
Default: source-headers

source-headers
Results appear on source files and header files in the same folder as the source files
or in subfolders of source file folders.

 Generate results for sources and (-generate-results-for)

1-95

The source files are the files that you add to the Source folder of your Polyspace
project (or use with the argument -sources at the command line).

all-headers
Results appear on source files and all header files. The header files can be in the same
folder as source files, in subfolders of source file folders or in include folders.

The source files are the files that you add to the Source folder of your Polyspace
project (or use with the argument -sources at the command line).

The include folders are the folders that you add to the Include folder of your
Polyspace project (or use with the argument -I at the command line).

custom
Results appear on source files and the files that you specify. If you enter a folder
name, results appear on header files in that folder.

Click to add a field. Enter a file or folder name.

Tips
1 Use this option in combination with appropriate values for the option Do not

generate results for (-do-not-generate-results-for).

If you choose custom and the values for the two options conflict, the more specific
value determines the display of results. For instance, in the following examples, the
value for the option Generate results for sources and is more specific.

Generate results for
sources and

Do not generate
results for

Final Result

custom:

C:\Includes
\Custom_Library\

custom:

C:\Includes

Results are displayed on
header files in C:
\Includes
\Custom_Library\ but
not generated for other
header files in C:
\Includes and its
subfolders.

1 Option Descriptions

1-96

Generate results for
sources and

Do not generate
results for

Final Result

custom:

C:\Includes
\my_header.h

custom:

C:\Includes\

Results are displayed on
the header file
my_header.h in C:
\Includes\ but not
generated for other
header files in C:
\Includes\ and its
subfolders.

Using these two options together, you can suppress results from all files in a certain
folder but unsuppress select files in those folders.

2 If you choose all-headers for this option, results are displayed on all header files
irrespective of what you specify for the option Do not generate results for.

Command-Line Information
Parameter: -generate-results-for
Value: all-headers | custom=file1[,file2[,...]] | folder1[,folder2[,...]]
Example: polyspace-bug-finder-nodesktop -lang c -sources file_name -
misra2 required-rules -generate-results-for "C:\usr\include"

See Also

Topics
“Specify Polyspace Analysis Options”

Introduced in R2016a

 Generate results for sources and (-generate-results-for)

1-97

Do not generate results for (-do-not-
generate-results-for)
Specify files on which you do not want analysis results

Description
Specify files on which you do not want analysis results.

Set Option
User interface: In your project configuration, the option is on the Inputs & Stubbing
node.

Command line: Use the option -do-not-generate-results-for. See “Command-
Line Information” on page 1-102.

Why Use This Option
Use this option to see results in header files that are most relevant to you.

For instance, by default, results are generated on header files that are located in the same
folder as the source files. If you are not interested in reviewing the findings in those
headers, change the default value of this option.

Settings
Default: include-folders

include-folders
Results are not generated for header files in include folders.

The include folders are the folders that you add to the Include folder of your
Polyspace project (or use with the argument -I at the command line).

1 Option Descriptions

1-98

If an include folder is a subfolder of a source folder, results are generated for files in
that include folder even if you specify the option value include-folders. In this
situation, use the option value custom and explicitly specify the include folders to
ignore.

all-headers
Results are not generated for all header files. The header files can be in the same
folder as source files, in subfolders of source file folders or in include folders.

The source files are the files that you add to the Source folder of your Polyspace
project (or use with the argument -sources at the command line).

The include folders are the folders that you add to the Include folder of your
Polyspace project (or use with the argument -I at the command line).

custom
Results are not generated for the files that you specify. If you enter a folder name,
results are suppressed from files in that folder.

Click to add a field. Enter a file or folder name.

Tips
1 Use this option appropriately in combination with appropriate values for the option

Generate results for sources and (-generate-results-for).

If you choose custom and the values for the two options conflict, the more specific
value determines the display of results. For instance, in the following examples, the
value for the option Generate results for sources and is more specific.

 Do not generate results for (-do-not-generate-results-for)

1-99

Generate results for
sources and

Do not generate
results for

Final Result

custom:

C:\Includes
\Custom_Library\

custom:

C:\Includes

Results are displayed on
header files in C:
\Includes
\Custom_Library\ but
not generated for other
header files in C:
\Includes and its
subfolders.

custom:

C:\Includes
\my_header.h

custom:

C:\Includes\

Results are displayed on
the header file
my_header.h in C:
\Includes\ but not
generated for other
header files in C:
\Includes\ and its
subfolders.

Using these two options together, you can suppress results from all files in a certain
folder but unsuppress select files in those folders.

2 If you choose all-headers for this option, results are suppressed from all header
files irrespective of what you specify for the option Generate results for sources
and.

3 If a defect or coding rule violation involves two files and you do not generate results
for one of the files, the defect or rule violation still appears. For instance, if you
define two variables with similar-looking names in files myFile.cpp and myFile.h,
you get a violation of the MISRA® C++ rule 2-10-1, even if you do not generate
results for myFile.h. MISRA C++ rule 2-10-1 states that different identifiers must
be typographically unambiguous.

The following results can involve more than one file:

MISRA C: 2004 Rules

• MISRA C: 2004 Rule 5.1 — Identifiers (internal and external) shall not rely on the
significance of more than 31 characters.

• MISRA C: 2004 Rule 5.2 — Identifiers in an inner scope shall not use the same
name as an identifier in an outer scope, and therefore hide that identifier.

1 Option Descriptions

1-100

• MISRA C: 2004 Rule 8.8 — An external object or function shall be declared in one
file and only one file.

• MISRA C: 2004 Rule 8.9 — An identifier with external linkage shall have exactly
one external definition.

MISRA C: 2012 Directives and Rules

• MISRA C: 2012 Directive 4.5 — Identifiers in the same name space with
overlapping visibility should be typographically unambiguous.

• MISRA C: 2012 Rule 5.2 — Identifiers declared in the same scope and name space
shall be distinct.

• MISRA C: 2012 Rule 5.3 — An identifier declared in an inner scope shall not hide
an identifier declared in an outer scope.

• MISRA C: 2012 Rule 5.4 — Macro identifiers shall be distinct.
• MISRA C: 2012 Rule 5.5 — Identifiers shall be distinct from macro names.
• MISRA C: 2012 Rule 8.5 — An external object or function shall be declared once

in one and only one file.
• MISRA C: 2012 Rule 8.6 — An identifier with external linkage shall have exactly

one external definition.

MISRA C++ Rules

• MISRA C++ Rule 2-10-1 — Different identifiers shall be typographically
unambiguous.

• MISRA C++ Rule 2-10-2 — Identifiers declared in an inner scope shall not hide an
identifier declared in an outer scope.

• MISRA C++ Rule 3-2-2 — The One Definition Rule shall not be violated.
• MISRA C++ Rule 3-2-3 — A type, object or function that is used in multiple

translation units shall be declared in one and only one file.
• MISRA C++ Rule 3-2-4 — An identifier with external linkage shall have exactly

one definition.
• MISRA C++ Rule 7-5-4 — Functions should not call themselves, either directly or

indirectly.
• MISRA C++ Rule 15-4-1 — If a function is declared with an exception-
specification, then all declarations of the same function (in other translation units)
shall be declared with the same set of type-ids.

 Do not generate results for (-do-not-generate-results-for)

1-101

JSF C++ Rules

• JSF C++ Rule 46 — User-specified identifiers (internal and external) will not rely
on significance of more than 64 characters.

• JSF C++ Rule 48 — Identifiers will not differ by only a mixture of case, the
presence/absence of the underscore character, the interchange of the letter O with
the number 0 or the letter D, the interchange of the letter I with the number 1 or
the letter l, the interchange of the letter S with the number 5, the interchange of
the letter Z with the number 2 and the interchange of the letter n with the letter
h.

• JSF C++ Rule 137 — All declarations at file scope should be static where possible.
• JSF C++ Rule 139 — External objects will not be declared in more than one file.

Polyspace Bug Finder Defects

• Variable shadowing — Variable hides another variable of same name with
nested scope.

• Declaration mismatch — Mismatch occurs between function or variable
declarations.

4 If a result (coding rule violation or Bug Finder defect) is inside a macro, Polyspace
typically shows the result on the macro definition instead of the macro occurrences
so that you review the result only once. Even if the macro is used in a suppressed file,
the result is still shown on the macro definition, if the definition occurs in an
unsuppressed file.

Command-Line Information
Parameter: -do-not-generate-results-for
Value: all-headers | include-folders | custom=file1[,file2[,...]] |
folder1[,folder2[,...]]
Example: polyspace-bug-finder-nodesktop -lang c -sources file_name -
misra2 required-rules -do-not-generate-results-for "C:\usr\include"

See Also
Topics
“Specify Polyspace Analysis Options”

1 Option Descriptions

1-102

Introduced in R2016a

 Do not generate results for (-do-not-generate-results-for)

1-103

External multitasking configuration
Enable setup of multitasking configuration from external file definitions

Description
Specify whether you want to use definitions from external files to set up the multitasking
configuration of your Polyspace project. The supported external file formats are:

• ARXML files for AUTOSAR projects
• OIL files for OSEK projects

Set Option
User interface: In the Configuration pane, the option is available on the Multitasking
node.

Command line: See “Command-Line Information” on page 1-105.

Why Use This Option
If your AUTOSAR project includes ARXML files with ECU configuration parameters, or if
your OSEK project includes OIL files, Polyspace can parse these files. The software sets
up tasks, interrupts, cyclical tasks, and critical sections. You do not have to set them up
manually.

Settings
 On

Polyspace parses the external files that you provide in the format that you specify to
set up the multitasking configuration of your project.

osek
Look for and parse OIL files to extract multitasking description.

1 Option Descriptions

1-104

autosar
Look for and parse AUTOSAR XML files to extract multitasking description.

 Off (default)
Polyspace does not set up the multitasking configuration of your project.

Command-Line Information
There is no single command-line option to turn on external multitasking configuration. By
using the -osek-multitasking option or the -autosar-multitasking option, you
enable external multitasking configuration.

See Also
ARXML files selection (-autosar-multitasking) | OIL files selection (-
osek-multitasking)

Topics
“Specify Polyspace Analysis Options”
“Analyze Multitasking Programs in Polyspace”
“Configuring Polyspace Multitasking Analysis Manually”

Introduced in R2018a

 External multitasking configuration

1-105

OIL files selection (-osek-multitasking)
Set up multitasking configuration from OIL file definition

Description
Specify the OIL files that Polyspace parses to set up the multitasking configuration of
your OSEK project.

Set Option
User interface: In the Configuration pane, the option is available on the Multitasking
node. See Dependencies on page 1-109 for other options you must also enable.

Command line: Use the option -osek-multitasking. See “Command-Line
Information” on page 1-110.

Why Use This Option
If your project includes OIL files, Polyspace can parse these files to set up tasks,
interrupts, cyclical tasks, and critical sections. You do not have to set them up manually.

Settings
 On

Polyspace looks for and parses OIL files to set up your multitasking configuration.
auto

Look for OIL files in your project source and include folders, but not in their
subfolders.

custom
Look for OIL files on the specified path and the path subfolders. You can specify a
path to the OIL files or to the folder containing the files.

1 Option Descriptions

1-106

When you select this option, in your source code, Polyspace supports these OSEK
multitasking keywords:

• TASK
• DeclareTask
• ActivateTask
• DeclareResource
• GetResource
• ReleaseResource
• ISR
• DeclareEvent
• DeclareAlarm

Polyspace parses the OIL files that you provide for TASK, ISR, RESOURCE, and ALARM
definitions. The analysis uses these definitions and the supported multitasking keywords
to configure tasks, interrupts, cyclical tasks, and critical sections.

Example: Analyze Your OSEK Multitasking Project

This example shows how to set up the multitasking configuration of an OSEK projet and
run an analysis on this project. To try the steps in this example, use the demo files in the
folder MATLABROOT/help/toolbox/bugfinder/examples/
External_multitasking/OSEK. MATLABROOT is your MATLAB installation folder. The
analysis results apply to this example code.

 OIL files selection (-osek-multitasking)

1-107

#include <assert.h>
#include "include/example_osek_multi.h"

int var1;
int var2;
int var3;

DeclareAlarm(Cyclic_task_activate);
DeclareResource(res1);
DeclareTask(init);
TASK(afterinit1);

TASK(init) // task
{

 var2++;
 ActivateTask(afterinit1);
 var3++;
 GetResource(res1); // critical section begins
 var1++;
 ReleaseResource(res1); // critical section ends
}

TASK(afterinit1) // task
{
 var3++;
 var2++;
 GetResource(res1); // critical section begins
 var1++;
 ReleaseResource(res1); // critical section ends

}

void main()
{}

To set up your multitasking configuration and analyze the code:

1 Copy the contents of MATLABROOT/help/toolbox/bugfinder/examples/
External_multitasking/OSEK to your machine, for instance in C:
\Polyspace_worskpace\OSEK.

1 Option Descriptions

1-108

2 Run an analysis on your OSEK project by using the command:

polyspace-bug-finder-nodesktop -sources ^
C:\Polyspace_workspace\OSEK\example_osek_multitasking.c ^
-osek-multitasking auto

Polyspace detects a data race on page 3-112 on variable var3 because of multiple read
and write operation from tasks init and afterinit1.

#include <assert.h>
#include "include/example_osek_multi.h"

int var1;
int var2;
int var3;

There is no defect on var2 since afterinit1 goes to an active state (ActivateTask())
after init increments var2. Similarly, there is no defect on var1 because it is protected
by the GetResource() and ReleaseResource() calls.

To see how Polyspace models the TASK, ISR, and RESOURCE definitions from your OIL
files, open the Concurrency window from the Dashboard pane.

 Off (default)
Polyspace does not set up a multitasking configuration for your OSEK project.

Additional Considerations
• The analysis ignores TerminateTask() declarations in your source code and

considers that subsequent code is executed.
• Polyspace ignores syntax elements of your OIL files that do not follow the syntax
defined here.

Dependencies
To enable this option in the user interface, first select the option External
multitasking configuration.

 OIL files selection (-osek-multitasking)

1-109

https://www.irisa.fr/alf/downloads/puaut/TPNXT/images/oil25.pdf

Command-Line Information
Parameter: -osek-multitasking
Value: auto | custom='file1 [,file2, dir1,...]'
Default: Off
Example: polyspace-bug-finder-nodesktop -sources source_path -I
include_path -osek-multitasking custom='path\to\file1.oil, path\to
\dir'

See Also

Topics
“Specify Polyspace Analysis Options”
“Analyze Multitasking Programs in Polyspace”

Introduced in R2017b

1 Option Descriptions

1-110

ARXML files selection (-autosar-
multitasking)
Set up multitasking configuration from ARXML file definitions

Description
To detect data races in large AUTOSAR applications, use this option with Polyspace Bug
Finder.

Specify the ARXML files that Polyspace parses to set up the multitasking configuration of
your AUTOSAR project.

Set Option
User interface: In the Configuration pane, the option is available on the Multitasking
node. See Dependencies on page 1-112 for other options you must also enable.

Command line: Use the option -autosar-multitasking. See “Command-Line
Information” on page 1-110.

Why Use This Option
If your project includes ARXML files with <ECUC-CONTAINER-VALUE> elements,
Polyspace can parse these files to set up tasks, interrupts, cyclical tasks, and critical
sections. You do not have to set them up manually.

Settings
 On

Polyspace looks for and parses ARXML files to set up your multitasking configuration.

When you select this option, the software assumes that you use the OSEK multitasking
API in your source code to declare and define tasks and interrupts. Polyspace supports
these OSEK multitasking keywords:

 ARXML files selection (-autosar-multitasking)

1-111

• TASK
• DeclareTask
• ActivateTask
• DeclareResource
• GetResource
• ReleaseResource
• ISR
• DeclareEvent
• DeclareAlarm

Polyspace parses the ARXML files that you provide for OsTask, OsIsr, OsResource,
OsAlarm, and OsEvent definitions. The analysis uses these definitions and the supported
multitasking keywords to configure tasks, interrupts, cyclical tasks, and critical sections.

To see how Polyspace models the OsTask, OsIsr, and OsResource definitions from your
ARXML files, open the Concurrency window from the Dashboard pane. In that window,
under the Entry points column, the names of the elements are extracted from their
<SHORT-NAME> values in the ARXML files.

 Off (default)
Polyspace does not set up a multitasking configuration for your AUTOSAR project.

Additional Considerations
• The analysis ignores TerminateTask() declarations in your source code and

considers that subsequent code is executed.
• Polyspace supports multitasking configuration only from ARXML files for AUTOSAR
specification version 4.0 and later.

Dependencies
To enable this option in the user interface, first select the option External
multitasking configuration.

1 Option Descriptions

1-112

Command-Line Information
Parameter: -autosar-multitasking
Value: file1 [,file2, dir1,...]
Default: Off
Example: polyspace-bug-finder-nodesktop -sources source_path -I
include_path -autosar-multitasking C:\Polyspace_Workspace\AUTOSAR
\myFile.arxml

See Also

Topics
“Specify Polyspace Analysis Options”
“Analyze Multitasking Programs in Polyspace”

Introduced in R2018a

 ARXML files selection (-autosar-multitasking)

1-113

Configure multitasking manually
Consider that code is intended for multitasking

Description
Specify whether your code is a multitasking application. This option allows you to
manually configure the multitasking structure for Polyspace.

Set Option
User interface: In your project configuration, the option is available on the
Multitasking node.

Command line: See “Command-Line Information” on page 1-115.

Why Use This Option
In cases where automatic concurrency detection is not supported, you can explicitly
specify your multitasking model by using this option. Once you select this option, you can
explicitly specify your entry point functions, cyclic tasks, interrupts and protection
mechanisms for shared variables, such as critical section details.

The analysis uses your specifications to look for concurrency defects. For more
information, see “Concurrency Defects”.

Settings
 On

The code is intended for a multitasking application.

 Off (default)
The code is not intended for a multitasking application.

1 Option Descriptions

1-114

Tips
If you run a file by file verification in Code Prover, your multitasking options are ignored.
See Verify files independently (-unit-by-unit).

Command-Line Information
There is no single command-line option to turn on multitasking analysis. By using the -
entry-points option, you turn on multitasking analysis.

See Also
Tasks (-entry-points) | Critical section details (-critical-section-
begin -critical-section-end) | Temporally exclusive tasks (-temporal-
exclusions-file)

Topics
“Specify Polyspace Analysis Options”
“Analyze Multitasking Programs in Polyspace”
“Configuring Polyspace Multitasking Analysis Manually”

 Configure multitasking manually

1-115

Enable automatic concurrency detection for
Code Prover (-enable-concurrency-
detection)
Automatically detect certain families of multithreading functions

Description
This option affects a Code Prover analysis only.

Specify whether to use the automatic concurrency detection for POSIX®, VxWorks®,
Windows, and μC/OS II multithreading functions.

Set Option
User interface: In your project configuration, the option is available on the
Multitasking node. See “Dependencies” (Polyspace Code Prover) for other options that
you must enable or disable.

Command line: Use the option -enable-concurrency-detection. See “Command-
Line Information” on page 1-117.

Why Use This Option
If you use this option, Polyspace determines your multitasking model from your use of
multithreading functions.

In some cases, using automatic concurrency detection can slow down the Code Prover
analysis. In those cases, you can explicitly specify your multitasking model using the
option Configure multitasking manually.

1 Option Descriptions

1-116

Settings
 On

If you use POSIX, VxWorks, Windows, μC/OS II, or C++11 functions for multitasking,
the analysis automatically detects your multitasking model from your code.

For a list of supported multitasking functions and limitations in auto-detection of
threads, see “Auto-Detection of Thread Creation and Critical Section in Polyspace”.

 Off (default)
The analysis does not attempt to detect the multitasking model from your code.

If you want to manually configure your multitasking model, see Configure
multitasking manually.

Dependencies
If you enable this option, your code must contain a main function. You cannot use the
Code Prover options (Polyspace Code Prover) to generate a main.

Command-Line Information
Parameter: -enable-concurrency-detection
Default: Off
Example: polyspace-code-prover-nodesktop -sources file_name -enable-
concurrency-detection

See Also
Tasks (-entry-points) | Critical section details (-critical-section-
begin -critical-section-end) | Temporally exclusive tasks (-temporal-
exclusions-file)

Topics
“Specify Polyspace Analysis Options”
“Analyze Multitasking Programs in Polyspace”

 Enable automatic concurrency detection for Code Prover (-enable-concurrency-detection)

1-117

“Auto-Detection of Thread Creation and Critical Section in Polyspace”

1 Option Descriptions

1-118

Tasks (-entry-points)
Specify functions that serve as tasks to your multitasking application

Description
Specify functions that serve as tasks to your code. If the function does not exist, the
verification warns you and continues the verification.

Set Option
User interface: In your project configuration, the option is available on the
Multitasking node. See “Dependencies” on page 1-120 for other options you must also
enable.

Command line: Use the option -entry-points. See “Command-Line Information” on
page 1-120.

Why Use This Option
Use this option when your code is intended for multitasking.

To specify cyclic tasks and interrupts, use the options Cyclic tasks (-cyclic-
tasks) and Interrupts (-interrupts). Use this option to specify other tasks.

The analysis uses your specifications to look for concurrency defects. For more
information, see “Concurrency Defects”.

Settings
No Default

Enter function names or choose from a list.

•
Click to add a field and enter the function name.

 Tasks (-entry-points)

1-119

• Click to list functions in your code. Choose functions from the list.

Dependencies
To enable this option, first select the option Configure multitasking manually.

Tips
If you specify a function as a task, you must provide its definition. Otherwise, the analysis
does not consider the function as a task.

Command-Line Information
Parameter: -entry-points
No Default
Value: function1[,function2[,...]]
Example: polyspace-bug-finder-nodesktop -sources file_name -entry-
points func_1,func_2

See Also
Critical section details (-critical-section-begin -critical-section-
end) | Temporally exclusive tasks (-temporal-exclusions-file)

Topics
“Specify Polyspace Analysis Options”
“Analyze Multitasking Programs in Polyspace”
“Configuring Polyspace Multitasking Analysis Manually”

1 Option Descriptions

1-120

Cyclic tasks (-cyclic-tasks)
Specify functions that represent cyclic tasks

Description
Specify functions that represent cyclic tasks. The analysis assumes that operations in the
function body:

• Can execute any number of times.
• Can be interrupted by noncyclic Tasks on page 1-119, other cyclic tasks and interrupts

on page 1-124.

To model a cyclic task that cannot be interrupted by other cyclic tasks, specify the task
as nonpreemptable. See -non-preemptable-tasks.

Set Option
User interface: In your project configuration, the option is available on the
Multitasking node. See “Dependencies” on page 1-122 for other options you must also
enable.

Command line: Use the option -cyclic-tasks. See “Command-Line Information” on
page 1-122.

Why Use This Option
Use this option to specify cyclic tasks in your multitasking code. The functions that you
specify must have the prototype:

void function_name(void);

The analysis uses your specifications to look for concurrency defects. For the Data race
defect, the software establishes the following relations between preemptable tasks and
other tasks.

• Data race between two preemptable tasks:

 Cyclic tasks (-cyclic-tasks)

1-121

Unless protected, two operations in different preemptable tasks can interfere with
each other. If the operations use the same shared variable without protection, a data
race can occur.

If both operations are atomic, to see the defect, you have to enable Data race
including atomic operations.

• Data race between a preemptable task and a nonpreemptable task or interrupt:

• An atomic operation in a preemptable task cannot interfere with an operation in a
nonpreemptable task or an interrupt. Even if the operations use the same shared
variable without protection, a data race cannot occur.

• A nonatomic operation in a preemptable task also cannot interfere with an
operation in a nonpreemptable task or an interrupt. However, the latter operation
can interrupt the former. Therefore, if the operations use the same shared variable
without protection, a data race can occur.

For more information, see “Concurrency Defects”.

Settings
No Default

Enter function names or choose from a list.

•
Click to add a field and enter the function name.

• Click to list functions in your code. Choose functions from the list.

Dependencies
To enable this option, first select the option Configure multitasking manually.

Command-Line Information
Parameter: -cyclic-tasks
No Default

1 Option Descriptions

1-122

Value: function1[,function2[,...]]
Example: polyspace-bug-finder-nodesktop -sources file_name -cyclic-
tasks func_1,func_2

See Also
-preemptable-interrupts | -non-preemptable-tasks | Interrupts (-
interrupts) | Tasks (-entry-points) | Critical section details (-
critical-section-begin -critical-section-end) | Temporally exclusive
tasks (-temporal-exclusions-file)

Topics
“Specify Polyspace Analysis Options”
“Analyze Multitasking Programs in Polyspace”
“Configuring Polyspace Multitasking Analysis Manually”
“Protections for Shared Variables in Multitasking Code”

Introduced in R2016b

 Cyclic tasks (-cyclic-tasks)

1-123

Interrupts (-interrupts)
Specify functions that represent nonpreemptable interrupts

Description
Specify functions that represent nonpreemptable interrupts. The analysis assumes that
operations in the function body:

• Can execute any number of times.
• Cannot be interrupted by noncyclic Tasks on page 1-119, cyclic tasks on page 1-121 or

other interrupts.

To model an interrupt that can be interrupted by other interrupts, specify the interrupt
as preemptable. See -preemptable-interrupts.

Set Option
User interface: In your project configuration, the option is available on the
Multitasking node. See “Dependencies” on page 1-125 for other options you must also
enable.

Command line: Use the option -interrupts. See “Command-Line Information” on
page 1-126.

Why Use This Option
Use this option to specify interrupts in your multitasking code. The functions that you
specify must have the prototype:

void function_name(void);

The analysis uses your specifications to look for concurrency defects. For the Data race
defect, the analysis establishes the following relations between interrupts and other
tasks:

• Data race between two interrupts:

1 Option Descriptions

1-124

Two operations in different interrupts cannot interfere with each other (unless one of
the interrupts is preemptable). Even if the operations use the same shared variable
without protection, a data race cannot occur.

• Data race between an interrupt and another task:

• An operation in an interrupt cannot interfere with an atomic operation in any other
task. Even if the operations use the same shared variable without protection, a data
race cannot occur.

• An operation in an interrupt can interfere with a nonatomic operation in any other
task unless the other task is also a nonpreemptable interrupt. Therefore, if the
operations use the same shared variable without protection, a data race can occur.

See “Concurrency Defects”.

Settings
No Default

Enter function names or choose from a list.

•
Click to add a field and enter the function name.

• Click to list functions in your code. Choose functions from the list.

Dependencies
To enable this option, first select the option Configure multitasking manually.

Tips
If you specify a function as an interrupt, you must provide its definition. Otherwise, the
analysis does not consider the function as an interrupt.

 Interrupts (-interrupts)

1-125

Command-Line Information
Parameter: -interrupts
No Default
Value: function1[,function2[,...]]
Example: polyspace-bug-finder-nodesktop -sources file_name -
interrupts func_1,func_2

See Also
-preemptable-interrupts | -non-preemptable-tasks | Cyclic tasks (-
cyclic-tasks) | Tasks (-entry-points) | Critical section details (-
critical-section-begin -critical-section-end) | Temporally exclusive
tasks (-temporal-exclusions-file)

Topics
“Specify Polyspace Analysis Options”
“Analyze Multitasking Programs in Polyspace”
“Configuring Polyspace Multitasking Analysis Manually”
“Protections for Shared Variables in Multitasking Code”

Introduced in R2016b

1 Option Descriptions

1-126

Disabling all interrupts (-routine-disable-
interrupts -routine-enable-interrupts)
Specify routines that disable and reenable interrupts.

Description
This option affects a Bug Finder analysis only.

Specify a routine that disables all interrupts and a routine that reenables all interrupts.

Set Option
User interface: In your project configuration, the option is available on the
Multitasking node. See “Dependencies” on page 1-128 for other options you must also
enable.

Command line: Use the option -routine-disable-interrupts and -routine-
enable-interrupts. See “Command-Line Information” on page 1-129.

Why Use This Option
The analysis uses the information to look for data race defects. For instance, in the
following code, the function disable_all_interrupts disables all interrupts until the
function enable_all_interrupts is called. Even if task, isr1 and isr2 run
concurrently, the operations x=0 or x=1 cannot interrupt the operation x++. There are no
data race defects.

int x;

void isr1() {
 x = 0;
}

void isr2() {
 x = 1;
}

 Disabling all interrupts (-routine-disable-interrupts -routine-enable-interrupts)

1-127

void task() {
 disable_all_interrupts();
 x++;
 enable_all_interrupts();
}

Settings
No Default

• In Disabling routine, enter the routine that disables all interrupts.
• In Enabling routine, enter the routine that reenables all interrupts.

Enter function names or choose from a list.

•
Click to add a field and enter the function name.

• Click to list functions in your code. Choose functions from the list.

Dependencies
To enable this option, you must select the option, Configure multitasking
manually.

Tips
• The routine that you specify for the option disables preemption by all:

• Noncylic Tasks on page 1-119
• Cyclic tasks on page 1-121
• Interrupts on page 1-124

In other words, the analysis considers that the body of operations between the
disabling routine and the enabling routine is atomic and not interruptible at all.

• Protection via disabling interrupts is conceptually different from protection via critical
sections.

1 Option Descriptions

1-128

In the Polyspace multitasking model, to protect two sections of code from each other
via critical sections, you have to embed them in the same critical section. In other
words, you have to place the two sections between calls to the same lock and unlock
function.

For instance, suppose you use critical sections as follows:

void isr1() {
 begin_critical_section();
 x = 0;
 end_critical_section();
}

void isr2() {
 x = 1;
}

void task() {
 begin_critical_section();
 x++;
 end_critical_section();
}

Here, the operation x++ is protected from the operation x=0 in isr1, but not from the
operation x=1 in isr2. If the function begin_critical_section disabled all
interrupts, calling it before x++ would have been sufficient to protect it.

Typically, you use one pair of routines in your code to disable and reenable interrupts,
but you can have many pairs of lock and unlock functions that implement critical
sections.

Command-Line Information
Parameter: -routine-disable-interrupts | -routine-enable-interrupts
No Default
Value: function_name
Example: polyspace-bug_finder-nodesktop -sources file_name -routine-
disable-interrupts atomic_section_begins -routine-enable-interrupts
atomic_section_ends

 Disabling all interrupts (-routine-disable-interrupts -routine-enable-interrupts)

1-129

See Also
Configure multitasking manually | Tasks (-entry-points) | Temporally
exclusive tasks (-temporal-exclusions-file) | Data race | Data race
including atomic operations

Topics
“Specify Polyspace Analysis Options”
“Analyze Multitasking Programs in Polyspace”

Introduced in R2017a

1 Option Descriptions

1-130

Critical section details (-critical-section-
begin -critical-section-end)
Specify functions that begin and end critical sections

Description
When verifying multitasking code, Polyspace considers that a critical section lies between
calls to a lock function and an unlock function.

lock();
/* Critical section code */
unlock();

Specify the lock and unlock function names for your critical sections (for instance,
lock() and unlock() in above example).

Set Option
User interface: In your project configuration, the option is available on the
Multitasking node. See “Dependencies” on page 1-132 for other options you must also
enable.

Command line: Use the option -critical-section-begin and -critical-
section-end. See “Command-Line Information” on page 1-133.

Why Use This Option
When a task my_task calls a lock function my_lock, other tasks calling my_lock must
wait till my_task calls the corresponding unlock function. Therefore, critical section
operations in the other tasks cannot interrupt critical section operations in my_task.

For instance, the operation var++ in my_task1 and my_task2 cannot interrupt each
other.

int var;

 Critical section details (-critical-section-begin -critical-section-end)

1-131

void my_task1() {
 my_lock();
 var++;
 my_unlock();
}

void my_task2() {
 my_lock();
 var++;
 my_unlock();
}

The analysis uses the critical section information to look for concurrency defects such as
data race and deadlock. See “Concurrency Defects”.

Settings
No Default

Click to add a field.

• In Starting routine, enter name of lock function.
• In Ending routine, enter name of unlock function.

Enter function names or choose from a list.

•
Click to add a field and enter the function name.

• Click to list functions in your code. Choose functions from the list.

Dependencies
To enable this option, first select the option Configure multitasking manually.

1 Option Descriptions

1-132

Tips
• You can also use primitives such as the POSIX functions pthread_mutex_lock and

pthread_mutex_unlock to begin and end critical sections. For a list of primitives
that Polyspace can detect automatically, see “Auto-Detection of Thread Creation and
Critical Section in Polyspace”.

• For function calls that begin and end critical sections, Polyspace ignores the function
arguments.

For instance, Polyspace treats the two code sections below as the same critical
section.

Starting routine: func_begin Starting routine: func_begin
Ending routine: func_end Ending routine: func_end
void my_task1() {
 my_lock(1);
 /* Critical section code */
 my_unlock(1);
}

void my_task2() {
 my_lock(2);
 /* Critical section code */
 my_unlock(2);
}

• The functions that begin and end critical sections must be functions. For instance, if
you define a function-like macro:

#define init() num_locks++

You cannot use the macro init() to begin or end a critical section.

Command-Line Information
Parameter: -critical-section-begin | -critical-section-end
No Default
Value: function1:cs1[,function2:cs2[,...]]
Example: polyspace-bug_finder-nodesktop -sources file_name -critical-
section-begin func_begin:cs1 -critical-section-end func_end:cs1

See Also
Configure multitasking manually | Tasks (-entry-points) | Temporally
exclusive tasks (-temporal-exclusions-file) | Data race | Data race
including atomic operations

 Critical section details (-critical-section-begin -critical-section-end)

1-133

Topics
“Specify Polyspace Analysis Options”
“Analyze Multitasking Programs in Polyspace”
“Configuring Polyspace Multitasking Analysis Manually”
“Protections for Shared Variables in Multitasking Code”
“Define Atomic Operations in Multitasking Code”

1 Option Descriptions

1-134

Temporally exclusive tasks (-temporal-
exclusions-file)
Specify entry point functions that cannot execute concurrently

Description
Specify entry point functions that cannot execute concurrently. The execution of the
functions cannot overlap with each other.

Set Option
User interface: In your project configuration, the option is available on the
Multitasking node. See “Dependencies” on page 1-136 for other options you must also
enable.

Command line: Use the option -temporal-exclusions-file. See “Command-Line
Information” on page 1-136.

Why Use This Option
Use this option to implement temporal exclusion in multitasking code.

The analysis uses the temporal exclusion information to look for concurrency defects such
as data race. See Data race.

Settings
No Default

Click to add a field. In each field, enter a space-separated list of functions. Polyspace
considers that the functions in the list cannot execute concurrently.

Enter the function names manually or choose from a list.

 Temporally exclusive tasks (-temporal-exclusions-file)

1-135

•
Click to add a field and enter the function names.

• Click to list functions in your code. Choose functions from the list.

Dependencies
To enable this option, first select the option Configure multitasking manually.

Command-Line Information
For the command-line option, create a temporal exclusions file in the following format:

• On each line, enter one group of temporally excluded tasks.
• Within a line, the tasks are separated by spaces.

Parameter: -temporal-exclusions-file
No Default
Value: Name of temporal exclusions file
Example: polyspace-bug-finder-nodesktop -sources file_name -temporal-
exclusions-file "C:\exclusions_file.txt"

See Also
Configure multitasking manually | Tasks (-entry-points) | Critical
section details (-critical-section-begin -critical-section-end) | Data
race | Data race including atomic operations

Topics
“Specify Polyspace Analysis Options”
“Configuring Polyspace Multitasking Analysis Manually”
“Configuring Polyspace Multitasking Analysis Manually”
“Protections for Shared Variables in Multitasking Code”

1 Option Descriptions

1-136

Check MISRA C:2004 (-misra2)
Check for violation of MISRA C:2004 rules

Description
Specify whether to check for violation of MISRA C:2004 rules. Each value of the option
corresponds to a subset of rules to check.

Set Option
User interface: In your project configuration, the option is on the Coding Rules & Code
Metrics node. See “Dependencies” on page 1-139 for other options that you must also
enable.

Command line: Use the option -misra2. See “Command-Line Information” on page 1-
139.

Why Use This Option
Use this option to specify the subset of MISRA C:2004 rules to check for.

After analysis, the Results List pane lists the coding rule violations. On the Source pane,
for every coding rule violation, Polyspace assigns a symbol to the keyword or identifier
relevant to the violation.

Settings
Default: required-rules

required-rules
Check required coding rules.

all-rules
Check required and advisory coding rules.

 Check MISRA C:2004 (-misra2)

1-137

SQO-subset1
Check only a subset of MISRA C rules. In Polyspace Code Prover™, observing these
rules can reduce the number of unproven results. For more information, see
“Software Quality Objective Subsets (C:2004)”.

SQO-subset2
Check a subset of rules including SQO-subset1 and some additional rules. In
Polyspace Code Prover, observing these rules can further reduce the number of
unproven results. For more information, see “Software Quality Objective Subsets (C:
2004)”.

custom

Specify coding rules to check. Click to create a coding rules file. After
creating and saving the file, to reuse it for another project, do one of the following:

• Enter full path to the file in the space provided.
•

Click . Click to load the file.

Format of the custom file:

rule number off|on

Use # to enter comments in the file. For example:

10.5 off # rule 10.5: type conversion
17.2 on # rule 17.2: pointers

If you are writing the coding rules file manually, you can choose to only enter the
rules that you want to turn off. When you run an analysis, Polyspace automatically
turns on the other rules and populates the file.

single-unit-rules
Check a subset of rules that apply only to single translation units. These rules are
checked in the compilation phase of the analysis.

system-decidable-rules
Check rules in the single-unit-rules subset and some rules that apply to the
collective set of program files. The additional rules are the less complex rules that
apply at the integration level. These rules can be checked only at the integration level
because the rules involve more than one translation unit. These rules are checked in
the compilation and linking phases of the analysis.

1 Option Descriptions

1-138

Dependencies
• This option is available only if you set Source code language (-lang) to C or C-

CPP.

For projects with mixed C and C++ code, the MISRA C:2004 checker analyzes only .c
files.

• If you set Source code language (-lang) to C-CPP, you can activate a C coding
rule checker and a C++ coding rule checker. When you have both C and C++ coding
rule checkers active, to avoid duplicate results, Polyspace does not produce the C
coding rules found in the linking phase (such as MISRA C:2012 Rule 8.3).

Tips
• To reduce unproven results in Polyspace Code Prover:

1 Find coding rule violations in SQO-subset1. Fix your code to address the
violations and rerun verification.

2 Find coding rule violations in SQO-subset2. Fix your code to address the
violations and rerun verification.

• If you select the option single-unit-rules or system-decidable-rules and
choose to detect coding rule violations only, the analysis can complete quicker than
checking other rules. For more information, see “Coding Rule Subsets Checked Early
in Analysis”.

Command-Line Information
Parameter: -misra2
Value: required-rules | all-rules | SQO-subset1 | SQO-subset2 | single-unit-
rules | system-decidable-rules | file
Default: required-rules
Example: polyspace-bug-finder-nodesktop -sources file_name -misra2
all-rules

See Also
Generate results for sources and (-generate-results-for)

 Check MISRA C:2004 (-misra2)

1-139

Topics
“Specify Polyspace Analysis Options”
“Check for Coding Rule Violations”
“Polyspace MISRA C 2004 and MISRA AC AGC Checkers”
“Software Quality Objective Subsets (C:2004)”

1 Option Descriptions

1-140

Check MISRA AC AGC (-misra-ac-agc)
Check for violation of MISRA AC AGC rules

Description
Specify whether to check for violation of rules specified by MISRA AC AGC Guidelines for
the Application of MISRA-C:2004 in the Context of Automatic Code Generation. Each
value of the option corresponds to a subset of rules to check.

Set Option
User interface: In your project configuration, the option is on the Coding Rules & Code
Metrics node. See “Dependencies” on page 1-143 for other options that you must also
enable.

Command line: Use the option -misra-ac-agc. See “Command-Line Information” on
page 1-143.

Why Use This Option
Use this option to specify the subset of MISRA C:2004 AC AGC rules to check for.

After analysis, the Results List pane lists the coding rule violations. On the Source pane,
for every coding rule violation, Polyspace assigns a symbol to the keyword or identifier
relevant to the violation.

Settings
Default: OBL-rules

OBL-rules
Check required coding rules.

OBL-REC-rules
Check required and recommended rules.

 Check MISRA AC AGC (-misra-ac-agc)

1-141

all-rules
Check required, recommended and readability-related rules.

SQO-subset1
Check a subset of rules. In Polyspace Code Prover, observing these rules can reduce
the number of unproven results. For more information, see “Software Quality
Objective Subsets (AC AGC)”.

SQO-subset2
Check a subset of rules including SQO-subset1 and some additional rules. In
Polyspace Code Prover, observing these rules can further reduce the number of
unproven results. For more information, see “Software Quality Objective Subsets (AC
AGC)”.

custom

Specify coding rules to check. Click to create a coding rules file.

After creating and saving the file, to reuse it for another project, do one of the
following:

• Enter full path to the file in the space provided.
•

Click . Click to load the file.

Format of the custom file:
rule number off|on

Use # to enter comments in the file. For example:
10.5 off # rule 10.5: type conversion
17.2 on # rule 17.2: pointers

If you are writing the coding rules file manually, you can choose to only enter the
rules that you want to turn off. When you run an analysis, Polyspace automatically
turns on the other rules and populates the file.

single-unit-rules
Check a subset of rules that apply only to single translation units. These rules are
checked in the compilation phase of the analysis.

system-decidable-rules
Check rules in the single-unit-rules subset and some rules that apply to the
collective set of program files. The additional rules are the less complex rules that

1 Option Descriptions

1-142

apply at the integration level. These rules can be checked only at the integration level
because the rules involve more than one translation unit. These rules are checked in
the compilation and linking phases of the analysis.

Dependencies
• This option is available only if you set Source code language (-lang) to C or C-

CPP.

For projects with mixed C and C++ code, the MISRA AC AGC checker analyzes
only .c files.

• If you set Source code language (-lang) to C-CPP, you can activate a C coding
rule checker and a C++ coding rule checker. When you have both C and C++ coding
rule checkers active, to avoid duplicate results, Polyspace does not produce the C
coding rules found in the linking phase (such as MISRA C:2012 Rule 8.3).

Tips
• To reduce unproven results in Polyspace Code Prover:

1 Find coding rule violations in SQO-subset1. Fix your code to address the
violations and rerun verification.

2 Find coding rule violations in SQO-subset2. Fix your code to address the
violations and rerun verification.

• If you select the option single-unit-rules or system-decidable-rules and
choose to detect coding rule violations only, the analysis can complete quicker than
checking other rules. For more information, see “Coding Rule Subsets Checked Early
in Analysis”.

Command-Line Information
Parameter: -misra-ac-agc
Value: OBL-rules | OBL-REC-rules | all-rules | SQO-subset1 | SQO-subset2 |
single-unit-rules | system-decidable-rules | file
Default: OBL-rules

 Check MISRA AC AGC (-misra-ac-agc)

1-143

Example: polyspace-bug-finder-nodesktop -sources file_name -misra-ac-
agc all-rules

See Also
Generate results for sources and (-generate-results-for)

Topics
“Specify Polyspace Analysis Options”
“Check for Coding Rule Violations”
“Polyspace MISRA C 2004 and MISRA AC AGC Checkers”
“MISRA C:2004 and MISRA AC AGC Coding Rules”
“Software Quality Objective Subsets (AC AGC)”

1 Option Descriptions

1-144

Check MISRA C:2012 (-misra3)
Check for violations of MISRA C:2012 rules and directives

Description
Specify whether to check for violations of MISRA C:2012 guidelines. Each value of the
option corresponds to a subset of guidelines to check.

Set Option
User interface: In your project configuration, the option is on the Coding Rules & Code
Metrics node. See “Dependencies” on page 1-147 for other options that you must also
enable.

Command line: Use the option -misra3. See “Command-Line Information” on page 1-
148.

Why Use This Option
Use this option to specify the subset of MISRA C:2012 rules to check for.

After analysis, the Results List pane lists the coding rule violations. On the Source pane,
for every coding rule violation, Polyspace assigns a symbol to the keyword or identifier
relevant to the violation.

Settings
Default: mandatory-required

mandatory-required
Check for mandatory and required guidelines.

• Mandatory guidelines: Your code must comply with these guidelines.
• Required guidelines: You may deviate from these these guidelines. However, you

must complete a formal deviation record, and your deviation must be authorized.

 Check MISRA C:2012 (-misra3)

1-145

See Section 5.4 of the MISRA C:2012 guidelines. For an example of a deviation
record, see Appendix I of the MISRA C:2012 guidelines.

Note To turn off some required guidelines, instead of mandatory-required select

custom. To clear specific guidelines, click . In the Comment column, enter
your rationale for disabling a guideline. For instance, you can enter the Deviation ID
that refers to a deviation record for the guideline. The rationale appears in your
generated report.

mandatory
Check for mandatory guidelines.

CERT-rules
Check for a subset of coding rules that corresponds to CERT-C rules.

See “CERT C Coding Standard and Polyspace Results”.
CERT-all

Check for a subset of coding rules that corresponds to CERT-C rules and
recommendations.

See “CERT C Coding Standard and Polyspace Results”.
ISO-17961

Check for a subset of coding rules that corresponds to the ISO/IEC TS 17961 coding
standard.

all
Check for mandatory, required, and advisory guidelines.

SQO-subset1
Check for only a subset of guidelines. In Polyspace Code Prover, observing these rules
can reduce the number of unproven results. For more information, see “Software
Quality Objective Subsets (C:2012)”.

SQO-subset2
Check for the subset SQO-subset1, plus some additional rules. In Polyspace Code
Prover, observing these rules can further reduce the number of unproven results. For
more information, see “Software Quality Objective Subsets (C:2012)”.

1 Option Descriptions

1-146

custom

Specify guidelines to check. Click to create a coding rules file. Save the file.
To reuse it for another project, do one of the following:

• Enter full path to the file in the space provided.
•

Click . Click to load the file.

Custom file format:

rule number off|on

Use # to enter comments in the file. For example:

10.5 off # rule 10.5: essential type model
17.2 on # rule 17.2: functions

If you are writing the coding rules file manually, you can choose to only enter the
rules that you want to turn off. When you run an analysis, Polyspace automatically
turns on the other rules and populates the file.

single-unit-rules
Check a subset of rules that apply only to single translation units. These rules are
checked in the compilation phase of the analysis.

system-decidable-rules
Check rules in the single-unit-rules subset and some rules that apply to the
collective set of program files. The additional rules are the less complex rules that
apply at the integration level. These rules can be checked only at the integration level
because the rules involve more than one translation unit. These rules are checked in
the compilation and linking phases of the analysis.

Dependencies
• This option is available only if you set Source code language (-lang) to C or C-

CPP.

For projects with mixed C and C++ code, the MISRA C:2012 checker analyzes only .c
files.

 Check MISRA C:2012 (-misra3)

1-147

• If you set Source code language (-lang) to C-CPP, you can activate a C coding
rule checker and a C++ coding rule checker. When you have both C and C++ coding
rule checkers active, to avoid duplicate results, Polyspace does not produce the C
coding rules found in the linking phase (such as MISRA C:2012 Rule 8.3).

Tips
• To reduce unproven results in Polyspace Code Prover:

1 Find coding rule violations in SQO-subset1. Fix your code to address the
violations and rerun verification.

2 Find coding rule violations in SQO-subset2. Fix your code to address the
violations and rerun verification.

• If you select the option single-unit-rules or system-decidable-rules and
choose to detect coding rule violations only, the analysis can complete quicker than
checking other rules. For more information, see “Coding Rule Subsets Checked Early
in Analysis”.

• Polyspace Code Prover does not support checking of the following:

• MISRA C:2012 Directive 4.13 and 4.14
• MISRA C:2012 Rule 21.13, 21.14, and 21.17 - 21.20
• MISRA C:2012 Rule 22.1 - 22.4 and 22.6 - 22.10

For support of all MISRA C: 2012 rules including the security guidelines in
Amendment 1, use Polyspace Bug Finder.

Command-Line Information
Parameter: -misra3
Value: mandatory | mandatory-required | CERT-rules | CERT-all | ISO-17961 |
all | SQO-subset1 | SQO-subset2 | single-unit-rules | system-decidable-
rules | file
Default: mandatory-required
Example: polyspace-bug-finder-nodesktop -lang c -sources file_name -
misra3 mandatory-required

1 Option Descriptions

1-148

See Also
Generate results for sources and (-generate-results-for)

Topics
“Specify Polyspace Analysis Options”
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

 Check MISRA C:2012 (-misra3)

1-149

Use generated code requirements (-misra3-
agc-mode)
Check for violations of MISRA C:2012 rules and directives that apply to generated code

Description
Specify whether to use the MISRA C:2012 categories for automatically generated code.
This option changes which rules are mandatory, required, or advisory.

Set Option
User interface: In your project configuration, the option is on the Coding Rules & Code
Metrics node. See “Dependency” on page 1-151 for other options that you must also
enable.

Command line: Use the option -misra3-agc-mode. See “Command-Line Information”
on page 1-152.

Why Use This Option
Use this option to specify that you are checking for MISRA C:2012 rules in generated
code. The option modifies the MISRA C:2012 subsets so that they are tailored for
generated code.

Settings
 Off (default)

Use the normal categories (mandatory, required, advisory) for MISRA C:2012 coding
guideline checking.

 On (default for analyses from Simulink)
Use the generated code categories (mandatory, required, advisory, readability) for
MISRA C:2012 coding guideline checking.

1 Option Descriptions

1-150

For analyses started from the Simulink plug-in, this option is the default value.

Category changed to Advisory

These rules are changed to advisory:

• 5.3
• 7.1
• 8.4, 8.5, 8.14
• 10.1, 10.2, 10.3, 10.4, 10.6, 10.7, 10.8
• 14.1, 14.4
• 15.2, 15.3
• 16.1, 16.2, 16.3, 16.4, 16.5, 16.6, 16.7
• 20.8

Category changed to Readability

These guidelines are changed to readability:

• Dir 4.5
• 2.3, 2.4, 2.5, 2.6, 2.7
• 5.9
• 7.2, 7.3
• 9.2, 9.3, 9.5
• 11.9
• 13.3
• 14.2
• 15.7
• 17.5, 17.7, 17.8
• 18.5
• 20.5

Dependency
To use this option, first select the Check MISRA C:2012 (-misra3) option.

 Use generated code requirements (-misra3-agc-mode)

1-151

Command-Line Information
Parameter: -misra3-agc-mode
Default: Off
Example: polyspace-bug-finder-nodesktop -sources file_name -misra3
all -misra3-agc-mode

See Also
Generate results for sources and (-generate-results-for) | Check MISRA
C:2012 (-misra3)

Topics
“Specify Polyspace Analysis Options”
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”

1 Option Descriptions

1-152

Check custom rules (-custom-rules)
Follow naming conventions for identifiers

Description
Define naming conventions for identifiers and check your code against them.

Set Option
User interface: In your project configuration, the option is on the Coding Rules & Code
Metrics node.

Command line: Use the option -custom-rules. See “Command-Line Information” on
page 1-156.

Why Use This Option
Use this option to impose naming conventions on identifiers. Using a naming convention
allows you to easily determine the nature of an identifier from its name. For instance, if
you define a naming convention for structures, you can easily tell whether an identifier
represents a structured variable or not.

After analysis, the Results List pane lists violations of the naming conventions. On the
Source pane, for every violation, Polyspace assigns a symbol to the keyword or
identifier relevant to the violation.

Settings
 On

Polyspace matches identifiers in your code against text patterns you define. Define
the text patterns in a custom coding rules file. To create a coding rules file,

• Use the custom rules wizard:

 Check custom rules (-custom-rules)

1-153

1
Click . The New File window opens.

2 From the drop-down list Set the following state to all Custom C, select
Off. Click Apply.

3 For every custom rule you want to check:

a Select On .
b In the Convention column, enter the error message you want to display if

the rule is violated.

For example, for rule 4.3, All struct fields must follow the specified
pattern, you can enter All struct fields must begin with s_.
This message appears on the Result Details pane if:

• You specify the Pattern as s_[A-Za-z0-9_]+.
• A structure field in your code does not begin with s_.

c In the Pattern column, enter the text pattern.

For example, for rule 4.3, All struct fields must follow the specified
pattern, you can enter s_[A-Za-z0-9_]+. Polyspace reports violation of
rule 4.3 if a structure field does not begin with s_.

You can use Perl regular expressions to define patterns. For instance, you
can use the following expressions.

Expression Meaning
. Matches any single character except

newline
[a-
z0-9]

Matches any single letter in the set a-z,
or digit in the set 0-9

[^a-e] Matches any single letter not in the set
a-e

\d Matches any single digit
\w Matches any single alphanumeric

character or _
x? Matches 0 or 1 occurrence of x

1 Option Descriptions

1-154

Expression Meaning
x* Matches 0 or more occurrences of x
x+ Matches 1 or more occurrences of x

For frequent patterns, you can use the following regular expressions:

• (?!__)[a-z0-9_]+(?!__), matches a text pattern that does not
start and end with two underscores.

int __text; //Does not match
int _text_; //Matches

• [a-z0-9_]+_(u8|u16|u32|s8|s16|s32) , matches a text pattern
that ends with a specific suffix.

int _text_; //Does not match
int _text_s16; //Matches
int _text_s33; // Does not match

• [a-z0-9_]+_(u8|u16|u32|s8|s16|s32)(_b3|_b8)? , matches a
text pattern that ends with a specific suffix and an optional second
suffix.

int _text_s16; //Matches
int _text_s16_b8; //Matches

For a complete list of regular expressions, see Perl documentation.
• Manually edit an existing custom coding rules file:

1 Open the file with a text editor.
2 For every custom rule, enter the following information in adjacent lines.

a Rule number, followed by on or off. For example:

4.3 on
b The error message you want to display starting with convention=. For

example:

convention=All struct fields must begin with s_
c The text pattern starting with pattern=. For example:

pattern=s_[A-Za-z0-9_]

 Check custom rules (-custom-rules)

1-155

https://perldoc.perl.org/perlre.html#Regular-Expressions

If you are writing the coding rules file manually, you can choose to only enter
the rules that you want to turn off. When you run an analysis, Polyspace
automatically turns on the other rules and populates the file.

To use an existing coding rules file, enter the full path to the file in the field provided

or use in the New File window to navigate to the file location.
 Off (default)

Polyspace does not check your code against custom naming conventions.

Command-Line Information
Parameter: -custom-rules
Value: Name of coding rules file
Default: Off
Example: polyspace-bug-finder-nodesktop -sources file_name -custom-
rules "C:\Rules\myrules.txt"

See Also

Topics
“Specify Polyspace Analysis Options”
“Create Custom Coding Rules”
“Format of Custom Coding Rules File”

1 Option Descriptions

1-156

Effective boolean types (-boolean-types)
Specify data types that coding rule checker must treat as effectively Boolean

Description
Specify data types that the coding rule checker must treat as effectively Boolean. You can
specify a data type only if you have defined it through a typedef statement in your
source code.

Set Option
User interface: In your project configuration, the option is on the Coding Rules & Code
Metrics node. See “Dependencies” on page 1-159 for other options that you must also
enable.

Command line: Use the option -boolean-types. See “Command-Line Information” on
page 1-159.

Why Use This Option
Use this option to allow Polyspace to check the following coding rules:

• MISRA C: 2004 and MISRA AC AGC

Rule
Number

Rule Statement

12.6 Operands of logical operators, &&, ||, and !, should be effectively
Boolean. Expressions that are effectively Boolean should not be used as
operands to other operators.

13.2 Tests of a value against zero should be made explicit, unless the
operand is effectively Boolean.

15.4 A switch expression should not represent a value that is effectively
Boolean.

• MISRA C: 2012

 Effective boolean types (-boolean-types)

1-157

Rule
Number

Rule Statement

10.1 on
page 5-
160

Operands shall not be of an inappropriate essential type

10.3 on
page 5-
169

The value of an expression shall not be assigned to an object with a
narrower essential type or of a different essential type category

10.5 on
page 5-
173

The value of an expression should not be cast to an inappropriate
essential type

14.4 on
page 5-
247

The controlling expression of an if statement and the controlling
expression of an iteration-statement shall have essentially Boolean
type.

16.7 on
page 5-
286

A switch-expression shall not have essentially Boolean type.

For example, in the following code, unless you specify myBool as effectively Boolean,
Polyspace detects a violation of MISRA C: 2012 rule 14.4.

typedef int myBool;

void func1(void);
void func2(void);

void func(myBool flag) {
 if(flag)
 func1();
 else
 func2();
}

Settings
No Default

Click to add a field. Enter a type name that you want Polyspace to treat as Boolean.

1 Option Descriptions

1-158

Dependencies
This option is available only if you select Check MISRA AC AGC (-misra-ac-agc),
Check MISRA C:2004 (-misra2), or Check MISRA C:2012 (-misra3).

Command-Line Information
Parameter: -boolean-types
Value: type1[,type2[,...]]
No Default
Example: polyspace-bug-finder-nodesktop -sources filename -misra2
required-rules -boolean-types boolean1_t,boolean2_t

See Also
Check MISRA AC AGC (-misra-ac-agc) | Check MISRA C:2004 (-misra2) |
Check MISRA C:2012 (-misra3)

Topics
“Specify Polyspace Analysis Options”
“Check for Coding Rule Violations”

 Effective boolean types (-boolean-types)

1-159

Allowed pragmas (-allowed-pragmas)
Specify pragma directives for which MISRA C:2004 rule 3.4 must not be applied

Description
Specify pragma directives for which MISRA C:2004 rule 3.4 or MISRA C++ rule 16-6-1
must not be applied.

Set Option
User interface: In your project configuration, the option is on the Coding Rules & Code
Metrics node. See “Dependencies” on page 1-161 for other options that you must also
enable.

Command line: Use the option -allowed-pragmas. See “Command-Line Information”
on page 1-161.

Why Use This Option
MISRA C:2004/MISRA AC AGC rule 3.4 and MISRA C++ rule 16-6-1 require that all
pragma directives are documented within the documentation of the compiler. If you list a
pragma as documented using this analysis option, Polyspace does not flag use of the
pragma as a violation of these rules.

Settings
No Default

Click to add a field. Enter the pragma name that you want Polyspace to ignore during
coding rule checking .

1 Option Descriptions

1-160

Dependencies
This option is enabled only if you select one of the following options:

• Check MISRA C:2004 (-misra2)
• Check MISRA AC AGC (-misra-ac-agc).
• Check MISRA C++ rules (-misra-cpp)

Command-Line Information
Parameter: -allowed-pragmas
Value: pragma1[,pragma2[,...]]
No Default
Example: polyspace-bug-finder-nodesktop -sources filename -misra-cpp
required-rules -allowed-pragmas pragma_01,pragma_02
Example: polyspace-bug-finder-nodesktop -sources filename -misra2
required-rules -allowed-pragmas pragma_01,pragma_02

See Also
Check MISRA C:2004 (-misra2) | Check MISRA AC AGC (-misra-ac-agc) |
Check MISRA C++ rules (-misra-cpp)

Topics
“Check for Coding Rule Violations”
“MISRA C:2004 and MISRA AC AGC Coding Rules”
“MISRA C++:2008 Rules”

 Allowed pragmas (-allowed-pragmas)

1-161

Check MISRA C++ rules (-misra-cpp)
Check for violations of MISRA C++ rules

Description
Specify whether to check for violation of MISRA C++ rules. Each value of the option
corresponds to a subset of rules to check.

Set Option
User interface: In your project configuration, the option is on the Coding Rules & Code
Metrics node. See “Dependency” on page 1-164 for other options that you must also
enable.

Command line: Use the option -misra-cpp. See “Command-Line Information” on page
1-164.

Why Use This Option
Use this option to specify the subset of MISRA C++ rules to check for.

After analysis, the Results List pane lists the coding rule violations. On the Source pane,
for every coding rule violation, Polyspace assigns a symbol to the keyword or identifier
relevant to the violation.

Settings
Default: required-rules

required-rules
Check required coding rules.

all-rules
Check required and advisory coding rules.

1 Option Descriptions

1-162

CERT-rules
Check a subset of MISRA C++ rules that correspond to CERT® C++ rules.

See “CERT C++ Coding Standard and Polyspace Results”
CERT-all

Check a subset of MISRA C++ rules that correspond to CERT C++ rules. This subset
is the same as for CERT-rules.

See “CERT C++ Coding Standard and Polyspace Results”
SQO-subset1

Check only a subset of MISRA C++ rules. In Polyspace Code Prover, observing these
rules can reduce the number of unproven results. For more information, see
“Software Quality Objective Subsets (C++)”.

SQO-subset2
Check a subset of rules including SQO-subset1 and some additional rules. In
Polyspace Code Prover, observing these rules can further reduce the number of
unproven results. For more information, see “Software Quality Objective Subsets (C+
+)”

custom

Specify coding rules to check. Click to create a coding rules file.

After creating and saving the file, to reuse it for another project, do one of the
following:

• Enter full path to the file in the space provided.
•

Click . Click to load the file.

Format of the custom file:

<rule number> off|on

Use # to enter comments in the file. For example:

9-5-1 off # rule 9-5-1: classes
15-0-2 on # rule 15-0-2: exception handling

 Check MISRA C++ rules (-misra-cpp)

1-163

If you are writing the coding rules file manually, you can choose to only enter the
rules that you want to turn off. When you run an analysis, Polyspace automatically
turns on the other rules and populates the file.

Dependency
This option is available only if you set Source code language (-lang) to CPP or C-
CPP.

For projects with mixed C and C++ code, the MISRA C++ checker analyzes only .cpp
files.

Command-Line Information
Parameter: -misra-cpp
Value: required-rules | all-rules | SQO-subset1 | SQO-subset2 | file
Default: required-rules
Example: polyspace-bug-finder-nodesktop -sources file_name -misra-cpp
all-rules

See Also
Generate results for sources and (-generate-results-for)

Topics
“Specify Polyspace Analysis Options”
“Check for Coding Rule Violations”
“Polyspace MISRA C++ Checkers”
“Software Quality Objective Subsets (C++)”
“MISRA C++:2008 Rules”

1 Option Descriptions

1-164

Check JSF C++ rules (-jsf-coding-rules)
Check for violations of JSF C++ rules

Description
Specify whether to check for violation of JSF C++ rules (JSF++:2005). Each value of the
option corresponds to a subset of rules to check.

Set Option
User interface: In your project configuration, the option is on the Coding Rules & Code
Metrics node. See “Dependency” on page 1-167 for other options that you must also
enable.

Command line: Use the option -jsf-coding-rules. See “Command-Line Information”
on page 1-167.

Why Use This Option
Use this option to specify the subset of JSF C++ rules to check for.

After analysis, the Results List pane lists the coding rule violations. On the Source pane,
for every coding rule violation, Polyspace assigns a symbol to the keyword or identifier
relevant to the violation.

Settings
Default: shall-rules

shall-rules
Check all Shall rules. Shall rules are mandatory requirements and require
verification.

 Check JSF C++ rules (-jsf-coding-rules)

1-165

shall-will-rules
Check all Shall and Will rules. Will rules are intended to be mandatory requirements
but do not require verification.

all-rules
Check all Shall, Will, and Should rules. Should rules are advisory rules.

custom

Specify coding rules to check. Click to create a coding rules file.

After creating and saving the file, to reuse it for another project, do one of the
following:

• Enter full path to the file in the space provided.
•

Click . Click to load the file.

Format of the custom file:

<rule number> off|on

Use # to enter comments in the file. For example:

67 off # rule 67: classes
202 on # rule 202: expressions

If you are writing the coding rules file manually, you can choose to only enter the
rules that you want to turn off. When you run an analysis, Polyspace automatically
turns on the other rules and populates the file.

Tips
• If your project uses a setting other than iso for Compiler (-compiler), some rules

might not be completely checked. For example, AV Rule 8: “All code shall conform to
ISO/IEC 14882:2002(E) standard C++.”

1 Option Descriptions

1-166

Dependency
This option is available only if you set Source code language (-lang) to CPP or C-
CPP.

For projects with mixed C and C++ code, the JSF C++ checker analyzes only .cpp files.

Command-Line Information
Parameter: -jsf-coding-rules
Value: shall-rules | shall-will-rules | all-rules | file
Default: shall-rules
Example: polyspace-bug-finder-nodesktop -sources file_name -jsf-
coding-rules all-rules

See Also
Generate results for sources and (-generate-results-for)

Topics
“Specify Polyspace Analysis Options”
“Check for Coding Rule Violations”
“Polyspace JSF C++ Checkers”
“JSF C++ Coding Rules”

 Check JSF C++ rules (-jsf-coding-rules)

1-167

Calculate code metrics (-code-metrics)
Compute and display code complexity metrics

Description
Specify that Polyspace must compute and display code complexity metrics for your source
code. The metrics include file metrics such as number of lines and function metrics such
as cyclomatic complexity and estimated size of local variables.

For more information, see “Compute Code Complexity Metrics”.

Set Option
User interface: In your project configuration, the option is on the Coding Rules & Code
Metrics node.

Command line: Use the option -code-metrics. See “Command-Line Information” on
page 1-169.

Why Use This Option
By default, Polyspace does not calculate code complexity metrics. If you want these
metrics in your analysis results, before running analysis, set this option.

High values of code complexity metrics can lead to obscure code and increase chances of
coding errors. Additionally, if you run a Code Prover verification on your source code, you
might benefit from checking your code complexity metrics first. If a function is too
complex, attempts to verify the function can lead to a lot of unproven code. For
information on how to cap your code complexity metrics, see .

Settings
 On

Polyspace computes and displays code complexity metrics on the Results List pane.

1 Option Descriptions

1-168

 Off (default)
Polyspace does not compute complexity metrics.

Tips
If you want to compute only the code complexity metrics for your code:

• In Bug Finder, disable checking of defects. See Find defects (-checkers).
• In Code Prover, run verification up to the Source Compliance Checking phase.

See Verification level (-to).

Command-Line Information
Parameter: -code-metrics
Default: Off
Example: polyspace-bug-finder-nodesktop -sources file_name -code-
metrics

See Also

Topics
“Compute Code Complexity Metrics”

 Calculate code metrics (-code-metrics)

1-169

Find defects (-checkers)
Enable or disable defect checkers

Description
This option affects a Bug Finder analysis only.

Enable checkers for bugs/coding defects.

Set Option
User interface: In your project configuration, the option is on the Bug Finder Analysis
node.

Command line: Use the option -checkers. See “Command-Line Information” on page
1-172.

Why Use This Option
The default set of checkers is designed to find the most meaningful bugs in most software
development situations. If you have specific needs, enable or disable individual defect
checkers. For instance, if you want to follow a specific security standard, choose a
different subset of checkers.

Settings
Default: default

default
A subset of defects defined by the software. For information on which defects are
default, refer to the individual defect reference pages.

all
All defects.

1 Option Descriptions

1-170

CWE
A subset of defects that correspond to CWE™ IDs.

See “CWE Coding Standard and Polyspace Results”.
CERT-rules

A subset of defects that correspond to CERT C rules when you analyze C code, or
CERT C++ rules when you analyze C++ code.

See:

• “CERT C Coding Standard and Polyspace Results”
• “CERT C++ Coding Standard and Polyspace Results”

CERT-all
A subset of defects that correspond to CERT C rules and recommendations when you
analyze C code. For C++ code, this subset is the same as CERT-rules.

See:

• “CERT C Coding Standard and Polyspace Results”
• “CERT C++ Coding Standard and Polyspace Results”

ISO-17961
A subset of defects that correspond to ISO/IEC TS 17961 coding standard.

See “ISO/IEC TS 17961 Coding Standard and Polyspace Results”.
custom

Choose the defects you want to find by selecting categories of checkers or specific
defects.

Tips
You can use a spreadsheet to keep track of the defect checkers that you enable and add
notes explaining why you do not enable the other checkers. A spreadsheet of checkers is
provided in matlabroot\polyspace\resources. Here, matlabroot is the MATLAB
installation folder, such as C:\Program Files\MATLAB\R2017a.

 Find defects (-checkers)

1-171

Command-Line Information
Regardless of order, the shell script processes the -checkers option, and then -
disable-checkers option.

For the command-line parameters values, see “Short Names of Bug Finder Defect
Checkers”.
Parameter: -checkers
Value: default | none | all | CWE | CERT-rules | CERT-all | ISO-17961
| defect group | defect parameters
Default: default
Parameter: -disable-checkers
Value: defect group | defect parameters
Example 1: polyspace-bug-finder-nodesktop -sources filename -checkers
numerical,data_flow -disable-checkers FLOAT_ZERO_DIV
Example 2: polyspace-bug-finder-nodesktop -sources filename -checkers
default -disable-checkers concurrency,dead_code

See Also
“Defects”

Topics
“Specify Polyspace Analysis Options”
“Short Names of Bug Finder Defect Checkers”
“Bug Finder Defect Groups”

1 Option Descriptions

1-172

Class (-class-analyzer)
Specify classes that you want to verify

Description
This option affects a Code Prover analysis only.

Specify classes that Polyspace uses to generate a main.

Set Option
User interface: In your project configuration, the option is on the Code Prover
Verification node. See “Dependencies” on page 1-174 for other options that you must
also enable.

Command line: Use the option -class-analyzer. See “Command-Line Information” on
page 1-174.

Why Use This Option
If you are verifying a module or library, Code Prover generates a main function if one
does not exist. If a main exists, the analysis uses the existing main.

Use this option and the option Functions to call within the specified
classes (-class-analyzer-calls) to specify the class methods that the generated
main must call. Unless a class method is called directly or indirectly from main, the
software does not analyze the method.

Settings
Default: all

all
Polyspace can use all classes to generate a main. The generated main calls methods
that you specify using Functions to call within the specified classes.

 Class (-class-analyzer)

1-173

none
The generated main cannot call any class method.

custom
Polyspace can use classes that you specify to generate a main. The generated main
calls methods from classes that you specify using Functions to call within the
specified classes.

Dependencies
You can use this option only if all of the following are true:

• Your code does not contain a main function.
• Source code language (-lang) is set to CPP.
• Verify module or library (-main-generator) is selected.

Tips
If you select none for this option, Polyspace will not verify class methods that you do not
call explicitly in your code.

Command-Line Information
Parameter: -class-analyzer
Value: all | none | custom=class1[,class2,...]
Default: all
Example: polyspace-code-prover-nodesktop -sources file_name -main-
generator -class-analyzer custom=myClass1,myClass2

See Also
Verify module or library (-main-generator) | Functions to call within
the specified classes (-class-analyzer-calls) | Analyze class contents
only (-class-only) | Skip member initialization check (-no-
constructors-init-check)

1 Option Descriptions

1-174

Topics
“Specify Polyspace Analysis Options” (Polyspace Code Prover)
“Verify C++ Classes” (Polyspace Code Prover)

 Class (-class-analyzer)

1-175

Functions to call within the specified classes
(-class-analyzer-calls)
Specify class methods that you want to verify

Description
This option affects a Code Prover analysis only.

Specify class methods that Polyspace uses to generate a main. The generated main can
call static, public and protected methods in classes that you specify using the Class
option.

Set Option
User interface: In your project configuration, the option is on the Code Prover
Verification node. See “Dependencies” on page 1-178 for other options that you must
also enable.

Command line: Use the option -class-analyzer-calls. See “Command-Line
Information” on page 1-178.

Why Use This Option
If you are verifying a module or library, Code Prover generates a main function if one
does not exist. If a main exists, the analysis uses the existing main.

Use this option and the option Class (-class-analyzer) to specify the class methods
that the generated main must call. Unless a class method is called directly or indirectly
from main, the software does not analyze the method.

Settings
Default: unused

1 Option Descriptions

1-176

all
The generated main calls all public and protected methods. It does not call methods
inherited from a parent class.

all-public
The generated main calls all public methods. It does not call methods inherited from
a parent class.

inherited-all
The generated main calls all public and protected methods including those inherited
from a parent class.

inherited-all-public
The generated main calls all public methods including those inherited from a parent
class.

unused
The generated main calls public and protected methods that are not called in the
code.

unused-public
The generated main calls public methods that are not called in the code. It does not
call methods inherited from a parent class.

inherited-unused
The generated main calls public and protected methods that are not called in the
code including those inherited from a parent class.

inherited-unused-public
The generated main calls public methods that are not called in the code including
those inherited from a parent class.

custom
The generated main calls the methods that you specify.

Enter function names or choose from a list.

•
Click to add a field and enter the function name.

• Click to list functions in your code. Choose functions from the list.

If you use the scope resolution operator to specify the function from a particular
namespace, enter the fully qualified name, for instance, myClass::myMethod(int).

 Functions to call within the specified classes (-class-analyzer-calls)

1-177

If the function does not have a parameter, use an empty parenthesis, for instance,
myClass::myMethod().

Dependencies
You can use this option only if:

• Source code language (-lang) is set to CPP.
• Verify module or library (-main-generator) is selected.

Command-Line Information
Parameter: -class-analyzer-calls
Value: all | all-public | inherited-all | inherited-all-public | unused |
unused-public | inherited-unused | inherited-unused-public |
custom=method1[,method2,...]
Default: unused
Example: polyspace-code-prover-nodesktop -sources file_name -main-
generator -class-analyzer custom=myClass1,myClass2 -class-analyzer-
calls unused-public

See Also
Verify module or library (-main-generator) | Class (-class-analyzer) |
Analyze class contents only (-class-only) | Skip member initialization
check (-no-constructors-init-check)

Topics
“Specify Polyspace Analysis Options” (Polyspace Code Prover)
“Verify C++ Classes” (Polyspace Code Prover)

1 Option Descriptions

1-178

Analyze class contents only (-class-only)
Do not analyze code other than class methods

Description
This option affects a Code Prover analysis only.

Specify that Polyspace must verify only methods of classes that you specify using the
option Class (-class-analyzer).

Set Option
User interface: In your project configuration, the option is on the Code Prover
Verification node. See “Dependencies” on page 1-180 for other options that you must
also enable.

Command line: Use the option -class-only. See “Command-Line Information” on
page 1-180.

Why Use This Option
Use this option to restrict the analysis to certain class methods only.

You specify these methods through the options:

• Class (-class-analyzer)
• Functions to call within the specified classes (-class-analyzer-

calls)

When you analyze a module or library, Code Prover generates a main function if one does
not exist. The main function calls class methods using these two options and functions
that are not class methods using other options. Code Prover analyzes these methods and
functions for robustness to all inputs. If you use this option, Code Prover analyzes the
methods only.

 Analyze class contents only (-class-only)

1-179

Settings
 On

Polyspace verifies the class methods only. It stubs functions out of class scope even if
the functions are defined in your code.

 Off (default)
Polyspace verifies functions out of class scope in addition to class methods.

Dependencies
You can use this option only if all of the following are true:

• Your code does not contain a main function.
• Source code language (-lang) is set to CPP.
• Verify module or library (-main-generator) is selected.

If you select this option, you must specify the classes using the Class (-class-
analyzer) option.

Tips
Use this option:

• For robustness verification of class methods. Unless you use this option, Polyspace
verifies methods that you call in your code only for your input combinations.

• In case of scaling.

Command-Line Information
Parameter: -class-only
Default: Off

See Also
Verify module or library (-main-generator) | Class (-class-analyzer) |
Functions to call within the specified classes (-class-analyzer-

1 Option Descriptions

1-180

calls) | Skip member initialization check (-no-constructors-init-
check)

Topics
“Specify Polyspace Analysis Options” (Polyspace Code Prover)
“Verify C++ Classes” (Polyspace Code Prover)

 Analyze class contents only (-class-only)

1-181

Initialization functions (-functions-called-
before-main)
Specify functions that you want the generated main to call ahead of other functions

Description
This option affects a Code Prover analysis only.

Specify functions that you want the generated main to call ahead of other functions.

Set Option
User interface: In your project configuration, the option is on the Code Prover
Verification node. See “Dependencies” on page 1-183 for other options that you must
also enable.

Command line: Use the option -functions-called-before-main. See “Command-
Line Information” on page 1-184.

Why Use This Option
If you are verifying a module or library, Code Prover generates a main function if one
does not exist. If a main exists, the analysis uses the existing main.

Use this option along with the option Functions to call (-main-generator-
calls) to specify which functions the generated main must call. Unless a function is
called directly or indirectly from main, the software does not analyze the function.

Settings
No Default

Enter function names or choose from a list.

1 Option Descriptions

1-182

•
Click to add a field and enter the function name.

• Click to list functions in your code. Choose functions from the list.

If the function or method is not overloaded, specify the function name. Otherwise, specify
the function prototype with arguments. For instance, in the following code, you must
specify the prototypes func(int) and func(double).

int func(int x) {
 return(x * 2);
}
double func(double x) {
 return(x * 2);
}

For C++, if the function is:

• A class method: The generated main calls the class constructor before calling this
function.

• Not a class method: The generated main calls this function before calling class
methods.

If you use the scope resolution operator to specify the function from a particular
namespace, enter the fully qualified name, for instance, myClass::init(int). If the
function does not have a parameter, use an empty parenthesis, for instance,
myClass::init().

Dependencies
This option is enabled only if you select Verify module or library under Code Prover
Verification and your code does not contain a main function.

Tips
Although these functions are called ahead of other functions, they can be called in
arbitrary order. If you want to call your initialization functions in a specific order,
manually write a main function to call them.

 Initialization functions (-functions-called-before-main)

1-183

Command-Line Information
Parameter: -functions-called-before-main
Value: function1[,function2[,...]]
No Default
Example: polyspace-code-prover-nodesktop -sources file_name -main-
generator -functions-called-before-main myfunc
Example: polyspace-code-prover-nodesktop -sources file_name -main-
generator -functions-called-before-main myClass::init(int)

See Also
Verify module or library (-main-generator) | Variables to initialize
(-main-generator-writes-variables) | Functions to call (-main-
generator-calls) | Class (-class-analyzer) | Functions to call within
the specified classes (-class-analyzer-calls) | Analyze class contents
only (-class-only)

Topics
“Verify C Application Without main Function” (Polyspace Code Prover)

1 Option Descriptions

1-184

Verify whole application
Stop verification if sources files are incomplete and do not contain a main function

Description
This option affects a Code Prover analysis only.

Specify that Polyspace verification must stop if a main function is not present in the
source files.

If you select a Visual C++ setting for Compiler (-compiler), you can specify which
function must be considered as main. See Main entry point (-main).

Set Option
User interface: In your project configuration, the option is on the Code Prover
Verification node.

Command line: There is no corresponding command-line option. See “Command-Line
Information” on page 1-186.

Settings
 On

Polyspace verification stops if it does not find a main function in the source files.
 Off (default)

Polyspace continues verification even when a main function is not present in the
source files. If a main is not present, it generates a file __polyspace_main.c that
contains a main function.

 Verify whole application

1-185

Command-Line Information
Unlike the user interface, by default, a verification from the command line stops if it does
not find a main function in the source files. If you specify the option -main-generator,
Polyspace generates a main if it cannot find one in the source files.

See Also
Verify module or library (-main-generator)

Topics
“Verify C Application Without main Function” (Polyspace Code Prover)

1 Option Descriptions

1-186

Main entry point (-main)
Specify a Microsoft Visual C++ extensions of main

Description
This option affects a Code Prover analysis only.

Specify the function that you want to use as main. If the function does not exist, the
verification stops with an error message. Use this option to specify Microsoft Visual C++
extensions of main.

Set Option
User interface: In your project configuration, the option is on the Code Prover
Verification node. See “Dependencies” on page 1-188 for other options that you must
also enable.

Command line: Use the option -main. See “Command-Line Information” on page 1-188.

Settings
Default: _tmain

_tmain
Use _tmain as entry point to your code.

wmain
Use wmain as entry point to your code.

_tWinMain
Use _tWinMain as entry point to your code.

wWinMain
Use wWinMain as entry point to your code.

WinMain
Use WinMain as entry point to your code.

 Main entry point (-main)

1-187

DllMain
Use DllMain as entry point to your code.

Dependencies
This option is enabled only if you:

• Set Source code language (-lang) to CPP.
• Select Verify whole application

Command-Line Information
Parameter: -main
Value: _tmain | wmain | _tWinMain | wWinMain | WinMain | DllMain
Example: polyspace-code-prover-nodesktop -sources file_name -compiler
visual14.0 -main _tmain

See Also
Verify module or library (-main-generator)

1 Option Descriptions

1-188

Functions to call (-main-generator-calls)
Specify functions that you want the generated main to call after the initialization
functions

Description
This option affects a Code Prover analysis only.

Specify functions that you want the generated main to call. The main calls these
functions after the ones you specify through the option Initialization functions
(-functions-called-before-main).

Set Option
User interface: In your project configuration, the option is on the Code Prover
Verification node. See “Dependencies” on page 1-190 for other options that you must
also enable.

Command line: Use the option -main-generator-calls. See “Command-Line
Information” on page 1-191.

Why Use This Option
If you are verifying a module or library, Code Prover generates a main function if one
does not exist. If a main exists, the analysis uses the existing main.

Use this option along with the option Initialization functions (-functions-
called-before-main) to specify which functions the generated main must call. Unless
a function is called directly or indirectly from main, the software does not analyze the
function.

Settings
Default: unused

 Functions to call (-main-generator-calls)

1-189

none
The generated main does not call any function.

unused
The generated main calls only those functions that are not called in the source code.
It does not call inlined functions.

all
The generated main calls all functions except inlined ones.

custom
The generated main calls functions that you specify.

Enter function names or choose from a list.

•
Click to add a field and enter the function name.

• Click to list functions in your code. Choose functions from the list.

If you use the scope resolution operator to specify the function from a particular
namespace, enter the fully qualified name, for instance, myClass::myMethod(int).
If the function does not have a parameter, use an empty parenthesis, for instance,
myClass::myMethod().

Dependencies
This option is available only if you select Verify module or library (-main-
generator).

Tips
• Select unused when you use Code Prover Verification > Verify files

independently.
• If you want the generated main to call an inlined function, select custom and specify

the name of the function.
• To verify a multitasking application without a main, select none.
• The generated main can call the functions in arbitrary order. If you want to call your

functions in a specific order, manually write a main function to call them.

1 Option Descriptions

1-190

Command-Line Information
Parameter: -main-generator-calls
Value: none | unused | all | custom=function1[,function2[,...]]
Default: unused
Example: polyspace-code-prover-nodesktop -sources file_name -main-
generator -main-generator-calls all

See Also
Verify module or library (-main-generator) | Variables to initialize
(-main-generator-writes-variables) | Initialization functions (-
functions-called-before-main) | Class (-class-analyzer) | Functions to
call within the specified classes (-class-analyzer-calls) | Analyze
class contents only (-class-only)

Topics
“Verify C Application Without main Function” (Polyspace Code Prover)

 Functions to call (-main-generator-calls)

1-191

Variables to initialize (-main-generator-
writes-variables)
Specify global variables that you want the generated main to initialize

Description
This option affects a Code Prover analysis only.

Specify global variables that you want the generated main to initialize. Polyspace
considers these variables to have any value allowed by their type.

Set Option
User interface: In your project configuration, the option is on the Code Prover
Verification node. See “Dependencies” on page 1-193 for other options that you must
also enable.

Command line: Use the option -main-generator-writes-variables. See
“Command-Line Information” on page 1-193.

Why Use This Option
If you are verifying a module or library, Code Prover generates a main function if one
does not exist. If a main exists, the analysis uses the existing main.

Use this option to specify which global variables the generated main must initialize.

Settings
Default:

• C code — public
• C++ Code — uninit

1 Option Descriptions

1-192

uninit
C++ Only

The generated main only initializes global variables that you have not initialized
during declaration.

none
The generated main does not initialize global variables.

public
The generated main initializes all global variables except those declared with
keywords static and const.

all
The generated main initializes all global variables except those declared with
keyword const.

custom

The generated main only initializes global variables that you specify. Click to add
a field. Enter a global variable name.

Dependencies
You can use this option only if the following are true:

• Your code does not contain a main function.
• Verify module or library (-main-generator) is selected.

Command-Line Information
Parameter: -main-generator-writes-variables
Value: uninit | none | public | all | custom=variable1[,variable2[,...]]
Default: (C) public | (C++) uninit
Example: polyspace-code-prover-nodesktop -sources file_name -main-
generator -main-generator-writes-variables all

See Also
Verify module or library (-main-generator) | Initialization functions
(-functions-called-before-main) | Functions to call (-main-generator-

 Variables to initialize (-main-generator-writes-variables)

1-193

calls) | Class (-class-analyzer) | Functions to call within the
specified classes (-class-analyzer-calls) | Analyze class contents
only (-class-only)

Topics
“Verify C Application Without main Function” (Polyspace Code Prover)

1 Option Descriptions

1-194

Skip member initialization check (-no-
constructors-init-check)
Do not check if class constructor initializes class members

Description
This option affects a Code Prover analysis only.

Specify that Polyspace must not check whether each class constructor initializes all class
members.

Set Option
User interface: In your project configuration, the option is on the Code Prover
Verification node. See “Dependencies” on page 1-196 for other options that you must
also enable.

Command line: Use the option -no-constructors-init-check. See “Command-Line
Information” on page 1-196.

Why Use This Option
Use this option to disable checks for initialization of class members in constructors.

Settings
 On

Polyspace does not check whether each class constructor initializes all class
members.

 Off (default)
Polyspace checks whether each class constructor initializes all class members. It uses
the functions check_NIV() and check_NIP() in the generated main to perform
these checks. It checks for initialization of:

 Skip member initialization check (-no-constructors-init-check)

1-195

• Integer types such as int, char and enum, both signed or unsigned.
• Floating-point types such as float and double.
• Pointers.

Dependencies
You can use this option only if all of the following are true:

• Your code does not contain a main function.
• Source code language (-lang) is set to CPP.
• Verify module or library (-main-generator) is selected.

If you select this option, you must specify the classes using theClass (-class-
analyzer) option.

Command-Line Information
Parameter: -no-constructors-init-check
Default: Off

See Also
Verify module or library (-main-generator) | Class (-class-analyzer)

Topics
“Specify Polyspace Analysis Options” (Polyspace Code Prover)

1 Option Descriptions

1-196

Verify files independently (-unit-by-unit)
Verify each source file independently of other source files

Description
This option affects a Code Prover analysis only.

Specify that each source file must be verified independently of other source files. Each file
is verified individually, independent of other files in the module. Verification results can be
viewed for the entire project or for individual files.

After you open the verification result for one file, you can see a summary of results for all
files on the Dashboard pane. You can open the results for each file directly from this
summary table.

Set Option
User interface: In your project configuration, the option is on the Code Prover
Verification node. See “Dependencies” on page 1-198 for other options that you must
also enable.

Command line: Use the option -unit-by-unit. See “Command-Line Information” on
page 1-199.

Why Use This Option
There are many reasons you might want to verify each source file independently of other
files.

For instance, if verification of a project takes very long, you can perform a file by file
verification to identify which file is slowing the verification.

 Verify files independently (-unit-by-unit)

1-197

Settings
 On

Polyspace creates a separate verification job for each source file.

 Off (default)
Polyspace creates a single verification job for all source files in a module.

Dependencies
This option is enabled only if you select Verify module or library (-main-
generator).

Tips
• If you perform a file by file verification, you cannot specify multitasking options.
• If your verification for the entire project takes very long, perform a file by file
verification. After the verification is complete for a file, you can view the results while
other files are still being verified.

• You can generate a report of the verification results for each file or for all the files
together.

To generate a single report for all the files:

1 Open the results for one file.
2 Select Reporting > Run Report. Before generating the report, select the option

Generate a single report including all unit results.
• When you perform a file-by-file verification, you can see many instances of unused

variables. Some of these variables might be used in other files but show as unused in a
file-by-file verification.

If you want to ignore these results, use a review scope (named set of filters) that filters
out unused variables. See “Filter and Group Results” (Polyspace Code Prover).

1 Option Descriptions

1-198

Command-Line Information
Parameter: -unit-by-unit
Default: Off
Example: polyspace-code-prover-nodesktop -sources file_name -unit-by-
unit

See Also
Common source files (-unit-by-unit-common-source)

 Verify files independently (-unit-by-unit)

1-199

Common source files (-unit-by-unit-
common-source)
Specify files that you want to include with each source file during a file by file verification

Description
This option affects a Code Prover analysis only.

For a file by file verification, specify files that you want to include with each source file
verification. These files are compiled once, and then linked to each verification.

Set Option
User interface: In your project configuration, the option is on the Code Prover
Verification node. See “Dependencies” on page 1-201 for other options that you must
also enable.

Command line: Use the option -unit-by-unit-common-source. See “Command-Line
Information” on page 1-201.

Why Use This Option
There are many reasons you might want to verify each source file independently of other
files. For instance, if verification of a project takes very long, you can perform a file by file
verification to identify which file is slowing the verification.

If you perform a file by file verification, some of your files might be missing information
present in the other files. Place the missing information in a common file and use this
option to specify the file for verification. For instance, if multiple source files call the same
function, use this option to specify a file that contains the function definition or a function
stub. Otherwise, Polyspace uses its own stubs for functions that are called but not defined
in the source files. The assumptions behind the Polyspace stubs can be broader than what
you want, leading to orange checks.

1 Option Descriptions

1-200

Settings
No Default

Click to add a field. Enter the full path to a file. Otherwise, use the button to
navigate to the file location.

Dependencies
This option is enabled only if you select Verify files independently (-unit-by-
unit).

Command-Line Information
Parameter: -unit-by-unit-common-source
Value: file1[,file2[,...]]
No Default
Example: polyspace-code-prover-nodesktop -sources file_name -unit-by-
unit -unit-by-unit-common-source definitions.c

See Also
Verify files independently (-unit-by-unit)

 Common source files (-unit-by-unit-common-source)

1-201

Verify model generated code (-main-
generator)
Specify that a main function must be generated if it is not present in source files

Description
This option is available only for model-generated code.

Specify that Polyspace must generate a main function if it does not find one in the source
files.

Set Option
User interface: In your project configuration, the option is on the Code Prover
Verification node.

Command line: Use the option -main-generator. See “Command-Line Information” on
page 1-203.

Settings
This option is always enabled for code generated from models.

Polyspace generates a main function for the analysis. The generated main contains cyclic
code that executes in a loop. The loop can run an unspecified number of times.

The main performs the following functions before the loop begins:

• Initializes variables specified by Parameters (-variables-written-before-
loop).

• Calls the functions specified by Initialization functions (-functions-
called-before-loop).

The main then performs the following functions in the loop:

1 Option Descriptions

1-202

• Calls the functions specified by Step functions (-functions-called-in-
loop).

• Writes to variables specified by Inputs (-variables-written-in-loop).

Finally, the main calls the functions specified by Termination functions (-
functions-called-after-loop).

Command-Line Information
Parameter: -main-generator
Default: On
Example: polyspace-bug-finder-nodesktop -sources file_name -main-
generator ...

See Also
Parameters (-variables-written-before-loop) | Inputs (-variables-
written-in-loop) | Initialization functions (-functions-called-before-
loop) | Step functions (-functions-called-in-loop) | Termination
functions (-functions-called-after-loop)

Topics
“Configure Advanced Polyspace Options in Simulink”
“How Polyspace Analysis of Generated Code Works”

 Verify model generated code (-main-generator)

1-203

Initialization functions (-functions-called-
before-loop)
Specify functions that the generated main must call before the cyclic code loop

Description
This option is available only for model- generated code.

Specify functions that the generated main must call before the cyclic code begins.

Set Option
User interface: In your project configuration, the option is available on the Main
Generator node.

Command line: Use the option -functions-called-before-loop. See “Command-
Line Information” on page 1-204.

Settings
No Default

Click to add a field. Enter function name.

If you use the scope resolution operator to specify the function from a particular
namespace, enter the fully qualified name, for instance, myClass::init(int). If the
function does not have a parameter, use an empty parenthesis, for instance,
myClass::init().

Command-Line Information
Parameter: -functions-called-before-loop
No Default

1 Option Descriptions

1-204

Value: function1[,function2[,...]]
Example: polyspace-bug-finder-nodesktop -sources file_name -main-
generator -functions-called-before-loop myfunc

See Also
Parameters (-variables-written-before-loop) | Inputs (-variables-
written-in-loop) | Step functions (-functions-called-in-loop) |
Termination functions (-functions-called-after-loop)

Topics
“Configure Advanced Polyspace Options in Simulink”
“How Polyspace Analysis of Generated Code Works”

 Initialization functions (-functions-called-before-loop)

1-205

Step functions (-functions-called-in-
loop)
Specify functions that the generated main must call in the cyclic code loop

Description
This option is available only for model-generated code.

Specify functions that the generated main must call in each cycle of the cyclic code.

Set Option
User interface: In your project configuration, the option is available on the Main
Generator node.

Command line: Use the option -functions-called-in-loop. See “Command-Line
Information” on page 1-207.

Settings
Default: none

none
The generated main does not call functions in the cyclic code.

all
The generated main calls all functions except inlined ones. If you specify certain
functions for the options Initialization functions or Termination functions, the
generated main does not call those functions in the cyclic code.

custom

The generated main calls functions that you specify. Click to add a field. Enter
function name.

1 Option Descriptions

1-206

If you use the scope resolution operator to specify the function from a particular
namespace, enter the fully qualified name, for instance, myClass::myMethod(int).
If the function does not have a parameter, use an empty parenthesis, for instance,
myClass::myMethod().

Tips
If you have specified a function for the option Initialization functions or Termination
functions, to call it inside the cyclic code, use custom and specify the function name.

Command-Line Information
Parameter: -functions-called-in-loop
Value: none | all | custom=function1[,function2[,...]]
Default: none
Example: polyspace-bug-finder-nodesktop -sources file_name -main-
generator -functions-called-in-loop all

See Also
Parameters (-variables-written-before-loop) | Inputs (-variables-
written-in-loop) | Initialization functions (-functions-called-before-
loop) | Termination functions (-functions-called-after-loop)

Topics
“Configure Advanced Polyspace Options in Simulink”
“How Polyspace Analysis of Generated Code Works”

 Step functions (-functions-called-in-loop)

1-207

Termination functions (-functions-called-
after-loop)
Specify functions that the generated main must call after the cyclic code loop

Description
This option is available only for model-generated code.

Specify functions that the generated main must call after the cyclic code ends.

Set Option
User interface: In your project configuration, the option is available on the Main
Generator node.

Command line: Use the option -functions-called-after-loop. See “Command-
Line Information” on page 1-209.

Settings
No Default

Click to add a field. Enter function name.

If you use the scope resolution operator to specify the function from a particular
namespace, enter the fully qualified name, for instance, myClass::myMethod(int). If
the function does not have a parameter, use an empty parenthesis, for instance,
myClass::myMethod().

Tips
• If you specify a function for the option Initialization functions, you cannot specify it

for Termination functions.

1 Option Descriptions

1-208

Command-Line Information
Parameter: -functions-called-after-loop
No Default
Value: function1[,function2[,...]]
Example: polyspace-bug-finder-nodesktop -sources file_name -main-
generator -functions-called-after-loop myfunc

See Also
Parameters (-variables-written-before-loop) | Inputs (-variables-
written-in-loop) | Initialization functions (-functions-called-before-
loop) | Step functions (-functions-called-in-loop)

Topics
“Configure Advanced Polyspace Options in Simulink”
“How Polyspace Analysis of Generated Code Works”

 Termination functions (-functions-called-after-loop)

1-209

Parameters (-variables-written-before-
loop)
Specify variables that the generated main must initialize before the cyclic code loop

Description
This option is available only for model-generated code.

Specify variables that the generated main must initialize before the cyclic code loop
begins. Before the loop begins, Polyspace considers these variables to have any value
allowed by their type.

Set Option
User interface: In your project configuration, the option is available on the Main
Generator node.

Command line: Use the option -variables-written-before-loop. See “Command-
Line Information” on page 1-211.

Settings
Default: none

none
The generated main does not initialize variables.

all
The generated main initializes all variables except those declared with keyword
const.

1 Option Descriptions

1-210

custom

The generated main only initializes variables that you specify. Click to add a field.
Enter variable name. For C++ class members, use the syntax
className::variableName.

Command-Line Information
Parameter: -variables-written-before-loop
Value: none | all | custom=variable1[,variable2[,...]]
Default: public
Example: polyspace-bug-finder-nodesktop -sources file_name -main-
generator -variables-written-before-loop all

See Also
Inputs (-variables-written-in-loop) | Initialization functions (-
functions-called-before-loop) | Step functions (-functions-called-in-
loop) | Termination functions (-functions-called-after-loop)

Topics
“Configure Advanced Polyspace Options in Simulink”
“How Polyspace Analysis of Generated Code Works”

 Parameters (-variables-written-before-loop)

1-211

Inputs (-variables-written-in-loop)
Specify variables that the generated main must initialize in the cyclic code loop

Description
This option is available only for model-generated code.

Specify variables that the generated main must initialize at the beginning of every
iteration of the cyclic code loop. At the beginning of every loop iteration, Polyspace
considers these variables to have any value allowed by their type.

Set Option
User interface: In your project configuration, the option is available on the Main
Generator node.

Command line: Use the option -variables-written-in-loop. See “Command-Line
Information” on page 1-213.

Settings
Default: none

none
The generated main does not initialize variables.

all
The generated main initializes all variables except those declared with keyword
const.

custom

The generated main only initializes variables that you specify. Click to add a field.
Enter variable name. For C++ class members, use the syntax
className::variableName.

1 Option Descriptions

1-212

Command-Line Information
Parameter: -variables-written-in-loop
Value: none | all | custom=variable1[,variable2[,...]]
Default: none
Example: polyspace-bug-finder-nodesktop -sources file_name -main-
generator -variables-written-in-loop all

See Also
Parameters (-variables-written-before-loop) | Initialization functions
(-functions-called-before-loop) | Step functions (-functions-called-
in-loop) | Termination functions (-functions-called-after-loop)

Topics
“Configure Advanced Polyspace Options in Simulink”
“How Polyspace Analysis of Generated Code Works”

 Inputs (-variables-written-in-loop)

1-213

Verify module or library (-main-generator)
Generate a main function if source files are modules or libraries that do not contain a
main

Description
This option affects a Code Prover analysis only.

Specify that Polyspace must generate a main function if it does not find one in the source
files.

Set Option
User interface: In your project configuration, the option is on the Code Prover
Verification node.

Command line: Use the option -main-generator. See “Command-Line Information” on
page 1-215.

For the analogous option for model generated code, see Verify model generated
code (-main-generator).

Why Use This Option
Use this option if you are verifying a module or library. A Code Prover analysis requires a
main function. When verifying a module or library, your code might not have a main.

When you use this option, Code Prover generates a main function if one does not exist. If
a main exists, the analysis uses the existing main.

Settings
 On (default)

Polyspace generates a main function if it does not find one in the source files. The
generated main:

1 Option Descriptions

1-214

1 Initializes variables specified by Variables to initialize (-main-
generator-writes-variables).

2 Before calling other functions, calls the functions specified by Initialization
functions (-functions-called-before-main).

3 In all possible orders, calls the functions specified by Functions to call (-
main-generator-calls).

4 (C++ only) Calls class methods specified by Class (-class-analyzer) and
Functions to call within the specified classes (-class-
analyzer-calls).

If you do not specify the function and variable options above, the generated main:

• Initializes all global variables except those declared with keywords const and
static.

• In all possible orders, calls all functions that are not called anywhere in the source
files. Polyspace considers that global variables can be written between two
consecutive function calls. Therefore, in each called function, global variables
initially have the full range of values allowed by their type.

 Off
Polyspace stops if a main function is not present in the source files.

Tips
• If a main function is present in your source files, the verification uses that main

function, irrespective of whether you enable or disable this option.

The option is relevant only if a main function is not present in your source files.
• If you specify multitasking options, the verification ignores your specifications for

main generation. Instead, the verification introduces an empty main function.

For more information on the multitasking options, see “Configuring Polyspace
Multitasking Analysis Manually”.

Command-Line Information
Parameter: -main-generator

 Verify module or library (-main-generator)

1-215

Default: Off
Example: polyspace-bug-finder-nodesktop -sources file_name -main-
generator ...

See Also
Parameters (-variables-written-before-loop) | Inputs (-variables-
written-in-loop) | Initialization functions (-functions-called-before-
loop) | Step functions (-functions-called-in-loop) | Termination
functions (-functions-called-after-loop)

Topics
“Specify Polyspace Analysis Options”

1 Option Descriptions

1-216

Consider volatile qualifier on fields (-
consider-volatile-qualifier-on-fields)
Assume that volatile qualified structure fields can have all possible values at any point
in code

Description
This option affects a Code Prover analysis only.

Specify that the verification must take into account the volatile qualifier on fields of a
structure.

Set Option
User interface: In your project configuration, the option is available on the Verification
Assumptions node.

Command line: Use the option -consider-volatile-qualifier-on-fields. See
“Command-Line Information” on page 1-220.

Why Use This Option
The volatile qualifier on a variable indicates that the variable value can change
between successive operations even if you do not explicitly change it in your code. For
instance, if var is a volatile variable, the consecutive operations res = var; res
=var; can result in two different values of var being read into res.

Use this option so that the verification emulates the volatile qualifier for structure
fields. If you select this option, the software assumes that a volatile structure field has
a full range of values at any point in the code. The range is determined only by the data
type of the structure field.

 Consider volatile qualifier on fields (-consider-volatile-qualifier-on-fields)

1-217

Settings
 On

The verification considers the volatile qualifier on fields of a structure.

In the following example, the verification considers that the field val1 can have all
values allowed for the int type at any point in the code.

struct myStruct {
 volatile int val1;
 int val2;
};

Even if you write a specific value to val1 and read the variable in the next operation,
the variable read results in any possible value.

struct myStruct myStructInstance;
myStructInstance.val1 = 1;
assert (myStructInstance.val1 == 1); // Assertion can fail

 Off (default)
The verification ignores the volatile qualifier on fields of a structure.

In the following example, the verification ignores the qualifier on field val1.

struct myStruct {
 volatile int val1;
 int val2;
};

If you write a specific value to val1 and read the variable in the next operation, the
variable read results in that specific value.

struct myStruct myStructInstance;
myStructInstance.val1 = 1;
assert (myStructInstance.val1 == 1); // Assertion passes

Tips
• If your volatile fields do not represent values read from hardware and you do not

expect their values to change between successive operations, disable this option. You

1 Option Descriptions

1-218

are using the volatile qualifier for some other reason and the verification does not
need to consider full range for the field values.

• If you enable this option, the number of red, gray, and green checks in your code can
decrease. The number of orange checks can increase.

In the following example, a red or green check changes to orange or a gray check goes
away when the option is used. Considering the volatile qualifier changes the check
color. These examples use the following structure definition:

struct myStruct {
 volatile int field1;
 int field2;
};

Color
Without
Option

Result Without Option Result With Option

Green void main(){
 struct myStruct structVal;
 structVal.field1 = 1;
 assert(structVal.field1 == 1);
}

void main(){
 struct myStruct structVal;
 structVal.field1 = 1;
 assert(structVal.field1 ==1);
}

Red void main(){
 struct myStruct structVal;
 structVal.field1 = 1;
 assert(structVal.field1 != 1);
}

void main(){
 struct myStruct structVal;
 structVal.field1 = 1;
 assert(structVal.field1 !=1);
}

Gray void main(){
 struct myStruct structVal;
 structVal.field1 = 1;
 if (structVal.field1 != 1)
 {
 /* Perform operation */
 }
}

void main(){
 struct myStruct structVal;
 structVal.field1 = 1;
 if (structVal.field1 != 1)
 {
 /* Perform operation */
 }
}

• In C++ code, the option also applies to class members.

 Consider volatile qualifier on fields (-consider-volatile-qualifier-on-fields)

1-219

Command-Line Information
Parameter: -consider-volatile-qualifier-on-fields
Default: Off
Example: polyspace-code-prover-nodesktop -sources file_name -
consider-volatile-qualifier-on-fields

See Also

Topics
“Specify External Constraints” (Polyspace Code Prover)

Introduced in R2016b

1 Option Descriptions

1-220

Float rounding mode (-float-rounding-
mode)
Specify rounding modes to consider when determining the results of floating point
arithmetic

Description
This option affects a Code Prover analysis only.

Specify the rounding modes to consider when determining the results of floating-point
arithmetic.

Set Option
User interface: In your project configuration, the option is available on the Verification
Assumptions node.

Command line: Use the option -float-rounding-mode. See “Command-Line
Information” on page 1-224.

Why Use This Option
The default verification uses the round-to-nearest mode.

Use the rounding mode all if your code contains routines such as fesetround to specify
a rounding mode other than round-to-nearest. Although the verification ignores the
fesetround specification, it considers all rounding modes including the rounding mode
that you specified. Alternatively, for targets that can use extended precision (for instance,
using the flag -mfpmath=387), use the rounding mode all. However, for your Polyspace
analysis results to agree with run-time behavior, you must prevent use of extended
precision through a flag such as -ffloat-store.

Otherwise, continue to use the default rounding mode to-nearest. Because all rounding
modes are considered when you specify all, you can have many orange Overflow checks
resulting from overapproximation.

 Float rounding mode (-float-rounding-mode)

1-221

http://www.cplusplus.com/reference/cfenv/fesetround/

Settings
Default: to-nearest

to-nearest
The verification assumes the round-to-nearest mode.

all
The verification assumes all rounding modes for each operation involving floating-
point variables. The following rounding modes are considered: round-to-nearest,
round-towards-zero, round-towards-positive-infinity, and round-towards-negative-
infinity.

Tips
• The Polyspace analysis uses floating-point arithmetic that conforms to the IEEE® 754

standard. For instance, the arithmetic uses floating point instructions present in the
SSE instruction set. The GNU C flag -mfpmath=sse enforces use of this instruction
set. If you use the GNU C compiler with this flag to compile your code, your Polyspace
analysis results agree with your run-time behavior.

However, if your code uses extended precision, for instance using the GNU C flag -
mfpmath=387, your Polyspace analysis results might not agree with your run-time
behavior in some corner cases. See some examples of these corner cases in
codeprover_limitations.pdf in matlabroot\polyspace\verifier
\code_prover. Here, matlabroot is the MATLAB installation folder, for instance, C:
\Program Files\MATLAB\R2017b.

To prevent use of extended precision, on targets without SSE support, you can use a
flag such as -ffloat-store. For your Polyspace analysis, use all for rounding mode
to account for double rounding.

• The Overflow check uses the rounding modes that you specify. For instance, the
following table shows the difference in the result of the check when you change your
rounding modes.

1 Option Descriptions

1-222

Rounding mode: to-nearest Rounding mode: all
If results of floating-point operations are
rounded to nearest values:

• In the first addition operation, eps1
is just large enough that the value
nearest to FLT_MAX + eps1 is
greater than FLT_MAX. The Overflow
check is red.

• In the second addition operation,
eps2 is just small enough that the
value nearest to FLT_MAX + eps2 is
FLT_MAX. The Overflow check is
green.

#include <float.h>
#define eps1 0x1p103
#define eps2 0x0.FFFFFFp103

float func(int ch) {
 float left_op = FLT_MAX;
 float right_op_1 = eps1, \
right_op_2 = eps2;
 switch(ch) {
 case 1:
 return (left_op +\
right_op_1);
 case 2:
 return (left_op +\
right_op_2);
 default:
 return 0;
 }
}

Besides to-nearest mode, the Overflow
check also considers other rounding
modes.

• In the first addition operation, in to-
nearest mode, the value nearest to
FLT_MAX + eps1 is greater than
FLT_MAX, so the addition overflows.
But if rounded towards negative
infinity, the result is FLT_MAX, so the
addition does not overflow.
Combining these two rounding
modes, the Overflow check is
orange.

• In the second addition operation, in
to-nearest mode, the value nearest to
FLT_MAX + eps2 is FLT_MAX, so
the addition does not overflow. But if
rounded towards positive infinity, the
result is greater than FLT_MAX, so
the addition overflows. Combining
these two rounding modes, the
Overflow check is orange.

#include <float.h>
#define eps1 0x1p103
#define eps2 0x0.FFFFFFp103

float func(int ch) {
 float left_op = FLT_MAX;
 float right_op_1 = eps1, \
 right_op_2 = eps2;
 switch(ch) {
 case 1:
 return (left_op +\
right_op_1);
 case 2:
 return (left_op +\
right_op_2);

 Float rounding mode (-float-rounding-mode)

1-223

Rounding mode: to-nearest Rounding mode: all
 default:
 return 0;
 }
}

If you set the rounding mode to all and obtain an orange Overflow check, to
determine how the overflow can occur, consider all rounding modes.

Command-Line Information
Parameter: -float-rounding-mode
Value: to-nearest | all
Default: to-nearest
Example: polyspace-code-prover-nodesktop -sources file_name -float-
rounding-mode all

See Also
Overflow

Introduced in R2016a

1 Option Descriptions

1-224

Respect types in fields (-respect-types-
in-fields)
Do not cast nonpointer fields of a structure to pointers

Description
This option affects a Code Prover analysis only.

Specify that structure fields not declared initially as pointers will not be cast to pointers
later.

Set Option
User interface: In your project configuration, the option is available on the Verification
Assumptions node.

Command line: Use the option -respect-types-in-fields. See “Command-Line
Information” on page 1-226.

Why Use This Option
Use this option to identify and forbid casts from nonpointer structure fields to pointers.

Settings
 On

The verification assumes that structure fields not declared initially as pointers will not
be cast to pointers later.

 Respect types in fields (-respect-types-in-fields)

1-225

Code with option off Code with option on
struct {
 unsigned int x1;
 unsigned int x2;
} S;

void funct(void) {
 int var, *tmp;
 S.x1 = &var;
 tmp = (int*)S.x1;
 *tmp = 1;
 assert(var==1);
}

In this example, the fields of S are
declared as integers but S.x1 is cast to
a pointer. With the option turned off,
Polyspace allows the cast.

struct {
 unsigned int x1;
 unsigned int x2;
} S;

void funct(void) {
 int var, *tmp;
 S.x1 = &var;
 tmp = (int*)S.x1;
 *tmp = 1;
 assert(var==1);
}

In this example, the fields of S are
declared as integers but S.x1 is cast to
a pointer. With the option turned on,
Polyspace ignores the cast. Therefore, it
ignores the initialization of var through
the pointer (int*)S.x1 and produces
a red Non-initialized local variable
error when var is read.

 Off (default)
The verification assumes that structure fields can be cast to pointers even when they
are not declared as pointers.

Command-Line Information
Parameter: -respect-types-in-fields
Default: Off

See Also
Respect types in global variables (-respect-types-in-globals) | Non-
initialized local variable

1 Option Descriptions

1-226

Respect types in global variables (-respect-
types-in-globals)
Do not cast nonpointer global variables to pointers

Description
This option affects a Code Prover analysis only.

Specify that global variables not declared initially as pointers will not be cast to pointers
later.

Set Option
User interface: In your project configuration, the option is available on the Verification
Assumptions node.

Command line: Use the option -respect-types-in-globals. See “Command-Line
Information” on page 1-228.

Why Use This Option
Use this option to identify and forbid casts from nonpointer global variables to pointers.

Settings
 On

The verification assumes that global variables not declared initially as pointers will
not be cast to pointers later.

 Off (default)
The verification assumes that global variables can be cast to pointers even when they
are not declared as pointers.

 Respect types in global variables (-respect-types-in-globals)

1-227

Tips
If you select this option, the number of checks in your code can change. You can use this
option and the change in results to identify cases where you cast nonpointer variables to
pointers.

For instance, in the following example, when you select the option, the results have one
less orange check and one more red check.

Code with option off Code with option on
int global;
void main(void) {
 int local;
 global = (int)&local;
 (int)global = 5;
 assert(local==5);
}

In this example, global is declared as an
int variable but cast to a pointer. With the
option turned off, Polyspace allows the cast.

int global;
void main(void) {
 int local;
 global = (int)&local;
 (int)global = 5;
 assert(local==5);
}

In this example, global is declared as an
int variable but cast to a pointer. With the
option turned on, Polyspace ignores the
cast. Therefore, it ignores the initialization
of local through the pointer
(int*)global and produces a red Non-
initialized local variable error when
local is read.

Command-Line Information
Parameter: -respect-types-in-globals
Default: Off

See Also
Respect types in fields (-respect-types-in-fields) | Non-initialized
local variable

1 Option Descriptions

1-228

Consider environment pointers as unsafe (-
stubbed-pointers-are-unsafe)
Specify that environment pointers can be unsafe to dereference unless constrained
otherwise

Description
This option affects a Code Prover analysis only.

Specify that the verification must consider environment pointers as unsafe unless
otherwise constrained. Environment pointers are pointers that can be assigned values
outside your code.

Environment pointers include:

• Global or extern pointers.
• Pointers returned from stubbed functions.

A function is stubbed if your code does not contain the function definition or you
override a function definition by using the option Functions to stub (-
functions-to-stub).

• Pointer parameters of functions whose calls are generated by the software.

A function call is generated if you verify a module or library and the module or library
does not have an explicit call to the function. You can also force a function call to be
generated with the option Functions to call (-main-generator-calls).

Set Option
User interface: In your project configuration, the option is available on the Verification
Assumptions node.

Command line: Use the option -stubbed-pointers-are-unsafe. See “Command-
Line Information” on page 1-232.

 Consider environment pointers as unsafe (-stubbed-pointers-are-unsafe)

1-229

Why Use This Option
Use this option so that the verification makes more conservative assumptions about
pointers from external sources.

If you specify this option, the verification considers that environment pointers can have a
NULL value. If you read an environment pointer without checking for NULL, the Illegally
dereferenced pointer check shows a potential error in orange. The message associated
with the orange check shows the pointer can be NULL.

Settings
 On

The verification considers that environment pointers can have a NULL value.

 Off (default)
The verification considers that environment pointers:

• Cannot have a NULL value.
• Points within allowed bounds.

Tips
• Enable this option during the integration phase. In this phase, you provide complete

code for verification. Even if an orange check originates from external sources, you
are likely to place protections against unsafe pointers from such sources. For instance,
if you obtain a pointer from an unknown source, you check the pointer for NULL value.

Disable this option during the unit testing phase. In this phase, you focus on errors
originating from your unit.

• If you are verifying code implementation of AUTOSAR runnables, Code Prover
assumes that pointer arguments to runnables and pointers returned from Rte_
functions are not NULL. You cannot use this option to change the assumption. See
“Run Polyspace on AUTOSAR Code with Conservative Assumptions” (Polyspace Code
Prover).

• If you enable this option, the number of orange checks in your code might increase.

1 Option Descriptions

1-230

Environment Pointers Safe Environment Pointers Unsafe
The Illegally dereferenced pointer
check is green. The verification assumes
that env_ptr is not NULL and any
dereference is within allowed bounds.
The verification assumes that the result
of the dereference is full range. For
instance, in this case, the return value
has the full range of type int.

 int func (int *env_ptr) {
 return *env_ptr;
 }

The Illegally dereferenced pointer
check is orange. The verification
assumes that env_ptr can be NULL.

 int func (int *env_ptr) {
 return *env_ptr;
 }

If you enable this option, the number of gray checks might decrease.

Environment Pointers Safe Environment Pointers Unsafe
The verification assumes that env_ptr
is not NULL. The if condition is always
true and the else block is unreachable.

 #include <stdlib.h>
 int func (int *env_ptr) {
 if(env_ptr!=NULL)
 return *env_ptr;
 else
 return 0;
 }

The verification assumes that env_ptr
can be NULL. The if condition is not
always true and the else block can be
reachable.

 #include <stdlib.h>
 int func (int *env_ptr) {
 if(env_ptr!=NULL)
 return *env_ptr;
 else
 return 0;
 }

• Instead of considering all environment pointers as safe or unsafe, you can individually
constrain some of the environment pointers. See the description of Initialize Pointer
in “External Constraints for Polyspace Analysis” (Polyspace Code Prover).

When you individually constrain a pointer, you first specify an Init Mode, and then
specify through the Initialize Pointer option whether the pointer is Null, Not Null,
or Maybe Null. Depending on the Init Mode, you can either override the global
specification for all environment pointers or not.

• If you set the Init Mode of the pointer to INIT or PERMANENT, your selection for
Initialize Pointer overrides your specification for this option. For instance, if you
specify Not NULL for an environment pointer ptr, the verification assumes that

 Consider environment pointers as unsafe (-stubbed-pointers-are-unsafe)

1-231

ptr is not NULL even if you specify that environment pointers must be considered
unsafe.

• If you set the Init Mode to MAIN GENERATOR, the verification uses your
specification for this option.

For pointers returned from stubbed functions, the option MAIN GENERATOR is not
available. If you override the global specification for such a pointer through the
Initialize Pointer option in constraints, you cannot toggle back to the global
specification without changing the Initialize Pointer option too.

• If you disable this option, the verification considers that dereferences at all pointer
depths are valid.

For instance, all the dereferences are considered valid in this code:

int*** stub(void);

void func2() {
 int ***ptr = stub();
 int **ptr2 = *ptr;
 int *ptr3 = *ptr2;
}

Command-Line Information
Parameter: -stubbed-pointers-are-unsafe
Default: Off
Example: polyspace-code-prover-nodesktop -sources file_name -stubbed-
pointers-are-unsafe

See Also
Constraint setup (-data-range-specifications)

Topics
“Specify External Constraints” (Polyspace Code Prover)
“External Constraints for Polyspace Analysis” (Polyspace Code Prover)

Introduced in R2016b

1 Option Descriptions

1-232

Allow negative operand for left shifts (-
allow-negative-operand-in-shift)
Allow left shift operations on a negative number

Description
This option affects a Code Prover analysis only.

Specify that the verification must allow left shift operations on a negative number.

Set Option
User interface: In your project configuration, the option is on the Check Behavior
node.

Command line: Use the option -allow-negative-operand-in-shift. See
“Command-Line Information” on page 1-234.

Why Use This Option
According to the C99 standard (sec 6.5.7), the result of a left shift operation on a negative
number is undefined. Following the standard, the verification produces a red check on left
shifts of negative numbers.

If your compiler has a well-defined behavior for left shifts of negative numbers, set this
option. Note that allowing left shifts of negative numbers can reduce the cross-compiler
portability of your code.

Settings
 On

The verification allows shift operations on a negative number, for instance, -2 << 2.

 Allow negative operand for left shifts (-allow-negative-operand-in-shift)

1-233

 Off (default)
If a shift operation is performed on a negative number, the verification generates an
error.

Command-Line Information
Parameter: -allow-negative-operand-in-shift
Default: Off

See Also
Invalid shift operations

1 Option Descriptions

1-234

Consider non finite floats (-allow-non-
finite-floats)
Enable an analysis mode that incorporates infinities and NaNs

Description
Enable an analysis mode that incorporates infinities and NaNs for floating point
operations.

Set Option
User interface: In your project configuration, the option is on the Check Behavior
node.

Command line: Use the option -allow-non-finite-floats. See “Command-Line
Information” on page 1-238.

Why Use This Option

By default, the analysis does not incorporate infinities and NaNs. For instance, the
analysis terminates the execution thread where a division by zero occurs and does not
consider that the result could be infinite.

If you use functions such as isinf or isnan and account for infinities and NaNs in your
code, set this option. When you set this option and a division by zero occurs for instance,
the execution thread continues with infinity as the result of the division.

Set this option alone if you are sure that you have accounted for infinities and NaNs in
your code. Using the option alone effectively disables many numerical checks on floating
point operations. If you have generally accounted for infinities and NaNs, but you are not
sure that you have considered all situations, set these additional options:

• Infinities (-check-infinite): Use warn-first.
• NaNs (-check-nan): Use warn-first.

 Consider non finite floats (-allow-non-finite-floats)

1-235

If the analysis flags comparisons using isinf or isnan as dead code, use this option. By
default, a Bug Finder analysis does not incorporate infinities and NaNs.

Settings
 On

The analysis allows infinities and NaNs. For instance, in this mode:

• The analysis assumes that floating-point operations can produce results such as
infinities and NaNs.

By using options Infinities (-check-infinite) and NaNs (-check-nan),
you can choose to highlight operations that produce nonfinite results and stop the
execution threads where the nonfinite results occur. These options are not
available for a Bug Finder analysis.

• The analysis assumes that floating-point variables with unknown values can have
any value allowed by their type, including infinite or NaN. Floating-point variables
with unknown values include volatile variables and return values of stubbed
functions.

 Off (default)
The analysis does not allow infinities and NaNs. For instance, in this mode:

• The Code Prover analysis produces a red check on a floating-point operation that
produces an infinity or a NaN as the only possible result on all execution paths.
The verification produces an orange check on a floating-point operation that can
potentially produce an infinity or NaN.

• The Code Prover analysis assumes that floating-point variables with unknown
values are full-range but finite.

• The Bug Finder analysis shows comparisons with infinity using isinf as dead
code.

1 Option Descriptions

1-236

Tips
• The IEEE 754 Standard allows special quantities such as infinities and NaN so that you

can handle certain numerical exceptions without aborting the code. Some
implementations of the C standard support infinities and NaN.

• If your compiler supports infinities and NaNs and you account for them explicitly in
your code, use this option so that the verification also allows them.

For instance, if a division results in infinity, in your code, you specify an alternative
action. Therefore, you do not want the verification to highlight division operations
that result in infinity.

• If your compiler supports infinities and NaNs but you are not sure if you account for
them explicitly in your code, use this option so that the verification incorporates
infinities and NaNs. Use the options -check-nan and -check-infinite with
argument warn so that the verification highlights operations that result in infinities
and NaNs, but does not stop the execution thread. These options are not available
for a Bug Finder analysis.

• If you run a Bug Finder analysis and use this option:

• The checkers for overflow and division by zero are disabled. See “Numerical
Defects”.

• The checker Floating point comparison with equality operators can
show false positives.

• If you select this option, the number and type of Code Prover checks in your code can
change.

For instance, in the following example, when you select the option, the results have
one less red check and three more green checks.

 Consider non finite floats (-allow-non-finite-floats)

1-237

Infinities and NaNs Not Allowed Infinities and NaNs Allowed
Code Prover produces a Division by
zero error and stops verification.

double func(void) {
 double x=1.0/0.0;
 double y=1.0/x;
 double z=x-x;
 return z;
}

If you select this option, Code Prover
does not check for a Division by zero
error.

double func(void) {
 double x=1.0/0.0;
 double y=1.0/x;
 double z=x-x;
 return z;
}

The analysis assumes that dividing by
zero results in:

• Value of x equal to Inf
• Value of y equal to 0.0
• Value of z equal to NaN

In your analysis results in the Polyspace
user interface, if you place your cursor
on y and z, you can see the nonfinite
values Inf and NaN respectively in the
tooltip.

• You cannot run the Automatic Orange Tester in Code Prover if you incorporate non-
finites in your analysis.

Command-Line Information
Parameter: -allow-non-finite-floats
Default: Off

See Also
Infinities (-check-infinite) | NaNs (-check-nan) | Division by zero |
Overflow | Invalid shift operations | Invalid use of standard library
routine

1 Option Descriptions

1-238

Topics
“Specify Polyspace Analysis Options” (Polyspace Code Prover)

Introduced in R2016a

 Consider non finite floats (-allow-non-finite-floats)

1-239

Infinities (-check-infinite)
Specify how to handle floating-point operations that result in infinity

Description
This option affects a Code Prover analysis only.

Specify how the analysis must handle floating-point operations that result in infinities.

Set Option
User interface: In your project configuration, the option is on the Check Behavior
node. See “Dependencies” on page 1-242 for other options you must also enable.

Command line: Use the option -check-infinite. See “Command-Line Information” on
page 1-242.

Why Use This Option
Use this option to enable detection of floating-point operations that result in infinities.

If you specify that the analysis must consider nonfinite floats, by default, the analysis does
not flag these operations. Use this option to detect these operations while still
incorporating nonfinite floats.

Settings
Default: allow

allow
The verification does not produce a check on the operation.

For instance, in the following code, there is no Overflow check.

double func(void) {
 double x=1.0/0.0;

1 Option Descriptions

1-240

 return x;
}

warn-first
The verification produces a check on the operation. The check determines if the result
of the operation is infinite when the operands themselves are not infinite. The
verification does not terminate the execution thread that produces infinity.

If the verification detects an operation that produces infinity as the only possible
result on all execution paths and the operands themselves are never infinite, the
check is red. If the operation can potentially result in infinity, the check is orange.

For instance, in the following code, there is a nonblocking Overflow check for infinity.

double func(void) {
 double x=1.0/0.0;
 return x;
}

Even though the Overflow check on the / operation is red, the verification continues.
For instance, a green Non-initialized local variable check appears on x in the
return statement.

forbid
The verification produces a check on the operation and terminates the execution
thread that produces infinity.

If the check is red, the verification does not continue for the remaining code in the
same scope as the check. If the check is orange, the verification continues but
removes from consideration the variable values that produced infinity.

For instance, in the following code, there is a blocking Overflow check for infinity.

double func(void) {
 double x=1.0/0.0;
 return x;
}

The verification stops because the Overflow check on the / operation is red. For
instance, a Non-initialized local variable check does not appear on x in the return
statement.

 Infinities (-check-infinite)

1-241

Dependencies
To use this option, you must enable the verification mode that incorporates infinities and
NaNs. See Consider non finite floats (-allow-non-finite-floats).

Command-Line Information
Parameter: -check-infinite
Value: allow | warn-first | forbid
Default: allow
Example: polyspace-code-prover-nodesktop -sources file_name -check-
infinite forbid

See Also
Polyspace Analysis Options
Consider non finite floats (-allow-non-finite-floats) | NaNs (-check-
nan)

Polyspace Results
Overflow

Introduced in R2016a

1 Option Descriptions

1-242

NaNs (-check-nan)
Specify how to handle floating-point operations that result in NaN

Description
This option affects a Code Prover analysis only.

Specify how the analysis must handle floating-point operations that result in NaN.

Set Option
User interface: In your project configuration, the option is on the Check Behavior
node. See “Dependencies” on page 1-245 for other options you must also enable.

Command line: Use the option -check-nan. See “Command-Line Information” on page
1-245.

Why Use This Option
Use this option to enable detection of floating-point operations that result in NaN-s.

If you specify that the analysis must consider nonfinite floats, by default, the analysis does
not flag these operations. Use this option to detect these operations while still
incorporating nonfinite floats.

Settings
Default: allow

allow
The verification does not produce a check on the operation.

For instance, in the following code, there is no Invalid operation on floats check.

double func(void) {
 double x=1.0/0.0;

 NaNs (-check-nan)

1-243

 double y=x-x;
 return y;
}

warn-first
The verification produces a check on the operation. The check determines if the result
of the operation is NaN when the operands themselves are not NaN. For instance, the
check flags the operation val1 + val2 only if the result can be NaN when both
val1 and val2 are not NaN. The verification does not terminate the execution thread
that produces NaN.

If the verification detects an operation that produces NaN as the only possible result
on all execution paths and the operands themselves are never NaN, the check is red.
If the operation can potentially result in NaN, the check is orange.

For instance, in the following code, there is a nonblocking Invalid operation on
floats check for NaN.

double func(void) {
 double x=1.0/0.0;
 double y=x-x;
 return y;
}

Even though the Invalid operation on floats check on the - operation is red, the
verification continues. For instance, a green Non-initialized local variable check
appears on y in the return statement.

forbid
The verification produces a check on the operation and terminates the execution
thread that produces NaN.

If the check is red, the verification does not continue for the remaining code in the
same scope as the check. If the check is orange, the verification continues but
removes from consideration the variable values that produced a NaN.

For instance, in the following code, there is a blocking Invalid operation on floats
check for NaN.

double func(void) {
 double x=1.0/0.0;
 double y=x-x;

1 Option Descriptions

1-244

 return y;
}

The verification stops because the Invalid operation on floats check on the -
operation is red. For instance, a Non-initialized local variable check does not
appear on y in the return statement.

The Invalid operation on floats check for NaN also appears on the / operation and
is green.

Dependencies
To use this option, you must enable the verification mode that incorporates infinities and
NaNs. See Consider non finite floats (-allow-non-finite-floats).

Command-Line Information
Parameter: -check-nan
Value: allow | warn-first | forbid
Default: allow
Example: polyspace-code-prover-nodesktop -sources file_name -check-
nan forbid

See Also
Polyspace Analysis Options
Consider non finite floats (-allow-non-finite-floats) | Infinities (-
check-infinite)

Polyspace Results
Invalid operation on floats

Introduced in R2016a

 NaNs (-check-nan)

1-245

Enable pointer arithmetic across fields (-
allow-ptr-arith-on-struct)
Allow arithmetic on pointer to a structure field so that it points to another field

Description
This option affects a Code Prover analysis only.

Specify that a pointer assigned to a structure field can point outside its bounds as long as
it points within the structure.

Set Option
User interface: In your project configuration, the option is on the Check Behavior
node. See “Dependency” on page 1-247 for other options you must also enable.

Command line: Use the option -allow-ptr-arith-on-struct. See “Command-Line
Information” on page 1-248.

Why Use This Option
Use this option to relax the check for illegally dereferenced pointers. Once you assign a
pointer to a structure field, you can perform pointer arithmetic and use the result to
access another structure field.

Settings
 On

A pointer assigned to a structure field can point outside the bounds imposed by the
field as long as it points within the structure. For instance, in the following code,
unless you use this option, the verification will produce a red Illegally
dereferenced pointer check:

1 Option Descriptions

1-246

void main(void) {
struct S {char a; char b; int c;} x;
char *ptr = &x.b;
ptr ++;
*ptr = 1; // Red on the dereference, because ptr points outside x.b
}

 Off (default)
A pointer assigned to a structure field can point only within the bounds imposed by
the field.

Tips
• The verification does not allow a pointer with negative offset values. This behavior

occurs irrespective of whether you choose the option Enable pointer arithmetic
across fields.

• Using this option can slightly increase the number of orange checks. The option
relaxes the constraint that a pointer to a structure field cannot point to other fields of
the structure. In exchange for relaxing this constraint, the verification loses precision
on the boundary of fields within a structure and treats the structure as a whole.
Pointer dereferences that were previously green can now turn orange.

Use this option if you follow a policy of reviewing red checks only and you need to
work around red checks from pointer arithmetic within a structure.

• Before using this option, consider the costs of using pointer arithmetic across different
fields of a structure.

Unlike an array, members of a structure can have different data types. For efficient
storage, structures use padding to accommodate this difference. When you increment
a pointer pointing to a structure member, you might not point to the next member.
When you dereference this pointer, you cannot rely on what you are reading or writing
to.

Dependency
This option is available only if you set Source code language (-lang) to C.

 Enable pointer arithmetic across fields (-allow-ptr-arith-on-struct)

1-247

Command-Line Information
Parameter: -allow-ptr-arith-on-struct
Default: Off
Example: polyspace-code-prover-nodesktop -sources file_name -allow-
ptr-arith-on-struct

See Also
Allow incomplete or partial allocation of structures (-size-in-
bytes) | Illegally dereferenced pointer

1 Option Descriptions

1-248

Detect stack pointer dereference outside
scope (-detect-pointer-escape)
Find cases where a function returns a pointer to one of its local variables

Description
This option affects a Code Prover analysis only.

Specify that the verification must detect cases where you access a variable outside its
scope via pointers. Such an access can happen, for example, when a function returns a
pointer to a local variable and you dereference the pointer outside the function. The
dereference causes undefined behavior because the local variable that the pointer points
to does not live outside the function.

Set Option
User interface: In your project configuration, the option is on the Check Behavior
node.

Command line: Use the option -detect-pointer-escape. See “Command-Line
Information” on page 1-251.

Why Use This Option
Use this option to enable detection of pointer escape.

Settings
 On

The Illegally dereferenced pointer check performs an additional task, besides its
usual specifications. When you dereference a pointer, the check also determines if you
are accessing a variable outside its scope through the pointer. The check is:

 Detect stack pointer dereference outside scope (-detect-pointer-escape)

1-249

• Red, if all the variables that the pointer points to are accessed outside their scope.

For instance, you dereference a pointer ptr in a function func that is called twice
in your code. In both calls, when you perform the dereference *ptr, ptr is
pointing to variables outside their scope. Therefore, the Illegally dereferenced
pointer check is red.

• Orange, if only some of the variables that the pointer points to are accessed
outside their scope.

• Green, if none of the variables that the pointer points to are accessed outside their
scope, and other requirements of the check are also satisfied.

In the following code, if you enable this option, Polyspace Code Prover produces a red
Illegally dereferenced pointer check on *ptr. Otherwise, the Illegally
dereferenced pointer check on *ptr is green.

void func2(int *ptr) {
 *ptr = 0;
}

int* func1(void) {
 int ret = 0;
 return &ret ;
}
void main(void) {
 int* ptr = func1() ;
 func2(ptr) ;
}

The Result Details pane displays a message indicating that ret is accessed outside
its scope.

1 Option Descriptions

1-250

 Off (default)
When you dereference a pointer, the Illegally dereferenced pointer check does not
check for whether you are accessing a variable outside its scope. The check is green
even if the pointer dereference is outside the variable scope, as long as it satisfies
requirements:

• The pointer is not NULL.
• The pointer points within the memory buffer.

Command-Line Information
Parameter: -detect-pointer-escape
Default: Off

See Also
Illegally dereferenced pointer

Introduced in R2015a

 Detect stack pointer dereference outside scope (-detect-pointer-escape)

1-251

Disable checks for non-initialization (-
disable-initialization-checks)
Disable checks for non-initialized variables and pointers

Description
This option affects a Code Prover analysis only.

Specify that Polyspace Code Prover must not check for non-initialization in your code.

Set Option
User interface: In your project configuration, the option is on the Check Behavior
node.

Command line: Use the option -disable-initialization-checks. See “Command-
Line Information” on page 1-254.

Why Use This Option
Use this option if you do not want to detect instances of non-initialized variables.

Settings
 On

Polyspace Code Prover does not perform the following checks:

• Non-initialized local variable: Local variable is not initialized before
being read.

• Non-initialized variable: Variable other than local variable is not initialized
before being read.

• Non-initialized pointer: Pointer is not initialized before being read.

1 Option Descriptions

1-252

• Return value not initialized: C function does not return value when
expected.

Polyspace assumes that, at declaration:

• Variables have full-range of values allowed by their type.
• Pointers can be NULL-valued or point to a memory block at an unknown offset.

 Off (default)
Polyspace Code Prover checks for non-initialization in your code. The software
displays red checks if, for instance, a variable is not initialized and orange checks if a
variable is initialized only on some execution paths.

Tips
• If you select this option, the software does not report most violations of MISRA C:

2004 (Polyspace Code Prover), rule 9.1, and MISRA C:2012 Rule 9.1.
• If you select this option, the number and type of orange checks in your code can

change.

For instance, the following table shows an additional orange check with the option
enabled.

 Disable checks for non-initialization (-disable-initialization-checks)

1-253

Checks for Non-initialization
Enabled

Checks for Non-initialization
Disabled

void func(int flag) {
 int var1,var2;
 if(flag==0) {
 var1=var2;
 }
 else {
 var1=0;
 }
 var2=var1 + 1;
}

In this example, the software produces:

• A red Non-initialized local
variable check on var2 in the if
branch. The verification continues as
if only the else branch of the if
statement exists.

• A green Non-initialized local
variable check on var1 in the last
statement. var1 has the assigned
value 0.

• A green Overflow check on the +
operation.

void func(int flag) {
 int var1,var2;
 if(flag==0) {
 var1=var2;
 }
 else {
 var1=0;
 }
 var2=var1 + 1;
}

In this example, the software:

• Does not produce Non-initialized
local variable checks. At
initialization, the software assumes
that var2 has full range of int
values. Following the if statement,
because the software considers both
if branches, it assumes that var1
also has full range of int values.

• Produces an orange Overflow check
on the + operation. For instance, if
var1 has the maximum int value,
adding 1 to it can cause an overflow.

Command-Line Information
Parameter: -disable-initialization-checks
Default: Off
Example: polyspace-code-prover-nodesktop -sources file_name -disable-
initialization-checks

See Also

1 Option Descriptions

1-254

Permissive function pointer calls (-
permissive-function-pointer)
Allow type mismatch between function pointers and the functions they point to

Description
This option affects a Code Prover analysis only.

Specify that the verification must allow function pointer calls where the type of the
function pointer does not match the type of the function.

Set Option
User interface: In your project configuration, the option is on the Check Behavior
node. See “Dependency” on page 1-258 for other options you must also enable.

Command line: Use the option -permissive-function-pointer. See “Command-
Line Information” on page 1-258.

Why Use This Option
By default, Code Prover does not recognize calls through function pointers when a type
mismatch occurs. Fix the type mismatch whenever possible.

Use this option if:

• You cannot fix the type mismatch, and
• The analysis does not cover a significant portion of your code because calls via

function pointers are not recognized.

Settings
 On

The verification must allow function pointer calls where the type of the function
pointer does not match the type of the function. For instance, a function declared as

 Permissive function pointer calls (-permissive-function-pointer)

1-255

int f(int*) can be called by a function pointer declared as int (*fptr)
(void*).

Only type mismatches between pointer types are allowed. Type mismatches between
nonpointer types cause compilation errors. For instance, a function declared as int
f(int) cannot be called by a function pointer declared as int (*fptr)(double).

 Off (default)
The verification must require that the argument and return types of a function pointer
and the function it calls are identical.

Type mismatches are detected with the check Correctness condition.

Tips
• With sources that use function pointers extensively, enabling this option can cause loss

in performance. This loss occurs because the verification has to consider more
execution paths.

• Using this option can increase the number of orange checks. Some of these orange
checks can reveal a real issue with the code.

Consider these examples where a type mismatch occurs between the function pointer
type and the function that it points to:

• In this example, the function pointer obj_fptr has an argument that is a pointer
to a three-element array. However, it points to a function whose corresponding
argument is a pointer to a four-element array. In the body of foo, four array
elements are read and incremented. The fourth element does not exist and the ++
operation reads a meaningless value.

1 Option Descriptions

1-256

typedef int array_three_elements[3];
typedef void (*fptr)(array_three_elements*);

typedef int array_four_elements[4];
void foo(array_four_elements*);

void main() {
 array_three_elements arr[3] = {0,0,0};
 array_three_elements *ptr;
 fptr obj_fptr;

 ptr = &arr;
 obj_fptr = &foo;

 //Call via function pointer
 obj_fptr(&ptr);
}

void foo(array_four_elements* x) {
 int i = 0;
 int *current_pos;

 for(i = 0; i< 4; i++) {
 current_pos = (*x) + i;
 (*current_pos)++;
 }
}

Without this option, an orange Correctness condition check appears on the
call obj_fptr(&ptr) and the function foo is not verified. If you use this option,
the body of foo contains several orange checks. Review the checks carefully and
make sure that the type mismatch does not cause issues.

• In this example, the function pointer has an argument that is a pointer to a
structure with three float members. However, the corresponding function
argument is a pointer to an unrelated structure with one array member. In the
function body, the strlen function is used assuming the array member. Instead the
strlen call reads the float members and can read meaningless values, for
instance, values stored in the structure padding.

 Permissive function pointer calls (-permissive-function-pointer)

1-257

#include <string.h>
struct point {
 float x;
 float y;
 float z;
};
struct message {
 char msg[10] ;
};
void foo(struct message*);

void main() {
 struct point pt = {3.14, 2048.0, -1.0} ;
 void (*obj_fptr)(struct point *) ;

 obj_fptr = &foo;

 //Call via function pointer
 obj_fptr(&pt);
}

void foo(struct message* x) {
 int y = strlen(x->msg) ;
}

Without this option, an orange Correctness condition check appears on the
call obj_fptr(&pt) and the function foo is not verified. If you use this option, the
function contains an orange check on the strlen call. Review the check carefully
and make sure that the type mismatch does not cause issues.

Dependency
This option is available only if you set Source code language (-lang) to C.

Command-Line Information
Parameter: -permissive-function-pointer
Default: Off
Example: polyspace-code-prover-nodesktop -sources file_name -lang c -
permissive-function-pointer

1 Option Descriptions

1-258

See Also
Correctness condition

 Permissive function pointer calls (-permissive-function-pointer)

1-259

Overflow mode for signed integer (-signed-
integer-overflows)
Specify whether result of overflow is wrapped around or truncated

Description
This option affects a Code Prover analysis only.

Specify whether Polyspace flags signed integer overflows and whether the analysis wraps
the result of an overflow or restricts it to its extremum value.

Set Option
User interface: In the Configuration pane, the option is on the Check Behavior node
under Code Prover Verification.

Command line: Use the option -signed-integer-overflows. See “Command-Line
Information” (Polyspace Code Prover).

Why Use This Option
Use this option to specify whether to check for signed integer overflows and to specify the
assumptions the analysis makes following an overflow.

Settings
Default: forbid

forbid
Polyspace flags signed integer overflows. If the Overflow check on an operation is:

• Red, Polyspace does not analyze the remaining code in the current scope.
• Orange, Polyspace analyzes the remaining code in the current scope. Polyspace

considers that:

1 Option Descriptions

1-260

• After a positive Overflow, the result of the operation has an upper bound. This
upper bound is the maximum value allowed by the type of the result.

• After a negative Overflow, the result of the operation has a lower bound. This
lower bound is the minimum value allowed by the type of the result.

This behavior conforms to the ANSI C (ISO C++) standard.

In the following code, j has values in the range [1..231-1] before the orange
overflow. Polyspace considers that j has even values in the range
[2 .. 2147483646] after the overflow. Polyspace does not analyze the printf()
statement after the red overflow.

#include<stdio.h>

int getVal();

void func1()
{
 int i = 1;
 i = i << 30;
 // Result of * operation overflows
 i = i * 2;
 // Remaing code in current scope not analyzed
 printf("%d", i);
}
void func2()
{

 int j = getVal();
 if (j > 0) {
 // Range of j: [1..231-1]
 // Result of * operation may overflow
 j = j * 2;
 // Range of j: even values in [2 .. 2147483646]
 printf("%d", j);
 }
}

allow
Polyspace does not flag signed integer overflows. If an operation results in an
overflow, Polyspace analyzes the remaining code but wraps the result of the overflow.

 Overflow mode for signed integer (-signed-integer-overflows)

1-261

In this code, the analysis does not flag any overflow in the code. However, the range
of j wraps around to even values in the range [-231..2] or [2..231-2] and the
value of i wraps around to -231.

#include<stdio.h>

int getVal();

void func1()
{
 int i = 1;
 i = i << 30;
 // i = 230
 i = i * 2;
 // i = -231
 printf("%d", i);
}
void func2()
{

 int j = getVal();
 if (j > 0) {
 // Range of j: [1..231-1]
 j = j * 2;
 // Range of j: even values in [-231..2] or [2..231-2]
 printf("%d", j);
 }
}

warn-with-wrap-around
Polyspace flags signed integer overflows. If an operation results in an overflow,
Polyspace analyzes the remaining code but wraps the result of the overflow.

In the following code, j has values in the range [1..231-1] before the orange
overflow. Polyspace considers that j has even values in the range [-231..2] or
[2..231-2] after the overflow.

Similarly, i has value 230 before the red overflow and value -231 after it .

1 Option Descriptions

1-262

#include<stdio.h>

int getVal();

void func1()
{
 int i = 1;
 i = i << 30;
 // i = 230
 // Result of * operation overflows
 i = i * 2;
 // i = -231
 printf("%d", i);
}
void func2()
{

 int j = getVal();
 if (j > 0) {
 // Range of j: [1..231-1]
 // Result of * operation may overflow
 j = j * 2;
 // Range of j: even values in [-231..2] or [2..231-2]
 printf("%d", j);
 }
}

Tips
• To check for overflows on conversions from unsigned to signed integers of the same

size, set Overflow mode for unsigned integer to forbid or warn-with-wrap-
around. If you allow unsigned integer overflows, Polyspace does not flag overflows on
conversions and wraps the result of an overflow, even if you check for signed integer
overflows.

• In Polyspace Code Prover, overflowing signed constants are wrapped around. This
behavior cannot be changed by using the options. If you want to detect overflows with
signed constants, use the Polyspace Bug Finder checker Integer constant
overflow.

 Overflow mode for signed integer (-signed-integer-overflows)

1-263

Command-Line Information
Parameter: -signed-integer-overflows
Value: forbid | allow | warn-with-wrap-around
Default: forbid
Example: polyspace-code-prover-nodesktop -sources file_name -signed-
integer-overflows allow

See Also
Overflow | Overflow mode for unsigned integer (-unsigned-integer-
overflows)

Introduced in R2018b

1 Option Descriptions

1-264

Overflow mode for unsigned integer (-
unsigned-integer-overflows)
Specify whether result of overflow is wrapped around or truncated

Description
This option affects a Code Prover analysis only.

Specify whether Polyspace flags unsigned integer overflows and whether the analysis
wraps the result of an overflow or restricts it to its extremum value.

Set Option
User interface: In the Configuration pane, the option is on the Check Behavior node
under Code Prover Verification.

Command line: Use the option -unsigned-integer-overflows. See “Command-Line
Information” (Polyspace Code Prover).

Why Use This Option
Use this option to specify whether to check for unsigned integer overflows and to specify
the assumptions the analysis makes following an overflow.

Settings
Default: allow

forbid
Polyspace flags unsigned integer overflows. If the Overflow check on an operation is:

• Red, Polyspace does not analyze the remaining code in the current scope.
• Orange, Polyspace analyzes the remaining code in the current scope. Polyspace

considers that:

 Overflow mode for unsigned integer (-unsigned-integer-overflows)

1-265

• After a positive Overflow, the result of the operation has an upper bound. This
upper bound is the maximum value allowed by the type of the result.

• After a negative Overflow, the result of the operation has a lower bound. This
lower bound is the minimum value allowed by the type of the result.

In the following code, j has values in the range [1..232-1] before the orange
overflow. Polyspace considers that j has even values in the range
[2 .. 4294967294] after the overflow. Polyspace does not analyze the printf()
statement after the red overflow.

#include<stdio.h>

unsigned int getVal();

void func1()
{
 unsigned int i = 1;
 i = i << 31;
 // Result of * operation overflows
 i = i * 2;
 // Remaing code in current scope not analyzed
 printf("%u", i);
}
void func2()
{

 unsigned int j = getVal();
 if (j > 0) {
 // Range of j: [1..232-1]
 // Result of * operation may overflow
 j = j * 2;
 // Range of j: even values in [2 .. 4294967294]
 printf("%u", j);
 }
}

allow
Polyspace does not flag unsigned integer overflows. If an operation results in an
overflow, Polyspace analyzes the remaining code but wraps the result of the overflow.
For instance, MAX_INT + 1 wraps to MIN_INT. This behavior conforms to the ANSI C
(ISO C++) standard.

1 Option Descriptions

1-266

In this code, the analysis does not flag any overflow in the code. However, the range
of j wraps around to even values in the range [0..232-2]] and the value of i wraps
around to 0.

#include<stdio.h>

unsigned int getVal();

void func1()
{
 unsigned int i = 1;
 i = i << 31;
 // i = 231
 i = i * 2;
 // i = 0
 printf("%u", i);
}
void func2()
{

 unsigned int j = getVal();
 if (j > 0) {
 // Range of j: [1..232-1]
 j = j * 2;
 // Range of j: even values in [0 .. 4294967294]
 printf("%u", j);
 }
}

warn-with-wrap-around
Polyspace flags unsigned integer overflows. If an operation results in an overflow,
Polyspace analyzes the remaining code but wraps the result of the overflow. For
instance, MAX_INT + 1 wraps to MIN_INT.

In the following code, j has values in the range [1..232-1] before the orange
overflow. Polyspace considers that j has even values in the range [0 ..
4294967294] after the overflow.

Similarly, i has value 231 before the red overflow and value 0 after it.

 Overflow mode for unsigned integer (-unsigned-integer-overflows)

1-267

#include<stdio.h>

unsigned int getVal();

void func1()
{
 unsigned int i = 1;
 i = i << 31;
 // i = 231
 i = i * 2;
 // i = 0
 printf("%u", i);
}
void func2()
{

 unsigned int j = getVal();
 if (j > 0) {
 // Range of j: [1..232-1]
 j = j * 2;
 // Range of j: even values in [0 .. 4294967294]
 printf("%u", j);
 }
}

Tips
• To check for overflows on conversions from unsigned to signed integers of the same

size, set Overflow mode for unsigned integer to forbid or warn-with-wrap-
around. If you allow unsigned integer overflows, Polyspace does not flag overflows on
conversions and wraps the result of an overflow, even if you check for signed integer
overflows.

• In Polyspace Code Prover, overflowing unsigned constants are wrapped around. This
behavior cannot be changed by using the options. If you want to detect overflows with
unsigned constants, use the Polyspace Bug Finder checker Unsigned integer
constant overflow.

Command-Line Information
Parameter: -unsigned-integer-overflows

1 Option Descriptions

1-268

Value: forbid | allow | warn-with-wrap-around
Default: allow
Example: polyspace-code-prover-nodesktop -sources file_name -
unsigned-integer-overflows allow

See Also
Overflow | Overflow mode for signed integer (-signed-integer-
overflows)

Introduced in R2018b

 Overflow mode for unsigned integer (-unsigned-integer-overflows)

1-269

Allow incomplete or partial allocation of
structures (-size-in-bytes)
Allow a pointer with insufficient memory buffer to point to a structure

Description
This option affects a Code Prover analysis only.

Specify that the verification must allow dereferencing a pointer that points to a structure
but has a sufficient buffer for only some of the structure’s fields.

This type of pointer results when a pointer to a smaller structure is cast to a pointer to a
larger structure. The pointer resulting from the cast has sufficient buffer for only some
fields of the larger structure.

Set Option
User interface: In your project configuration, the option is on the Check Behavior
node.

Command line: Use the option -size-in-bytes. See “Command-Line Information” on
page 1-272.

Why Use This Option
Use this option to relax the check for illegally dereferenced pointers. You can point to a
structure even when the buffer allowed for the pointer is not sufficient for all the
structure fields.

1 Option Descriptions

1-270

Settings
 On

When a pointer with insufficient buffer is dereferenced,Polyspace does not produce an
Illegally dereferenced pointer error, as long as the dereference occurs within
allowed buffer.

For instance, in the following code, the pointer p has sufficient buffer for the first two
fields of the structure BIG. Therefore, with the option on, Polyspace considers that
the first two dereferences are valid. The third dereference takes p outside its allowed
buffer. Therefore, Polyspace produces an Illegally dereferenced pointer error on
the third dereference.

#include <stdlib.h>

typedef struct _little { int a; int b; } LITTLE;
typedef struct _big { int a; int b; int c; } BIG;

void main(void) {
 BIG *p = malloc(sizeof(LITTLE));

 if (p!= ((void *) 0)) {
 p->a = 0 ;
 p->b = 0 ;
 p->c = 0 ; // Red IDP check
 }
}

 Off (default)
Polyspace does not allow dereferencing a pointer to a structure if the pointer does not
have sufficient buffer for all fields of the structure. It produces an Illegally
dereferenced pointer error the first time you dereference the pointer.

For instance, in the following code, even though the pointer p has sufficient buffer for
the first two fields of the structure BIG, Polyspace considers that dereferencing p is
invalid.

#include <stdlib.h>

typedef struct _little { int a; int b; } LITTLE;
typedef struct _big { int a; int b; int c; } BIG;

 Allow incomplete or partial allocation of structures (-size-in-bytes)

1-271

void main(void) {
 BIG *p = malloc(sizeof(LITTLE));

 if (p!= ((void *) 0)) {
 p->a = 0 ; // Red IDP check
 p->b = 0 ;
 p->c = 0 ;
 }
}

Tips
• If you do not turn on this option, you cannot point to the field of a partially allocated

structure.

For instance, in the preceding example, if you do not turn on the option and perform
the assignment

int *ptr = &(p->a);

Polyspace considers that the assignment is invalid. If you dereference ptr, it produces
an Illegally dereferenced pointer error.

• Using this option can slightly increase the number of orange checks.

Command-Line Information
Parameter: -size-in-bytes
Default: Off
Example: polyspace-code-prover-nodesktop -sources file_name -size-in-
bytes

See Also
Enable pointer arithmetic across fields (-allow-ptr-arith-on-struct)
| Illegally dereferenced pointer

1 Option Descriptions

1-272

Subnormal detection mode (-check-
subnormal)
Detect operations that result in subnormal floating-point values

Description
This option affects a Code Prover analysis only.

Specify that the verification must check floating-point operations for subnormal results.

Set Option
User interface: In your project configuration, the option is on the Check Behavior
node.

Command line: Use the option -check-subnormal. See “Command-Line Information”
on page 1-276.

Why Use This Option
Use this option to detect floating-point operations that result in subnormal values.

Subnormal numbers have magnitudes less than the smallest floating-point number that
can be represented without leading zeros in the significand. The presence of subnormal
numbers indicates loss of significant digits. This loss can accumulate over subsequent
operations and eventually result in unexpected values. Subnormal numbers can also slow
down the execution on targets without hardware support.

Settings
Default: allow

allow
The verification does not check operations for subnormal results.

 Subnormal detection mode (-check-subnormal)

1-273

forbid
The verification checks for subnormal results.

The verification stops the execution path with the subnormal result and prevents
subnormal values from propagating further. Therefore, in practice, you see only the
first occurrence of the subnormal value.

warn-all
The verification checks for subnormal results and highlights all occurrences of
subnormal values. Even if a subnormal result comes from previous subnormal values,
the result is highlighted.

The verification continues even if the check is red.
warn-first

The verification checks for subnormal results but only highlights first occurrences of
subnormal values. If a subnormal value propagates to further subnormal results,
those subsequent results are not highlighted.

The verification continues even if the check is red.

For details of the result colors in each mode, see Subnormal float.

Tips
• If you want to see only those operations where a subnormal value originates from non-

subnormal operands, use the warn-first mode.

For instance, in the following code, arg1 and arg2 are unknown. The verification
assumes that they can take all values allowed for the type double. This assumption
can lead to subnormal results from certain operations. If you use the warn-first
mode, the first operation causing the subnormal result is highlighted.

1 Option Descriptions

1-274

warn-all warn-first
void func (double arg1, double arg2)
{
 double difference1 = arg1 - arg2;
 double difference2 = arg1 - arg2;
 double val1 = difference1 * 2;
 double val2 = difference2 * 2;
}

In this example, all four operations can
have subnormal results. The four checks
for subnormal results are orange.

void func (double arg1, double arg2)
{
 double difference1 = arg1 - arg2;
 double difference2 = arg1 - arg2;
 double val1 = difference1 * 2;
 double val2 = difference2 * 2;
}

In this example, difference1 and
difference2 can be subnormal if arg1
and arg2 are sufficiently close. The first
two checks for subnormal results are
orange. val1 and val2 cannot be
subnormal unless difference1 and
difference2 are subnormal. The last
two checks for subnormal results are
green.

Through red/orange checks, you see
only the first instance where a
subnormal value appears. You do not see
red/orange checks from those
subnormal values propagating to
subsequent operations.

• If you want to see where a subnormal value originates and do not want to see
subnormal results arising from the same cause more than once, use the forbid mode.

For instance, in the following code, arg1 and arg2 are unknown. The verification
assumes that they can take all values allowed for the type double. This assumption
can lead to subnormal results for arg1-arg2. If you use the forbid mode and
perform the operation arg1-arg2 twice in succession, only the first operation is
highlighted. The second operation is not highlighted because the subnormal result for
the second operation arises from the same cause as the first operation.

 Subnormal detection mode (-check-subnormal)

1-275

warn-all forbid
void func (double arg1, double arg2)
{
 double difference1 = arg1 - arg2;
 double difference2 = arg1 - arg2;
 double val1 = difference1 * 2;
 double val2 = difference2 * 2;
}

In this example, all four operations can
have subnormal results. The four checks
for subnormal results are orange.

void func (double arg1, double arg2)
{
 double difference1 = arg1 - arg2;
 double difference2 = arg1 - arg2;
 double val1 = difference1 * 2;
 double val2 = difference2 * 2;
}

In this example, difference1 can be
subnormal if arg1 and arg2 are
sufficiently close. The first check for
subnormal results is orange. Following
this check, the verification excludes
from consideration:

• The close values of arg1 and arg2
that led to the subnormal value of
difference1.

In the subsequent operation arg1 -
arg2, the check is green and
difference2 is not subnormal. The
result of the check on difference2
* 2 is green for the same reason.

• The subnormal value of
difference1.

In the subsequent operation
difference1 * 2, the check is
green.

• You cannot run the Automatic Orange Tester if you check for subnormals in your
verification.

Command-Line Information
Parameter: -check-subnormal
Value: allow | warn-first | warn-all | forbid
Default: allow

1 Option Descriptions

1-276

Example: polyspace-code-prover-nodesktop -sources file_name -check-
subnormal forbid

See Also
Polyspace Results
Subnormal float

Introduced in R2016b

 Subnormal detection mode (-check-subnormal)

1-277

Detect uncalled functions (-uncalled-
function-checks)
Detect functions that are not called directly or indirectly from main or another entry
point function

Description
This option affects a Code Prover analysis only.

Detect functions that are not called directly or indirectly from main or another entry
point function during run-time.

Set Option
User interface: In your project configuration, the option is on the Check Behavior
node.

Command line: Use the option -uncalled-function-checks. See “Command-Line
Information” on page 1-279.

Why Use This Option
Typically, after verification, the Dashboard pane shows functions that are not called
during verification. However, you do not see them in your analysis results or reports. You
cannot comment on them or justify them.

If you want to see these uncalled functions in your analysis results and reports, use this
option.

Settings
Default: none

1 Option Descriptions

1-278

none
The verification does not generate checks for uncalled functions.

never-called
The verification generates checks for functions that are defined but not called.

called-from-unreachable
The verification generates checks for functions that are defined and called from an
unreachable part of the code.

all
The verification generates checks for functions that are:

• Defined but not called
• Defined and called from an unreachable part of the code.

Command-Line Information
Parameter: -uncalled-function-checks
Value: none | never-called | called-from-unreachable | all
Default: none
Example: polyspace-code-prover-nodesktop -sources file_name -
uncalled-function-checks all

See Also
Function not called | Function not reachable

Topics
“Specify Polyspace Analysis Options” (Polyspace Code Prover)
“Review and Fix Function Not Called Checks” (Polyspace Code Prover)
“Review and Fix Function Not Reachable Checks” (Polyspace Code Prover)

 Detect uncalled functions (-uncalled-function-checks)

1-279

Sensitivity context (-context-sensitivity)
Store call context information to identify function call that caused errors

Description
This option affects a Code Prover analysis only.

Specify the functions for which the verification must store call context information. If the
function is called multiple times, using this option helps you to distinguish between the
different calls.

Set Option
User interface: In your project configuration, the option is available on the Precision
node.

Command line: Use the option -context-sensitivity. See “Command-Line
Information” (Polyspace Code Prover).

Why Use This Option
Suppose a function is called twice in your code. The check color on each operation in the
function body is a combined result of both calls. If you want to distinguish between the
colors in the two calls, use this option.

For instance, if a function contains a red or orange check and a green check on the same
operation for two different calls, the software combines the contexts and displays an
orange check on the operation. If you use this option, you can identify the color of the
check for each call. For a tutorial on using this option, see “Identify Function Call with
Run-Time Error” (Polyspace Code Prover).

Settings
Default: none

1 Option Descriptions

1-280

none
The software does not store call context information for functions.

auto
The software stores call context information for checks in:

• Functions that form the leaves of the call tree. These functions are called by other
functions, but do not call functions themselves.

• Small functions. The software uses an internal threshold to determine whether a
function is small.

custom
The software stores call context information for functions that you specify. To enter

the name of a function, click .

Command-Line Information
Parameter: -context-sensitivity
Value: function1[,function2,...]
Default: none
Example: polyspace-code-prover-nodesktop -sources file_name -context-
sensitivity myFunc1,myFunc2

To allow the software to determine which functions receive call context storage, use the
option -context-sensitivity-auto.

See Also

Topics
“Specify Polyspace Analysis Options” (Polyspace Code Prover)

 Sensitivity context (-context-sensitivity)

1-281

Improve precision of interprocedural
analysis (-path-sensitivity-delta)
Avoid certain verification approximations for code with fewer lines

Description
This option affects a Code Prover analysis only.

For smaller code, use this option to improve the precision of cross-functional analysis.

Set Option
User interface: In your project configuration, the option is available on the Precision
node.

Command line: Use the option -path-sensitivity-delta. See “Command-Line
Information” on page 1-283.

Why Use This Option
Use this option to avoid certain software approximations on execution paths. Avoiding
these approximations results in fewer orange checks but a much longer verification time.

For instance, for deep function call hierarchies or nested conditional statements, to
complete verification in a reasonable amount of time, the software combines many
execution paths and stores less information at each stage of verification. If you use this
option, the software stores more information about the execution paths, resulting in a
more precise verification.

Settings
Default: Off

Enter a positive integer to turn on this option.

1 Option Descriptions

1-282

Entering a higher value leads to a greater number of proven results, but also increases
verification time exponentially. For instance, a value of 10 can result in very long
verification times.

Tips
Use this option only when you have less than 1000 lines of code.

Command-Line Information
Parameter: -path-sensitivity-delta
Value: Positive integer

See Also

Topics
“Improve Verification Precision” (Polyspace Code Prover)

 Improve precision of interprocedural analysis (-path-sensitivity-delta)

1-283

Precision level (-O)
Specify a precision level for the verification

Description
This option affects a Code Prover analysis only.

Specify the precision level that the verification must use.

Set Option
User interface: In your project configuration, the option is available on the Precision
node.

Command line: Use the option -O#, for instance, -O0 or -O1. See “Command-Line
Information” on page 1-285.

Why Use This Option
Higher precision leads to greater number of proven results but also requires more
verification time. Each precision level corresponds to a different algorithm used for
verification.

In most cases, you see the optimal balance between precision and verification time at
level 2.

Settings
Default: 2

0
This option corresponds to a static interval verification.

1
This option corresponds to a complex polyhedron model of domain values.

1 Option Descriptions

1-284

2
This option corresponds to more complex algorithms closely modelling domain values.
The algorithms combine both complex polyhedrons and integer lattices.

3
This option is only suitable for code having less than 1000 lines. Using this option, the
percentage of proven results can be very high.

Tips
For best results in reasonable time, use the default level 2. If the verification takes a long
time, reduce precision. However, the number of unproven checks can increase. Likewise,
to reduce orange checks, you can improve your precision. But the verification can take
significantly longer time.

Command-Line Information
Parameter: -O0 | -O1 | -O2 | -O3
Default: -O2
Example: polyspace-code-prover-nodesktop -sources file_name -O1

See Also

Topics
“Specify Polyspace Analysis Options” (Polyspace Code Prover)
“Improve Verification Precision” (Polyspace Code Prover)

 Precision level (-O)

1-285

Specific precision (-modules-precision)
Specify source files you want to verify at higher precision than the remaining verification

Description
This option affects a Code Prover analysis only.

Specify source files that you want to verify at a precision level higher than that for the
entire verification.

Set Option
User interface: In your project configuration, the option is available on the Precision
node. See “Dependency” on page 1-287 for other options you must also enable.

Command line: Use the option -modules-precision. See “Command-Line
Information” on page 1-287.

Why Use This Option
If a specific file is verified imprecisely leading to many orange checks in the file and
elsewhere, you can improve the precision for that file.

Note that increasing precision also increases verification time.

Settings
Default: All files are verified with the precision you specified using Precision >
Precision level.

Click to enter the name of a file without the extension .c and the corresponding
precision level.

1 Option Descriptions

1-286

Dependency
This option is available only if you set Source code language (-lang) to C or C-CPP.

Command-Line Information
Parameter: -modules-precision
Value: file:O0 | file:O1 | file:O2 | file:O3
Example: polyspace-code-prover-nodesktop -sources file_name -O1 -
modules-precision My_File:02

See Also
Precision level (-O)

Topics
“Specify Polyspace Analysis Options” (Polyspace Code Prover)
“Improve Verification Precision” (Polyspace Code Prover)

 Specific precision (-modules-precision)

1-287

Verification level (-to)
Specify number of times the verification process runs on your code

Description
This option affects a Code Prover analysis only.

Specify the number of times the Polyspace verification process runs on your source code.
Each run can lead to greater number of proven results but also requires more verification
time.

Set Option
User interface: In your project configuration, the option is available on the Precision
node.

Command line: Use the option -to. See “Command-Line Information” on page 1-291.

Why Use This Option
There are many reasons you might want to increase or decrease the verification level. For
instance:

• Coding rules are checked early during the compilation phase, with some exceptions
(Polyspace Code Prover) only. If you check for coding rules alone, you can lower the
verification level.

• If you see many orange checks after verification, try increasing the verification level.
However, increasing the verification level also increases verification time.

In most cases, you see the optimal balance between precision and verification time at
level 2.

Settings
Default: Software Safety Analysis level 2

1 Option Descriptions

1-288

Source Compliance Checking
Polyspace completes coding rules checking at the end of the compilation phase.

Software Safety Analysis level 0
The verification process runs once on your source code.

Software Safety Analysis level 1
The verification process runs twice on your source code.

Software Safety Analysis level 2
The verification process runs three time on your source code. Use this option for most
accurate results in reasonable time.

Software Safety Analysis level 3
The verification process runs four times on your source code.

Software Safety Analysis level 4
The verification process runs five times on your source code.

other
If you use this option, Polyspace verification will make 20 passes unless you stop it
manually.

Tips
• Use a higher verification level for fewer orange checks.

Difference between Level 0 and 1

The following example illustrates the difference between Software Safety
Analysis level 0 and Software Safety Analysis level 1:

 Verification level (-to)

1-289

Software Safety Analysis Level 0 Software Safety Analysis Level 1
#include <stdlib.h>

void ratio (float x, float *y)
{
 *y=(abs(x-*y))/(x+*y);
}

void level1 (float x,
 float y, float *t)
{ float v;
 v = y;
 ratio (x, &y);
 *t = 1.0/(v - 2.0 * x);
}

float level2(float v)
{
 float t;
 t = v;
 level1(0.0, 1.0, &t);
 return t;
}

void main(void)
{
 float r,d;
 d= level2(1.0);
 r = 1.0 / (2.0 - d);
}

#include <stdlib.h>

void ratio (float x, float *y)
{
 *y=(abs(x-*y))/(x+*y);
}

void level1 (float x,
 float y, float *t)
{ float v;
 v = y;
 ratio (x, &y);
 *t = 1.0/(v - 2.0 * x);
}

float level2(float v)
{
 float t;
 t = v;
 level1(0.0, 1.0, &t);
 return t;
}

void main(void)
{
 float r,d;
 d= level2(1.0);
 r = 1.0 / (2.0 - d);
}

In the table, verification produces an orange Division by Zero check during level 0
verification. The check turns green during level 1. The verification acquires more
precise knowledge of x in the higher level.

If a higher verification level fails because the verification runs out of memory, but
results are available at a lower level, Polyspace displays the results from the lower
level.

• For best results, use the option Software Safety Analysis level 2. If the
verification takes too long, use a lower Verification level. Fix red errors and gray
code before rerunning the verification with higher verification levels.

1 Option Descriptions

1-290

• Use the option Other sparingly since it can increase verification time by an
unreasonable amount. Using Software Safety Analysis level 2 provides
optimal verification of your code in most cases.

• If you want to check for coding rules only, you can run Polyspace on your source code
up to the Source Compliance Checking phase.

With the exception of certain rules (Polyspace Code Prover) Polyspace checks for
coding rule violations during the compilation phase.

• If the Verification Level is set to Source Compliance Checking, do not run
verification on a remote server. The source compliance checking, or compilation,
phase takes place on your local computer anyway. Therefore, if you are running
verification only to the end of compilation, run verification on your local computer.

Command-Line Information
Parameter: -to
Value: compile | pass0 | pass1 | pass2 | pass3 | pass4 | other
Default: pass2
Example: polyspace-code-prover-nodesktop -sources file_name -to pass2

See Also

Topics
“Improve Verification Precision” (Polyspace Code Prover)

 Verification level (-to)

1-291

Verification time limit (-timeout)
Specify a time limit on your verification

Description
This option affects a Code Prover analysis only.

Specify a time limit for the verification in hours. If the verification does not complete
within that limit, it stops.

Set Option
User interface: In your project configuration, the option is available on the Precision
node.

Command line: Use the option -timeout. See “Command-Line Information” on page 1-
293.

Why Use This Option
Use this option to impose a time limit on the verification.

By default, if an internal step in the verification lasts for more than 24 hours, the
verification stops. You can use this option to reduce the time limit even further. Note that
you can have verification results despite the verification timing out. For instance, if a step
in Software Safety Analysis level 1 times out, you still get the results from level 0. See
Verification level (-to).

The option is useful only in very specific cases. Suppose your code has certain constructs
that might slow down the verification. To check this, you can impose a time limit on the
verification so that the verification stops if it takes too long.

Typically, Technical Support asks you to use this option as needed.

1 Option Descriptions

1-292

Settings
Enter the time in hours. For fractions of an hour, specify decimal form.

Command-Line Information
Parameter: -timeout
Value: time
Example: polyspace-code-prover-nodesktop -sources file_name -timeout
5.75

See Also

Topics
“Specify Polyspace Analysis Options” (Polyspace Code Prover)
“Improve Verification Precision” (Polyspace Code Prover)

 Verification time limit (-timeout)

1-293

Inline (-inline)
Specify functions that must be cloned internally for each function call

Description
This option affects a Code Prover analysis only.

Specify the functions that the verification must clone internally for every function call.

Set Option
User interface: In your project configuration, the option is available on the Scaling
node.

Command line: Use the option -inline. See “Command-Line Information” on page 1-
296.

Why Use This Option
Use this option sparingly. Sometimes, using the option helps to work around scaling
issues during verification. If your verification takes too long, Technical Support can ask
you to use this option for certain functions.

Do not use this option to understand results. For instance, suppose a function is called
twice in your code. The check color on each operation in the function body is a combined
result of both calls. If you want to distinguish between the colors in the two calls, use the
option Sensitivity context (-context-sensitivity).

Settings
No Default

Enter function names or choose from a list.

•
Click to add a field and enter the function name.

1 Option Descriptions

1-294

• Click to list functions in your code. Choose functions from the list.

The verification internally clones the function for each call. For instance, if you specify the
function func for inlining and func is called twice, the software creates two copies of
func for verification. The copies are named using the convention
func_pst_inlined_ver where ver is the version number. You see both copies on the
Call Hierarchy pane.

However, for each run-time check in the function body, you see only one color in your
verification results. The semantics of the check color is different from the normal
specification.

Red checks:

• Normally, if a function is called twice and an operation causes a definite error only in
one of the calls, the check color is orange.

• If you use this option, the worst color is shown for the check. Therefore, the check is
red.

Gray checks:

• Normally, if a function is called twice and an if statement branch is unreachable in
only one of the calls, the branch is shown as reachable.

• If you use this option, the worst color is shown for the check. Therefore, the if branch
appears gray.

Do not use this option to understand results. Use this option only if a certain function
causes scaling issues.

Tips
• Use this option to identify the cause of a Non-terminating call error.

• Situation: Sometimes, a red Non-terminating call check can appear on a
function call though a red check does not appear in the function body. The function
body represents all calls to the function. Therefore, if some calls to a function do
not cause an error, an orange check appears in the function body.

• Action: If you use this option, for every function call, there is a corresponding
function body. Therefore, you can trace a red check on a function call to a red
check in the function body.

 Inline (-inline)

1-295

• Using this option can sometimes duplicate a lot of code and lead to scaling problems.
Therefore choose functions to inline carefully.

• Choose functions to inline based on hints provided by the alias verification.
• Do not use this option for entry point functions, including main.
• Using this option can increase the number of gray Unreachable code checks.

For example, in the following code, if you enter max for Inline, you obtain two
Unreachable code checks, one for each call to max.

int max(int a, int b) {
 return a > b ? a : b;
}

void main() {
 int i=3, j=1, k;
 k=max(i,j);
 i=0;
 k=max(i,j);
}

• If you use the keyword inline before a function definition, place the definition in a
header file and call the function from multiple source files, you have the same result as
using the option Inline.

• For C++ code, this option applies to all overloaded methods of a class.

Command-Line Information
Parameter: -inline
Value: function1[,function2[,...]]
No Default
Example: polyspace-code-prover-nodesktop -sources file_name -inline
func1,func2

See Also

1 Option Descriptions

1-296

Depth of verification inside structures (-k-
limiting)
Limit the depth of analysis for nested structures

Description
This option affects a Code Prover analysis only.

Specify a limit to the depth of analysis for nested structures.

Set Option
User interface: In your project configuration, the option is available on the Scaling
node.

Command line: Use the option -k-limiting. See “Command-Line Information” on
page 1-298.

Why Use This Option
Use this option if the analysis is slow because your code has a structure that is many
levels deep.

Typically, you see a warning message when a structure with a deep hierarchy is slowing
down the verification.

Settings
Default: Full depth of nested structures is analyzed.

Enter a number to specify the depth of analysis for nested structures. For instance, if you
specify 0, the analysis does not verify a structure inside a structure.

If you specify a number less than 2, the verification could be less precise.

 Depth of verification inside structures (-k-limiting)

1-297

Command-Line Information
Parameter: -k-limiting
Value: positive integer
Default: polyspace-code-prover-nodesktop -sources file_name -k-
limiting 3

See Also

1 Option Descriptions

1-298

Generate report
Specify whether to generate a report after the analysis

Description
Specify whether to generate a report after the analysis.

Depending on the format you specify, you can view this report using an external software.
For example, if you specify the format PDF, you can view the report in a pdf reader.

Set Option
User interface: In your project configuration, the option is available on the Reporting
node.

Command line: See “Command-Line Information” on page 1-300.

Why Use This Option
You can generate a report from your analysis results for archiving purposes. You can
provide this report to your management or clients as proof of code quality.

Using other analysis options, you can tailor the report content and format for your
specific needs. See Bug Finder and Code Prover report (-report-template)
and Output format (-report-output-format).

Settings
 On

Polyspace generates an analysis report using the template and format you specify.

The report is stored in the Polyspace-Doc subfolder of your results folder. To open
your results folder from the user interface, on the Project Browser pane, right-click
the results node and select Open Folder with File Manager.

 Generate report

1-299

To change the results folder location, see “Project and Results Folder Contents”.

 Off (default)
Polyspace does not generate an analysis report. You can still view your results in the
Polyspace interface.

Tips
• To generate a report after an analysis is complete, select Reporting > Run Report.

Alternatively, at the command line, use the command polyspace-report-
generator.

Command-Line Information
There is no command-line option to solely turn on the report generator. However, using
the options -report-template for template and -report-output-format for output
format automatically turns on the report generator.

1 Option Descriptions

1-300

See Also
Bug Finder and Code Prover report (-report-template) | Output format
(-report-output-format)

Topics
“Specify Polyspace Analysis Options”
“Generate Reports”

 Generate report

1-301

Bug Finder and Code Prover report (-
report-template)
Specify template for generating analysis report

Description
Specify template for generating analysis report.

.rpt files for the report templates are available in matlabroot\toolbox\polyspace
\psrptgen\templates\. Here, matlabroot is the MATLAB installation folder.

Set Option
User interface: In your project configuration, the option is on the Reporting node. You
have separate options for Bug Finder and Code Prover analysis. See “Dependencies” on
page 1-309 for other options you must also enable.

Command line: Use the option -report-template. See “Command-Line Information”
on page 1-309.

Why Use This Option
Depending on the template that you use, the report contains information about certain
types of results from the Results List pane. The template also determines what
information is presented in the report and how the information is organized. See the
template descriptions below.

Settings – Bug Finder
Default: BugFinderSummary

BugFinder
The report lists:

1 Option Descriptions

1-302

• Polyspace Bug Finder Summary: Number of results in the project. The results
are summarized by file. The files that are partially analyzed because of compilation
errors are listed in a separate table.

• Code Metrics: Summary of the various code complexity metrics. For more
information, see “Code Metrics”.

• Coding Rules: Coding rule violations in the source code. For each rule violation,
the report lists the:

• Rule number and description.
• Function containing the rule violation.
• Review information, such as Severity, Status and comments.

• Defects: Defects found in the source code. For each defect, the report lists the:

• Function containing the defect.
• Defect information on the Result Details pane.
• Review information, such as Severity, Status and comments.

• Configuration Settings: List of analysis options that Polyspace uses for analysis.
If you configured your project for multitasking, this section also lists the
Concurrency Modeling Summary. For more information, see “Analysis Options”.
If your project has source files with compilation errors, these files are also listed.

If you check for coding rules, an additional Coding Rules Configuration section
states the rules along with the information whether they were enabled or disabled.

BugFinderSummary
The report lists:

• Polyspace Bug Finder Summary: Number of results in the project. The results
are summarized by file. The files that are partially analyzed because of compilation
errors are listed in a separate table.

• Code Metrics: Summary of the various code complexity metrics. For more
information, see “Code Metrics”.

• Coding Rules Summary: Coding rules along with number of violations.
• Defect Summary: Defects that Polyspace Bug Finder looks for. For each defect,

the report lists the:

• Defect group.

 Bug Finder and Code Prover report (-report-template)

1-303

• Defect name.
• Number of instances of the defect found in the source code.

• Configuration Settings: List of analysis options that Polyspace uses for analysis.
If you configured your project for multitasking, this section also lists the
Concurrency Modeling Summary. For more information, see “Analysis Options”.
If your project has source files with compilation errors, these files are also listed.

If you check for coding rules, an additional Coding Rules Configuration section
states the rules along with the information whether they were enabled or disabled.

CodeMetrics
The report lists the following:

• Code Metrics Summary: Various quantities related to the source code. For more
information, see “Code Metrics”.

• Code Metrics Details: Various quantities related to the source code with the
information broken down by file and function.

• Configuration Settings: List of analysis options that Polyspace uses for analysis.
If you configured your project for multitasking, this section also lists the
Concurrency Modeling Summary. For more information, see “Analysis Options”.
If your project has source files with compilation errors, these files are also listed.

If you check for coding rules, an additional Coding Rules Configuration section
states the rules along with the information whether they were enabled or disabled.

CodingRules
For C code, the report lists information about compliance with:

• MISRA C rules
• MISRA AC AGC rules
• Custom coding rules

For C++ code, the report lists information about compliance with:

• MISRA C++ rules
• JSF C++ rules
• Custom coding rules

1 Option Descriptions

1-304

This report also contains the Polyspace configuration settings for the analysis. An
additional section states the rules along with the information whether they were
enabled or disabled.

SecurityCERT
The report contains the same information as the BugFinder report. However, in the
Defects chapter, an additional column lists the CERT C rules mapped to each defect.
The Configuration Settings appendix also includes a Security Standard to
Polyspace Result Map.

SecurityCWE
The report contains the same information as the BugFinder report. However, in the
Defects chapter, an additional column lists the CWE rules mapped to each defect.
The Configuration Settings appendix also includes a Security Standard to
Polyspace Result Map.

SecurityISO_17961
The report contains the same information as the BugFinder report. However, in the
Defects chapter, an additional column lists the ISO/IEC TS 17961 rules mapped to
each defect. The Configuration Settings appendix also includes a Security
Standard to Polyspace Result Map.

Metrics
Only available for results downloaded from the Polyspace Metrics interface.

The report lists information useful to quality engineers and available on the Polyspace
Metrics interface, including:

• Information about whether the project satisfies quality objectives
• Time taken in each phase of analysis
• Metrics about the whole project. For each metric, the report lists the quality

threshold and whether the metric satisfies this threshold.
• Coding rule violations in the project. For each rule, the report lists the number of

violations justified and whether the justifications satisfy quality objectives.
• Definite as well as possible run-time errors in the project. For each type of run-

time error, the report lists the number of errors justified and whether the
justifications satisfy quality objectives.

The appendices contain further details of Polyspace configuration settings, code
metrics, coding rule violations, and run-time errors.

 Bug Finder and Code Prover report (-report-template)

1-305

Settings – Code Prover
Default: Developer

CodeMetrics
The report contains a summary of code metrics, followed by the complete metrics for
an application.

CodingRules
For C code, the report lists information about compliance with:

• MISRA C rules
• MISRA AC AGC rules
• Custom coding rules

For C++ code, the report lists information about compliance with:

• MISRA C++ rules
• JSF C++ rules
• Custom coding rules

This report also contains the Polyspace configuration settings and modifiable
assumptions used in the analysis. An additional section states the rules along with the
information whether they were enabled or disabled.

Developer
The report lists information useful to developers, including:

• Summary of results
• Coding rule violations
• List of proven run-time errors or red checks
• List of unproven run-time errors or orange checks
• List of unreachable procedures or gray checks
• Global variable usage in code. See “Global Variables” (Polyspace Code Prover).

The report also contains the Polyspace configuration settings and modifiable
assumptions used in the analysis. If your project has source files with compilation
errors, these files are also listed.

1 Option Descriptions

1-306

DeveloperReview
The report lists the same information as the Developer report. However, the
reviewed results are sorted by severity and status, and unreviewed results are sorted
by file location.

Developer_withGreenChecks
The report lists the same information as the Developer report. In addition, the
report lists code proven to be error-free or green checks.

Quality
The report lists information useful to quality engineers, including:

• Summary of results
• Statistics about the code
• Graphs showing distributions of checks per file

The report also contains the Polyspace configuration settings and modifiable
assumptions used in the analysis. If your project has source files with compilation
errors, these files are also listed.

VariableAccess
The report displays the global variable access in your source code. The report first
displays the number of global variables of each type. For information on the types, see
“Global Variables” (Polyspace Code Prover). For each global variable, the report
displays the following information:

• Variable name.

The entry for each variable is denoted by |.
• Type of the variable.
• Number of read and write operations on the variable.
• Details of read and write operations. For each read or write operation, the table

displays the following information:

• File and function containing the operation in the form
file_name.function_name.

The entry for each read or write operation is denoted by ||. Write operations
are denoted by < and read operations by >.

• Line and column number of the operation.

 Bug Finder and Code Prover report (-report-template)

1-307

This report captures the information available on the Variable Access pane in the
Polyspace user interface.

CallHierarchy
The report displays the call hierarchy in your source code. For each function call in
your source code, the report displays the following information:

• Level of call hierarchy, where the function is called.

Each level is denoted by |. If a function call appears in the table as |||->
file_name.function_name, the function call occurs at the third level of the
hierarchy. Beginning from main or an entry point, there are three function calls
leading to the current call.

• File containing the function call.

In addition, the line and column is also displayed.
• File containing the function definition.

In addition, the line and column where the function definition begins is also
displayed.

In addition, the report also displays uncalled functions.

This report captures the information available on the Call Hierarchy pane in the
Polyspace user interface.

SoftwareQualityObjectives
The report lists information useful to quality engineers and available on the Polyspace
Metrics interface, including:

• Information about whether the project satisfies quality objectives
• Time taken in each phase of verification
• Metrics about the whole project. For each metric, the report lists the quality

threshold and whether the metric satisfies this threshold.
• Coding rule violations in the project. For each rule, the report lists the number of

violations justified and whether the justifications satisfy quality objectives.
• Definite as well as possible run-time errors in the project. For each type of run-

time error, the report lists the number of errors justified and whether the
justifications satisfy quality objectives.

1 Option Descriptions

1-308

The appendices contain further details of Polyspace configuration settings, code
metrics, coding rule violations, and run-time errors.

This template is available only if you generate a report from results downloaded from
the Polyspace Metrics web dashboard.

SoftwareQualityObjectives_Summary
The report contains the same information as the SoftwareQualityObjectives
report. However, it does not have the supporting appendices with details of code
metrics, coding rule violations and run-time errors.

This template is available only if you generate a report from results downloaded from
the Polyspace Metrics web dashboard.

Dependencies
This option is available only if you select the Generate report check box.

Tips
The first chapter of the reports contain a summary of the relevant results. You can enter a
Pass/Fail status in that chapter for your project based on the summary. If you use the
template SoftwareQualityObjectives or SoftwareQualityObjectives_Summary,
the status is automatically assigned based on your objectives and the verification results.
For more information on enforcing objectives using Polyspace Metrics, see “Compare
Metrics Against Software Quality Objectives”.

Command-Line Information
Parameter: -report-template
Value: Full path to template.rpt
Example: polyspace-bug-finder-nodesktop -sources file_name -report-
template matlabroot\toolbox\polyspace\psrptgen\templates\bug_finder
\BugFinder.rpt

See Also
Generate report | Output format (-report-output-format)

 Bug Finder and Code Prover report (-report-template)

1-309

Topics
“Generate Reports”

1 Option Descriptions

1-310

Output format (-report-output-format)
Specify output format of generated report

Description
Specify output format of analysis report.

Set Option
User interface: In your project configuration, the option is on the Reporting node. See
“Dependencies” on page 1-312 for other options you must also enable.

Command line: Use the option -report-output-format. See “Command-Line
Information” on page 1-312.

Why Use This Option
Use this option to specify whether you want a report in PDF, HTML or another format.

Settings
Default: Word

HTML
Generate report in .html format

PDF
Generate report in .pdf format

Word
Generate report in .docx format.

 Output format (-report-output-format)

1-311

Tips
If the table of contents or graphics in a .docx report appear outdated, select the content
of the report and refresh the document. Use keyboard shortcuts Ctrl+A to select the
content and F9 to refresh it.

Dependencies
This option is enabled only if you select the Generate report box.

Command-Line Information
Parameter: -report-output-format
Value: html | pdf | word
Default: word
Example: polyspace-bug-finder-nodesktop -sources file_name -report-
output-format pdf

See Also
Generate report | Bug Finder and Code Prover report (-report-template)

Topics
“Specify Polyspace Analysis Options”
“Generate Reports”

1 Option Descriptions

1-312

Run Bug Finder or Code Prover analysis on a
remote cluster (-batch)
Enable batch remote analysis

Description
Enable batch remote analysis.

For batch remote analysis, you need:

• Polyspace and MATLAB Distributed Computing Server™ on the cluster
• MATLAB, Polyspace and Parallel Computing Toolbox™ on your local computer.

Set Option
User interface: In your project configuration, the option is on the Run Settings node.
You have separate options for a Bug Finder and a Code Prover analysis.

Command line: Use the option -batch. See “Command-Line Information” on page 1-
315.

Why Use This Option
Use this option if you want the analysis to run on a remote cluster instead of your local
desktop.

For instance, you can run remote analysis when:

• You want to shut down your local machine but not interrupt the analysis.
• You want to free execution time on your local machine.
• You want to transfer the analysis to a more powerful computer.

 Run Bug Finder or Code Prover analysis on a remote cluster (-batch)

1-313

Settings
 On

Run batch analysis on a remote computer. In this remote analysis mode, the analysis
is queued on a cluster after the compilation phase. Therefore, on your local computer,
after the analysis is queued:

• If you are running the analysis from the Polyspace user interface, you can close
the user interface.

• If you are running the analysis from the command line, you can close the
command-line window.

You can manage the queue from the Polyspace Job Monitor. To use the Polyspace Job
Monitor:

• In the Polyspace user interface, select Tools > Open Job Monitor.
• On the DOS or UNIX® command line, use the polyspace-jobs-manager

command. For more information, see “Run Polyspace Analysis on Remote Clusters
Using Scripts”.

• On the MATLAB command line, use the polyspaceJobsManager function.

After the analysis, you might have to manually download the results from the cluster.

 Off (default)
Do not run batch analysis on a remote computer.

Dependencies
• If you use a third-party scheduler instead of the MATLAB Job Scheduler, add the

option -no-credentials-check. The credentials check performed in the product is
only compatible with the MATLAB Job Scheduler. In the Polyspace user interface, add
this option to the Other field.

• Do not run a Code Prover analysis on a remote cluster if you run up to the
Verification Level of Source Compliance Checking. For both local and remote
analysis, the source compliance checking or compilation phase takes place on your
local computer. Therefore, if you are running only up to this phase, run on your local
computer.

1 Option Descriptions

1-314

Command-Line Information
To run a remote analysis from the command line, use with the -scheduler option.
Parameter: -batch
Value: -scheduler host_name if you have not set the Job scheduler host name in
the Polyspace user interface
Default: Off
Example: polyspace-code-prover-nodesktop -batch -scheduler NodeHost
polyspace-code-prover-nodesktop -batch -scheduler MJSName@NodeHost
Example: polyspace-bug-finder-nodesktop -batch -scheduler NodeHost
polyspace-bug-finder-nodesktop -batch -scheduler MJSName@NodeHost

See Also
Upload results to Polyspace Metrics (-add-to-results-repository) | -
scheduler

Topics
“Specify Polyspace Analysis Options”
“Set Up Polyspace Analysis on Remote Server”
“Run Polyspace Analysis on Remote Clusters”

 Run Bug Finder or Code Prover analysis on a remote cluster (-batch)

1-315

Upload results to Polyspace Metrics (-add-
to-results-repository)
Upload analysis results for viewing on Polyspace Metrics web dashboard

Description
Specify upload of analysis results to the Polyspace Metrics results repository, allowing
Web-based reporting of results and code metrics.

Set Option
User interface: In your project configuration, the option is on the Run Settings node.
You have separate options for a Bug Finder and a Code Prover analysis. See
“Dependencies” on page 1-317 for other options that you must also enable.

Command line: Use the option -add-to-results-repository. See “Command-Line
Information” on page 1-317.

Why Use This Option
Polyspace Metrics is a web dashboard that generates code quality metrics from your
analysis results. Using this dashboard, you can:

• Provide your management a high-level overview of your code quality.
• Compare your code quality against predefined standards.
• Establish a process where you review in detail only those results that fail to meet

standards.
• Track improvements or regression in code quality over time.

See “Generate Code Quality Metrics”.

1 Option Descriptions

1-316

Settings
 On

Analysis results are stored in the Polyspace Metrics results repository. This allows you
to use a Web browser to view results and code metrics.

The results are not downloaded automatically to your desktop.

 Off (default)
Analysis results are stored locally.

Dependencies
The option to upload to Polyspace Metrics is available only if you select Run Bug Finder
or Code Prover analysis on a remote cluster (-batch).

If you perform a local analysis on your desktop, you can later upload your results to
Polyspace Metrics. Right-click your results file and select Upload to Metrics.

Command-Line Information
Parameter: -add-to-results-repository
Default: Off
Example: polyspace-code-prover-nodesktop -batch -scheduler NodeHost -
add-to-results-repository -password passwordName
Example: polyspace-bug-finder-nodesktop -batch -scheduler NodeHost -
add-to-results-repository -password passwordName

The password is optional.

The upload uses the Polyspace Metrics server that you set up in the Polyspace user
interface. See Configure Client Side (Polyspace Metrics). If you want to explicitly specify
the Polyspace Metrics server during upload, use the option -polyspace-metrics-
server serverName:portNumber. For instance:

-add-to-results-repository -polyspace-metrics-server localhost:12427

 Upload results to Polyspace Metrics (-add-to-results-repository)

1-317

See Also
Run Bug Finder or Code Prover analysis on a remote cluster (-batch)

Topics
“Set Up Polyspace Metrics”
“Upload Results to Polyspace Metrics”
“View Projects in Polyspace Metrics”

1 Option Descriptions

1-318

Use fast analysis mode for Bug Finder (-
fast-analysis)
Run analysis using faster local mode

Description
This option affects a Bug Finder analysis only.

Run analysis using faster local mode. The first run analyzes all files, but subsequent runs
analyze only the files that you edited since the previous analysis.

Fast analysis mode is a faster way to analyze code for localized defects and coding rules.
When you launch fast analysis, Bug Finder analyzes your code for a subset of defects and
coding rules.

Set Option
User interface: In your project configuration, the option is available on the Run
Settings node.

Command line: Use the option -fast-analysis. See “Command-Line Information” on
page 1-322.

Why Use This Option
If you use this option, you have to wait less for analysis results from your second analysis
onwards. During development, you can frequently run analysis in fast mode and quickly
check for new defects or coding rule violations.

Polyspace produces results quickly because the analysis is localized. When you rerun in
fast-analysis mode, Polyspace reanalyzes only those files that need to be reanalyzed,
regenerating results even more quickly. These situations trigger a reanalysis.

 Use fast analysis mode for Bug Finder (-fast-analysis)

1-319

Situation What Is Reanalyzed
You modified a source file. Modified source file
You modified a header file. Source files that include the modified header

file (directly or indirectly)
You added or removed an analysis
option.

All files

Previous fast-analysis results were not
found.

For instance, you deleted the results
folder.

All files

You upgraded to a later release of
Polyspace and ran the analysis.

All files

Comments from the previous analysis are
retained and imported to the current analysis.

For example, consider a Polyspace project with three .c files and you fix a bug in one of
the files. When you rerun the analysis, Polyspace reanalyzes only the one file that you
changed.

The results of fast analysis appear in a folder separate from the results of normal analysis.

1 Option Descriptions

1-320

Settings
Default: Off

 On
Polyspace Bug Finder runs in fast-analysis mode. Polyspace analyzes code for only a
subset of defects and coding rules. If you have selected any defects or coding rules
that are not supported by fast-analysis, you code is not checked for those results.

 Off
Polyspace Bug Finder runs in the normal mode. Analysis checks for all selected
defects, coding rules, and code metrics.

Tips

Comments Import
If you enter comments in your results, the comments are automatically imported to the
next analysis in fast mode.

To import the comments from fast mode results to results of a regular Bug Finder
analysis, do one of the following:

• Select Tools > Import Comments. Navigate to the sibling results folder
BF_Fast_Result and import comments from the fast mode results.

• When reviewing results of fast mode, enter the comments directly into your code. If
you run a regular analysis on this code, the comments are imported to your analysis
results.

For details on how to enter code comments, see “Annotate Code and Hide Known or
Acceptable Results”.

Fast Analysis Limitations
In fast analysis mode, you cannot perform these actions:

• You cannot create a new results folder for each run. Even if you choose to create a
new result folder, each new run overwrites the previous one.

 Use fast analysis mode for Bug Finder (-fast-analysis)

1-321

• You cannot specify constraints using the option Constraint setup (-data-
range-specifications).

• You cannot run the analysis on a remote cluster.

Command-Line Information
Parameter: -fast-analysis
Default: Off
Example: polyspace-bug-finder-nodesktop -sources filename -fast-
analysis

See Also
“Defects”

Topics
“Results Found by Fast Analysis”

1 Option Descriptions

1-322

Command/script to apply after the end of
the code verification (-post-analysis-
command)
Specify command or script to be executed after analysis

Description
Specify a command or script to be executed after the analysis.

Set Option
User interface: In your project configuration, the option is on the Advanced Settings
node.

Command line: Use the option -post-analysis-command. See “Command-Line
Information” on page 1-325.

Why Use This Option
Create scripts for tasks that you want performed after the Polyspace analysis.

For instance, you want to be notified by email that the Polyspace analysis is over. Create a
script that sends an email and use this option to execute the script after the Polyspace
analysis.

Settings
No Default

Enter full path to the command or script, or click to navigate to the location of the
command or script. After the analysis, this script is executed.

 Command/script to apply after the end of the code verification (-post-analysis-command)

1-323

For a Perl script, in Windows, specify the full path to the Perl executable followed by the
full path to the script. For example, to specify a Perl script send_email.pl that sends an
email once the analysis is over, enter matlabroot\sys\perl\win32\bin\perl.exe
<absolute_path>\send_email.pl. Here, matlabroot is the location of the current
MATLAB installation, such as C:\Program Files\MATLAB\R2015b\, and
<absolute_path> is the location of the Perl script.

Tips

Running post analysis commands on the server
If you perform verification on a remote server, after verification, the software executes
your command on the server, not on the client desktop. If your command executes a
script, the script must be present on the server.

For instance, if you specify the command, /local/utils/send_mail.sh, the Shell
script send_email.sh must be present on the server in /local/utils/. The software
does not copy the script send_email.sh from your desktop to the server before
executing the command. If the script is not present on the server, you encounter an error.
Sometimes, there are multiple servers that the MATLAB Job Scheduler can run the
verification on. Place the script on each of the servers because you do not control which
server eventually runs your verification.

Running post analysis commands in the Polyspace user
interface
To test the use of this option, run the following Perl script from a folder containing a
Polyspace project (.psprj file). The script parses the latest Polyspace log file in the
folder Module_1\CP_Result and writes the current project name and date to a file
report.txt. The file is saved in Module_1\CP_Result.

1 Option Descriptions

1-324

foreach my $file (`ls Module_1\\CP_Result\\Polyspace_*.log`) {
 open (FH, $file);

while ($line = <FH>) {
 if ($line =~ m/Ending at: (.*)/) {
 $date=$1;
 }
 if ($line =~ m/-prog=(.*)/) {
 $project=$1;
 }
 }
}

my $filename = 'report.txt';
open(my $fh, '>', $filename) or die "Could not open file '$filename' $!";

print $fh "date=$date\n";
print $fh "project=$project\n";

close $fh;

In Linux, you can specify the Perl script for this option.

In Windows, instead of specifying the Perl script directly, specify a .bat file that invokes
Perl and runs this script. For instance, the .bat file can contain the following line
(assuming that the .bat file and .pl file are in the Polyspace project folder). Depending
on your MATLAB installation, change the path to perl.exe appropriately.

"C:\Program Files\MATLAB\R2018b\sys\perl\win32\bin\perl.exe" command.pl

Run Code Prover. Check that the folder Module_1\CP_Result contains the file
report.txt with the project name and date.

Command-Line Information
Parameter: -post-analysis-command
Value: Path to executable file or command in quotes
No Default
Example in Linux: polyspace-bug-finder-nodesktop -sources file_name -
post-analysis-command `pwd`/send_email.pl

 Command/script to apply after the end of the code verification (-post-analysis-command)

1-325

Example in Windows: polyspace-bug-finder-nodesktop -sources file_name
-post-analysis-command "C:\Program Files\MATLAB\R2015b\sys\perl
\win32\bin\perl.exe" "C:\My_Scripts\send_email"

See Also
Command/script to apply to preprocessed files (-post-preprocessing-
command)

Topics
“Specify Polyspace Analysis Options”

1 Option Descriptions

1-326

Automatic Orange Tester (-automatic-
orange-tester)
Specify that Automatic Orange Tester must be executed after verification

Description
This option affects a Code Prover analysis only.

Specify that the Automatic Orange Tester must be executed at the end of the verification.

Set Option
User interface: In your project configuration, the option is on the Advanced Settings
node. See “Dependency” on page 1-328 for other options you must also enable.

Command line: Use the option -automatic-orange-tester. See “Command-Line
Information” on page 1-328.

Why Use This Option
The Automatic Orange Tester runs dynamic tests on your code. The dynamic tests help
you determine if an orange check represents a real run-time error or an imprecision of
Polyspace analysis. For a tutorial, see “Test Orange Checks for Run-Time Errors”
(Polyspace Code Prover).

To run the Automatic Orange Tester after verification, you must select this option before
verification. During verification, Polyspace generates additional source code to test each
orange check for errors. When you run the Automatic Orange Tester later, the software
uses this instrumented code for testing.

 Automatic Orange Tester (-automatic-orange-tester)

1-327

Settings
 On

After verification, when you run the Automatic Orange Tester, Polyspace creates tests
for unproven code and runs them.

 Off (default)
You cannot launch the Automatic Orange Tester after verification.

Dependency
This option is available only if you set Source code language (-lang) to C or C-CPP.

Tips
• To launch the Automatic Orange Tester, after verification, open your results. Select

Tools > Automatic Orange Tester.
• When using the automatic orange tester, you cannot:

• Select Division round down under Target & Compiler.
• Select the options c18, tms320c3c. x86_64 or sharc21x61 for Target &

Compiler > Target processor type.
• Specify the type char as 16-bit or short as 8-bit using the option mcpu...

(Advanced) for Target & Compiler > Target processor type. For the same
option, you must specify the type pointer as 32-bit.

• Specify global asserts in the code, having the form Pst_Global_Assert(A,B). In
global assert mode, you cannot use Constraint setup under Inputs & Stubbing.

• Select these options related to floating-point verification: Subnormal detection
mode and Consider non finite floats.

Command-Line Information
Parameter: -automatic-orange-tester
Default: Off

1 Option Descriptions

1-328

Example: polyspace-code-prover-nodesktop -sources file_name -lang c -
automatic-orange-tester

See Also
Number of automatic tests (-automatic-orange-tester-tests-number) |
Maximum loop iterations (-automatic-orange-tester-loop-max-
iteration) | Maximum test time (-automatic-orange-tester-timeout)

Topics
“Test Orange Checks for Run-Time Errors” (Polyspace Code Prover)
“Limitations of Automatic Orange Tester” (Polyspace Code Prover)

 Automatic Orange Tester (-automatic-orange-tester)

1-329

Maximum loop iterations (-automatic-
orange-tester-loop-max-iteration)
Specify number of loop iterations after which Automatic Orange Tester considers infinite
loop

Description
This option affects a Code Prover analysis only.

Specify number of loop iterations after which the Automatic Orange Tester considers the
loop to be infinite. Specifying a large number decreases the possibility of identifying an
infinite loop incorrectly, but takes more time to complete.

Set Option
User interface: In your project configuration, the option is on the Advanced Settings
node. See “Dependencies” on page 1-330 for other options you must also enable.

Command line: Use the option -automatic-orange-tester-loop-max-iteration.
See “Command-Line Information” on page 1-331.

Settings
Default: 1000

Enter number of loop iterations. The maximum value that the software supports is 1000.

Dependencies
This option is enabled only if you set the following options:

• Set Source code language (-lang) to C.

1 Option Descriptions

1-330

• Turn on Automatic Orange Tester (-automatic-orange-tester).

Command-Line Information
Parameter: -automatic-orange-tester-loop-max-iteration
Value: positive integer
Default: 1000
Example: polyspace-code-prover-nodesktop -sources file_name -lang c -
automatic-orange-tester -automatic-orange-tester-loop-max-iteration
500

See Also
Automatic Orange Tester (-automatic-orange-tester) | Number of
automatic tests (-automatic-orange-tester-tests-number) | Maximum test
time (-automatic-orange-tester-timeout)

Topics
“Test Orange Checks for Run-Time Errors” (Polyspace Code Prover)

 Maximum loop iterations (-automatic-orange-tester-loop-max-iteration)

1-331

Number of automatic tests (-automatic-
orange-tester-tests-number)
Specify number of tests that Automatic Orange Tester must run

Description
This option affects a Code Prover analysis only.

Specify number of tests that you want the Automatic Orange Tester to run. The more the
number of tests, the greater the possibility of finding a run-time error, but longer it takes
to complete.

Set Option
User interface: In your project configuration, the option is on the Advanced Settings
node. See “Dependencies” on page 1-332 for other options you must also enable.

Command line: Use the option -automatic-orange-tester-tests-number. See
“Command-Line Information” on page 1-333.

Settings
Default: 500

Enter number of tests up to a maximum of 100,000.

Dependencies
This option is enabled only if you set the following options:

• Set Source code language (-lang) to C.
• Turn on Automatic Orange Tester (-automatic-orange-tester).

1 Option Descriptions

1-332

Command-Line Information
Parameter: -automatic-orange-tester-tests-number
Value: positive integer
Default: 500
Example: polyspace-code-prover-nodesktop -sources file_name -lang c -
automatic-orange-tester -automatic-orange-tester-tests-number 500

See Also
Automatic Orange Tester (-automatic-orange-tester) | Maximum loop
iterations (-automatic-orange-tester-loop-max-iteration) | Maximum
test time (-automatic-orange-tester-timeout)

Topics
“Test Orange Checks for Run-Time Errors” (Polyspace Code Prover)

 Number of automatic tests (-automatic-orange-tester-tests-number)

1-333

Maximum test time (-automatic-orange-
tester-timeout)
Specify time in seconds allowed for a single test in Automatic Orange Tester

Description
This option affects a Code Prover analysis only.

Specify time in seconds allowed for a single test. After this time is over, the Automatic
Orange Tester proceeds to the next test. Increasing this time reduces number of tests that
do not complete, but increases total verification time.

Set Option
User interface: In your project configuration, the option is on the Advanced Settings
node. See “Dependencies” on page 1-334 for other options you must also enable.

Command line: Use the option -automatic-orange-tester-timeout. See
“Command-Line Information” on page 1-335.

Settings
Default: 5

Enter time in seconds. The maximum value that the software supports is 60.

Dependencies
This option is enabled only if you set the following options:

• Set Source code language (-lang) to C.
• Turn on Automatic Orange Tester (-automatic-orange-tester).

1 Option Descriptions

1-334

Command-Line Information
Parameter: -automatic-orange-tester-timeout
Value: time
Default: 5
Example: polyspace-code-prover-nodesktop -sources file_name -lang c -
automatic-orange-tester -automatic-orange-tester-test-timeout 10

See Also
Automatic Orange Tester (-automatic-orange-tester) | Number of
automatic tests (-automatic-orange-tester-tests-number) | Maximum loop
iterations (-automatic-orange-tester-loop-max-iteration)

Topics
“Test Orange Checks for Run-Time Errors” (Polyspace Code Prover)

 Maximum test time (-automatic-orange-tester-timeout)

1-335

Other
Specify additional flags for analysis

Description
Enter command-line-style flags such as -max-processes.

Set Option
In your project configuration, the option is on the Advanced Settings node. You can
enter multiple options in this field. If you enter the same option multiple times with
different arguments, the analysis uses your last argument.

Why Use This Option
Use this option to add nonofficial or command-line only options to the analyzer.

Tip
Nonofficial options: In rare circumstances, to work around very specific issues,
MathWorks Technical Support might provide you some undocumented options. If you are
running verification from the user interface, you use the Other field in the Configuration
pane to enter the options. Sometimes, the options and their arguments have to be
preceded by extra flags. When providing you the option, Technical Support will let you
know if the extra flags are required.
Possible Flags: -extra-flags | -c-extra-flags | -cpp-extra-flags | -
cfe-extra-flags | -il-extra-flags
Example: polyspace-bug-finder-nodesktop -extra-flags -option-name -
extra-flags option_param

1 Option Descriptions

1-336

Oops! This page does not exist.
You are looking for a nonexistent resource.

Check Other Locations
You may be able to find what you need here:

• Full Bug Finder documentation
• Full Code Prover documentation

 Oops! This page does not exist.

1-337

Polyspace Command-Line Options

2

-asm-begin -asm-end
Exclude compiler-specific asm functions from analysis

Syntax
-asm-begin "mark1[,mark2,...]" -asm-end "mark1[,mark2,...]"

Description
-asm-begin "mark1[,mark2,...]" -asm-end "mark1[,mark2,...]" excludes
compiler-specific assembly language source code functions from the analysis. You must
use these two options together.

Polyspace recognizes most inline assemblers by default. Use the option only if compilation
errors occur due to introduction of assembly code.

Mark the offending code block by two #pragma directives, one at the beginning of the
assembly code and one at the end. In the command usage, give these marks in the same
order for -asm-begin as they are for -asm-end.

If you are running an analysis from the user interface, on the Configuration pane, you
can enter this option in the Other field. See Other.

Examples
A block of code is delimited by #pragma start1 and #pragma end1. These names must
be in the same order for their respective options. Either:

-asm-begin "start1" -asm-end "end1"

or

-asm-begin "mark1,...markN,start1" -asm-end "mark1,...markN,end1"

The following example marks two functions for exclusion, foo_1 and foo_2.

2 Polyspace Command-Line Options

2-2

Code:

#pragma asm_begin_foo
int foo(void) { /* asm code to be ignored by Polyspace */ }
#pragma asm_end_foo

#pragma asm_begin_bar
void bar(void) { /* asm code to be ignored by Polyspace */ }
#pragma asm_end_bar

Polyspace Command:

polyspace-bug-finder-nodesktop -lang c -asm-begin "asm_begin_foo,asm_begin_bar"
 -asm-end "asm_end_foo,asm_end_bar"

asm_begin_foo and asm_begin_bar mark the beginning of the assembly source code
sections to be ignored. asm_end_foo and asm_end_bar mark the end of those
respective sections.

See Also
polyspace-bug-finder-nodesktop

Topics
“Run Polyspace Analysis from Command Line”

 -asm-begin -asm-end

2-3

-author
Specify project author

Syntax
-author "value"

Description
-author "value" assigns an author to the Polyspace project. The name appears as the
project owner in Polyspace Metrics and on generated reports.

The default value is the user name of the current user, given by the DOS or UNIX
command whoami.

In the Polyspace user interface, select to specify the Project name, Version, and
Author parameters in the Polyspace Project – Properties dialog box.

Examples
Assign a project author to your Polyspace Project.

polyspace-bug-finder-nodesktop -author "John Smith"

See Also
-date | -prog | polyspace-bug-finder-nodesktop

Topics
“Run Polyspace Analysis from Command Line”

2 Polyspace Command-Line Options

2-4

-date
Specify date of analysis

Syntax
-date "date"

Description
-date "date" specifies the date stamp for the analysis in the format dd/mm/yyyy. By
default the value is the date the analysis starts.

Examples
Assign a date to your Polyspace Project.

polyspace-bug-finder-nodesktop -date "15/03/2012"

See Also
-author | -prog | polyspace-bug-finder-nodesktop

Topics
“Run Polyspace Analysis from Command Line”

 -date

2-5

-function-behavior-specifications
Map imprecisely analyzed function to standard function for precise analysis

Syntax
-function-behavior-specifications file_path

Description
-function-behavior-specifications file_path specifies the path to an XML file.
You can use this XML file to map some of your functions to corresponding standard
functions that Polyspace recognizes. If you run verification from the command line,
file_path is the absolute path or path relative to the folder from which you run the
command. If you run verification from the user interface, file_path is the absolute path.

If you are running an analysis from the user interface, on the Configuration pane, you
can enter this option in the Other field. See Other.

Using Option for Precision Improvement
This section applies only to a Code Prover analysis.

Use this option to reduce the number of orange checks from imprecise analysis of your
function. Sometimes, the verification does not analyze certain kinds of functions precisely
because of inherent limitations in static verification. In those cases, if you find a standard
function that is a close analog of your function, use this mapping. Though your function
itself is not analyzed, the analysis is more precise at the locations where you call the
function. For instance, if the verification cannot analyze your function cos32 precisely
and considers full range for its return value, map it to the cos function for a return value
in [-1,1].

The verification ignores the body of your function. However, the verification emulates
your function behavior in the following ways:

• The verification assumes the same return values for your function as the standard
function.

2 Polyspace Command-Line Options

2-6

For instance, if you map your function cos32 to the standard function cos, the
verification assumes that cos32 returns values in [-1,1].

• The verification checks for the same issues as it checks with the standard function.

For instance, if you map your function acos32 to the standard function acos,
the Invalid use of standard library routine check determines if the
argument of acos32 is in [-1,1].

A sample file function-behavior-specifications-sample.xml shows the
functions that you can map to. The file is in matlabroot\polyspace\verifier\cxx\
where matlabroot is the MATLAB installation folder. The functions that you can map to
include:

• Standard library functions from math.h.
• Memory management functions from string.h.
• __ps_meminit: A function specific to Polyspace that initializes a memory area.

Sometimes, the verification does not recognize your memory initialization function and
produces an orange Non-initialized local variable check on a variable that
you initialized through this function. If you know that your memory initialization
function initializes the variable through its address, map your function to
__ps_meminit. The check turns green.

• __ps_lookup_table_clip: A function specific to Polyspace that returns a value
within the range of the input array.

Sometimes, the verification considers full range for the return values of functions that
look up values in large arrays (look-up table functions). If you know that the return
value of a look-up table function must be within the range of values in its input array,
map the function to __ps_lookup_table_clip.

In code generated from models, the verification by default makes this assumption for
look-up table functions. To identify if the look-up table uses linear interpolation and no
extrapolation, the verification uses the function names. See “Stub lookup tables”
(Polyspace Code Prover). Use the mapping only for handwritten functions, for
instance, functions in a C/C++ S-Function block. The names of those functions do not
follow specific conventions. You must explicitly specify them.

Using Option for Concurrency Detection
This section applies both to a Bug Finder and a Code Prover analysis.

 -function-behavior-specifications

2-7

Use this option for automatic detection of thread-creation functions and functions that
begin and end critical sections. Polyspace supports automatic detection for certain
families of multitasking primitives only. Extend the support using this option.

If your thread-creation function, for instance, does not belong to one of the supported
families, map your function to a supported concurrency primitive.

To find which multitasking primitives can be automatically detected, see “Auto-Detection
of Thread Creation and Critical Section in Polyspace”.

Examples

Specify Mapping to Standard Function
You can adapt the sample mapping XML file provided with your Polyspace installation and
map your function to a standard function.

Suppose the default verification produces an orange User assertion check on this
code:

double x = acos32(1.0) ;
assert(x <= 2.0);

Suppose you know that the function acos32 behaves like the function acos and the
return value is 0. You expect the check on the assert statement to be green. However,
the verification considers that acos32 returns any value in the range of type double
because acos32 is not precisely analyzed. The check is orange. To map your function
acos32 to acos:

1 Copy the file function-behavior-specifications-sample.xml from
matlabroot\polyspace\verifier\cxx\ to another location, for instance, "C:
\Polyspace_projects\Common\Config_files". Change the write permissions
on the file.

2 To map your function to a standard function, modify the contents of the XML file. To
map your function acos32 to the standard library function acos, change the
following code:

<function name="my_lib_cos" std="acos"> </function>

To:

2 Polyspace Command-Line Options

2-8

<function name="acos32" std="acos"> </function>
3 Specify the location of the file for verification.

polyspace-code-prover-nodesktop -function-behavior-specifications
 "C:\Polyspace_projects\Common\Config_files
 \function-behavior-specifications-sample.xml"

Specify Mapping to Standard Function with Argument
Remapping
Sometimes, the arguments of your function do not map one-to-one with arguments of the
standard function. In those cases, remap your function argument to the standard function
argument. For instance:

• __ps_lookup_table_clip:

This function specific to Polyspace takes only a look-up table array as argument and
returns values within the range of the look-up table. Your look-up table function might
have additional arguments besides the look-up table array itself. In this case, use
argument remapping to specify which argument of your function is the look-up table
array.

For instance, suppose a function my_lookup_table has the following declaration:

double my_lookup_table(double u0, const real_T *table,
 const double *bp0);

The second argument of your function my_lookup_table is the look-up table array.
In the file function-behavior-specifications-sample.xml, add this code:

<function name="my_lookup_table" std="__ps_lookup_table_clip">
 <mapping std_arg="1" arg="2"></mapping>
</function>

When you call the function:

res = my_lookup_table(u, table10, bp);

The verification interprets the call as:

res =__ps_lookup_table_clip(table10);

 -function-behavior-specifications

2-9

The verification assumes that the value of res lies within the range of values in
table10.

• __ps_meminit:

This function specific to Polyspace takes a memory address as the first argument and a
number of bytes as the second argument. The function assumes that the bytes in
memory starting from the memory address are initialized with a valid value. Your
memory initialization function might have additional arguments. In this case, use
argument remapping to specify which argument of your function is the starting
address and which argument is the number of bytes.

For instance, suppose a function my_meminit has the following declaration:

 void my_meminit(enum InitKind k, void* dest, int is_aligned,
 unsigned int size);

The second argument of your function is the starting address and the fourth argument
is the number of bytes. In the file function-behavior-specifications-
sample.xml, add this code:

<function name="my_meminit" std="__ps_meminit">
 <mapping std_arg="1" arg="2"></mapping>
 <mapping std_arg="2" arg="4"></mapping>
</function>

When you call the function:

my_meminit(INIT_START_BY_END, &buffer, 0, sizeof(buffer));

The verification interprets the call as:

__ps_meminit(&buffer, sizeof(buffer));

The verification assumes that sizeof(buffer) number of bytes starting from
&buffer are initialized.

• memset: Variable number of arguments.

If your function has variable number of arguments, you cannot map it directly to a
standard function without explicit argument remapping. For instance, say your
function is declared as:

void* my_memset(void*, int, size_t, ...)

To map the function to the memset function, use the following mapping:

2 Polyspace Command-Line Options

2-10

<function name="my_memset" std="memset">
 <mapping std_arg="1" arg="1"></mapping>
 <mapping std_arg="2" arg="2"></mapping>
 <mapping std_arg="3" arg="3"></mapping>
</function>

Effect of Mapping on Precision
These examples show the result of mapping certain functions to standard functions:

• my_acos → acos:

If you use the mapping, the User assertion check turns green. The verification
assumes that the return value of my_acos is 0.

• Before mapping:

double x = my_acos(1.0);
assert(x <= 2.0);

• Mapping specification:

<function name="my_acos" std="acos">
</function>

• After mapping:

double x = my_acos(1.0);
assert(x <= 2.0);

• my_sqrt → sqrt:

If you use the mapping, the Invalid use of standard library routine check
turns red. Otherwise, the verification does not check whether the argument of
my_sqrt is nonnegative.

• Before mapping:

res = my_sqrt(-1.0);
• Mapping specification:

<function name="my_sqrt" std="sqrt">
</function>

• After mapping:

res = my_sqrt(-1.0);

 -function-behavior-specifications

2-11

• my_lookup_table (argument 2) →__ps_lookup_table_clip (argument 1):

If you use the mapping, the User assertion check turns green. The verification
assumes that the return value of my_lookup_table is within the range of the look-up
table array table.

• Before mapping:

double table[3] = {1.1, 2.2, 3.3}
.
.
double res = my_lookup_table(u, table, bp);
assert(res >= 1.1 && res <= 3.3);

• Mapping specification:

<function name="my_lookup_table" std="__ps_lookup_table_clip">
 <mapping std_arg="1" arg="2"></mapping>
</function>

• After mapping:

double table[3] = {1.1, 2.2, 3.3}
.
.
res_real = my_lookup_table(u, table9, bp);
assert(res_real >= 1.1 && res_real <= 3.3);

• my_meminit →__ps_meminit:

If you use the mapping, the Non-initialized local variable check turns green.
The verification assumes that all fields of the structure x are initialized with valid
values.

• Before mapping:

struct X {
 int field1 ;
 int field2 ;
};
.
.
struct X x;
my_meminit(&x, sizeof(struct X));
return x.field1;

2 Polyspace Command-Line Options

2-12

• Mapping specification:

<function name="my_meminit" std="__ps_meminit">
 <mapping std_arg="1" arg="1"></mapping>
 <mapping std_arg="2" arg="2"></mapping>
</function>

• After mapping:

struct X {
 int field1 ;
 int field2 ;
};
.
.
struct X x;
my_meminit(&x, sizeof(struct X));
return x.field1;

• my_meminit →__ps_meminit:

If you use the mapping, the Non-initialized local variable check turns red.
The verification assumes that only the field field1 of the structure x is initialized
with valid values.

• Before mapping:

struct X {
 int field1 ;
 int field2 ;
};
.
.
struct X x;
my_meminit(&x, sizeof(int));
return x.field2;

• Mapping specification:

<function name="my_meminit" std="__ps_meminit">
</function>

• After mapping:

struct X {
 int field1 ;
 int field2 ;

 -function-behavior-specifications

2-13

};
.
.
struct X x;
my_meminit(&x, sizeof(int));
return x.field2;

Effect of Mapping on Concurrency Detection
In this example, the Polyspace support for automatic concurrency detection is extended
by mapping unsupported functions to the supported Pthreads functions.

• Thread creation function: createTask → pthread_create
• Function that begins critical section: takeLock → pthread_mutex_lock
• Function that ends critical section: releaseLock → pthread_mutex_unlock

If you use the mapping, a Bug Finder analysis can determine the multitasking model used
in your code and find possible race conditions.

• Before mapping:

The analysis does not detect the data race on var2.

typedef void* (*FUNT) (void*);

extern int takeLock(int* t);
extern int releaseLock(int* t);
// First argument is the function, second the id
extern int createTask(FUNT,int*,int*,void*);

int t_id1,t_id2;
int lock;

int var1;
int var2;

void* task1(void* a) {
 takeLock(&lock);
 var1++;
 var2++;
 releaseLock(&lock);
 return 0;
}

2 Polyspace Command-Line Options

2-14

void* task2(void* a) {
 takeLock(&lock);
 var1++;
 releaseLock(&lock);
 var2++;
 return 0;
}

void main() {
 createTask(task1,&t_id1,0,0);
 createTask(task2,&t_id2,0,0);
}

• Mapping specification:

Based on the number and type of parameters of the function createTask, it is
convenient to map createTask to the thread creation function pthread_create.
The other available alternatives, createThread or OSTaskCreate, have different
argument types.

Even when mapping to pthread_create, argument remapping is required, because
the arguments do not correspond exactly. The thread start routine is the third
argument of pthread_create but the first argument of createTask.

<function name="createTask" std="pthread_create" >
 <mapping std_arg="1" arg="2"></mapping>
 <mapping std_arg="3" arg="1"></mapping>
 <mapping std_arg="2" arg="3"></mapping>
 <mapping std_arg="4" arg="4"></mapping>
</function>
<function name="takeLock" std="pthread_mutex_lock" >
</function>
<function name="releaseLock" std="pthread_mutex_unlock" >
</function>

For the list of supported functions that you can map to, see the sample mapping file
function-behavior-specifications-sample.xml in matlabroot\polyspace
\verifier\cxx\. matlabroot is the MATLAB installation folder, such as C:
\Program Files\MATLAB\R2017b. See also “Auto-Detection of Thread Creation and
Critical Section in Polyspace”.

• After mapping:

The analysis detects the data race on var2.

 -function-behavior-specifications

2-15

typedef void* (*FUNT) (void*);

extern int takeLock(int* t);
extern int releaseLock(int* t);
// First argument is the function, second the id
extern int createTask(FUNT,int*,int*,void*);

int t_id1,t_id2;
int lock;

int var1;
int var2;

void* task1(void* a) {
 takeLock(&lock);
 var1++;
 var2++;
 releaseLock(&lock);
 return 0;
}

void* task2(void* a) {
 takeLock(&lock);
 var1++;
 releaseLock(&lock);
 var2++;
 return 0;
}

void main() {
 createTask(task1,&t_id1,0,0);
 createTask(task2,&t_id2,0,0);
}

See Also
“Stub lookup tables” (Polyspace Code Prover) | polyspace-bug-finder-nodesktop

Topics
“Reduce Orange Checks” (Polyspace Code Prover)
“Run Polyspace Analysis from Command Line”

2 Polyspace Command-Line Options

2-16

Introduced in R2016b

 -function-behavior-specifications

2-17

-generate-launching-script-for
Extract information from project file

Syntax
-generate-launching-script-for PRJFILE

Description
-generate-launching-script-for PRJFILE extracts information from the project
file PRJFILE so that you can run an analysis from the command line. A folder is created
containing the following files:

• source_command.txt — List of source files for the -sources-list-file option.
• options_command.txt — List of the analysis options for the -options-file

option.
• temporal_exclusions.txt — List of temporal exclusions, generated only if you

specify the Temporally exclusive tasks (-temporal-exclusions-file)
option.

• .polyspace_conf.psprj — A copy of the project file Polyspace used to generate the
scripting files.

• launchingCommand.sh (UNIX) or launchingCommand.bat (DOS) — shell script
that calls the correct commands. The script also calls any options that cannot be given
to the -options-file command, such as -batch or -add-to-results-
repository. You can give this file additional analysis options as parameters.

Note The script that Polyspace generates runs the same analysis that Polyspace runs
from the user interface. If your project runs in the Polyspace user interface, the script will
run from the command line.

2 Polyspace Command-Line Options

2-18

Examples
Extract information to run myproject from the command line. Use this option with the
desktop binary polyspace.

polyspace -generate-launching-script-for myproject.psprj -bug-finder

See Also

Topics
“Create Command-Line Script from Project File”
“Run Polyspace Analysis from Command Line”

 -generate-launching-script-for

2-19

-h[elp]
Display list of possible options

Syntax
-h
-help

Description
-h and -help display the list of possible options in the shell window and the argument
syntax.

Examples
Display the command-line help.

polyspace-bug-finder-nodesktop -h
polyspace-bug-finder-nodesktop -help

See Also
polyspace-bug-finder-nodesktop

Topics
“Run Polyspace Analysis from Command Line”

2 Polyspace Command-Line Options

2-20

-I
Specify include folder for compilation

Syntax
-I folder

Description
-I folder specifies a folder that contains include files required for compiling your
sources. You can specify only one folder for each instance of -I. However, you can specify
this option multiple times.

The analysis looks for include files relative to the folder paths that you specify. For
instance, if your code contains the preprocessor directive #include<../mylib.h> and
you include the folder:

C:\My_Project\MySourceFiles\Includes

the folder C:\My_Project\MySourceFiles must contain a file mylib.h.

The analysis automatically includes the ./sources folder (if it exists) after the include
folders that you specify.

Examples
Include two folders with the analysis.

polyspace-bug-finder-nodesktop -I /com1/inc -I /com1/sys/inc

Because ./sources is included automatically, this Polyspace command is equivalent to:

polyspace-bug-finder-nodesktop -I /com1/inc -I /com1/sys/inc
 -I ./sources

 -I

2-21

See Also
polyspace-bug-finder-nodesktop

Topics
“Run Polyspace Analysis from Command Line”

2 Polyspace Command-Line Options

2-22

-import-comments
Import comments and justifications from previous analysis

Syntax
-import-comments resultsFolder

Description
-import-comments resultsFolder imports the comments and justifications from a
previous analysis, as specified by the results folder.

You can import comments from the same type of results only. For instance:

• You cannot import comments from a results of a Bug Finder checker to a Code Prover
run-time check. Even when the checker names sound similar, the underlying semantics
of Bug Finder and Code Prover can be different. The only exception is checkers for
coding rules. You can import comments between Bug Finder and Code Prover for
coding rule violations.

• You cannot import comments from results of a file-by-file verification in Code Prover to
results of a regular Code Prover verification.

If you are running an analysis from the user interface, on the Configuration pane, you
can enter this option in the Other field. See Other.

Examples
Increment your project’s version number (-version) and import comments from the
previous results.

polyspace-bug-finder-nodesktop -version 1.3
 -import-comments C:\Results\myProj\1.2

 -import-comments

2-23

See Also
-version | polyspace-bug-finder-nodesktop

Topics
“Import Comments from Previous Polyspace Analysis”

2 Polyspace Command-Line Options

2-24

-no-assumption-on-absolute-addresses
Remove assumption that absolute address usage is valid

Syntax
-no-assumption-on-absolute-addresses

Description
This option affects Code Prover analysis only.

-no-assumption-on-absolute-addresses removes the default assumption that
absolute addresses used in your code are valid. If you use this option, the verification
produces an orange Absolute address usage check when you assign an absolute
address to a pointer. Otherwise, the check is green by default.

The type of the pointer to which you assign the address determines the initial value
stored in the address. For instance, if you assign the address to an int* pointer, following
this check, the verification assumes that the memory zone that the address points to is
initialized with an int value. The value can be anything allowed for the data type int.

If you are running an analysis from the user interface, on the Configuration pane, you
can enter this option in the Other field. See Other.

Examples
The use of option -no-assumption-on-absolute-addresses can increase the
number of orange checks in your code. For instance, the following table shows an
additional orange check with the option enabled.

 -no-assumption-on-absolute-addresses

2-25

Absolute Address Usage Green Absolute Address Usage Orange
void main() {
 int *p = (int *)0x32;
 int x;
 x=*p;
}

In this example, the software produces:

• A green Absolute address usage check
when the address 0x32 is assigned to a
pointer p.

• A green Illegally dereferenced
pointer check when the pointer p is
read.

x potentially has all values allowed for
an int variable.

void main() {
 int *p = (int *)0x32;
 int x;
 x=*p;
}

In this example, the software produces:

• An orange Absolute address usage
check when the address 0x32 is
assigned to a pointer p.

• A green Illegally dereferenced
pointer check when the pointer p is
read.

x potentially has all values allowed for
an int variable.

For best use of the Absolute address usage check, leave this check green by default
during initial stages of development. During integration stage, use the option -no-
assumption-on-absolute-addresses and detect all uses of absolute memory
addresses. Browse through them and make sure that the addresses are valid.

See Also
polyspace-code-prover-nodesktop

Topics
“Run Polyspace Analysis from Command Line” (Polyspace Code Prover)

Introduced in R2016a

2 Polyspace Command-Line Options

2-26

-max-processes
Specify maximum number of processors for analysis

Syntax
-max-processes num

Description
-max-processes num specifies the maximum number of processes that you want the
analysis to use. On a multicore system, the software parallelizes the analysis and creates
the specified number of processes to speed up the analysis. The valid range of num is 1 to
128.

Unless you specify this option, the Bug Finder analysis uses the maximum number of
available processes. Use this option to restrict the number of processes used.

To use this option effectively, determine the number of processors available for use. If the
number of processes you create is greater than the number of processors available, the
analysis does not benefit from the parallelization. Check the system information in your
operating system. When you start a verification, a message states the number of logical
processors detected on your system.

If you are running an analysis from the user interface, on the Configuration pane, you
can enter this option in the Other field. See Other.

Examples
Disable parallel processing during the analysis.

polyspace-bug-finder-nodesktop -max-processes 1

 -max-processes

2-27

Tips
You must have at least 4 GB of RAM per processor for analysis. For instance, if your
machine has 16 GB of RAM, do not use this option to specify more than four processes.

See Also
polyspace-bug-finder-nodesktop

Topics
“Run Polyspace Analysis from Command Line”

2 Polyspace Command-Line Options

2-28

-non-preemptable-tasks
Specify functions that represent nonpreemptable tasks

Syntax
-non-preemptable-tasks function1[,function2[,...]]

Description
This option affects a Bug Finder analysis only.

-non-preemptable-tasks function1[,function2[,...]] specifies functions that
represent nonpreemptable tasks.

The functions cannot be interrupted by other noncyclic Tasks on page 1-119 and cyclic
tasks on page 1-121 but can be interrupted by interrupts on page 1-124, preemptable or
nonpreemptable.

To specify a function as a nonpreemptable cyclic task, you must first specify the following
options:

• Configure multitasking manually
• Tasks (-entry-points) or Cyclic tasks (-cyclic-tasks): Specify the

function name.

The functions that you specify must have the prototype:

void function_name(void);

If you are running an analysis from the user interface, on the Configuration pane, you
can enter this option in the Other field. See Other.

See Also
-preemptable-interrupts | Cyclic tasks (-cyclic-tasks) | Interrupts (-
interrupts) | Tasks (-entry-points) | Critical section details (-

 -non-preemptable-tasks

2-29

critical-section-begin -critical-section-end) | Temporally exclusive
tasks (-temporal-exclusions-file) | polyspace-bug-finder-nodesktop

Topics
“Specify Polyspace Analysis Options”
“Analyze Multitasking Programs in Polyspace”
“Configuring Polyspace Multitasking Analysis Manually”
“Protections for Shared Variables in Multitasking Code”

Introduced in R2016b

2 Polyspace Command-Line Options

2-30

-options-file
Run Polyspace using list of options

Syntax
-options-file file

Description
-options-file file specifies a file which lists your analysis options. The file must be
a text file with each option on a separate line. Use # to add comments to this file.

Examples
1 Create an options file called listofoptions.txt with your options. For example:

#These are the options for MyBugFinderProject
-lang c
-prog MyBugFinderProject
-author jsmith
-sources "mymain.c,funAlgebra.c,funGeometry.c"
-target x86_64
-compiler generic
-dos
-misra2 required-rules
-do-not-generate-results-for all-headers
-checkers default
-disable-checkers concurrency
-results-dir C:\Polyspace\MyBugFinderProject

2 Run Polyspace using options in the file listofoptions.txt.

polyspace-bug-finder-nodesktop -options-file listofoptions.txt

 -options-file

2-31

See Also
polyspace-bug-finder-nodesktop | polyspaceConfigure

Topics
“Run Polyspace Analysis from Command Line”

2 Polyspace Command-Line Options

2-32

-options-for-sources
Specify analysis options specific to a source file

Syntax
-options-for-sources filename options

Description
-options-for-sources filename options associates a semicolon-separated list of
Polyspace analysis options with the source file specified by filename..

This option is primarily used when the polyspace-configure command creates an
options file for the subsequent Polyspace analysis. The option -options-for-sources
associates a group of analysis options such as include folders and macro definitions with
specific source files.

However, you can directly enter this option when manually writing options files. This
option is useful in situations where you want to associate a group of options with a
specific source file without applying it to other files.

Instead of an options file, you can also create a Polyspace project from your build
command. See “Add Sources from Build Command”. The project uses the option -
options-for-sources to associate specific Polyspace analysis options with specific
files. However, when you open the project in the Polyspace user interface, you cannot see
the use of this option. Open the project in a text editor to see this option.

Examples
In this sample options file, the include folder /usr/lib/gcc/x86_64-linux-gnu/6/
include and the macros __STDC_VERSION__ and __GNUC__ are associated only with
the source file file.c and not fileAnother.c.

 -options-for-sources

2-33

-options-for-sources file.c;-I /usr/lib/gcc/x86_64-linux-gnu/6/include;
-options-for-sources file.c;-D __STDC_VERSION__=201112L;-D __GNUC__=6;
-sources file.c
-sources fileAnother.c

For the options used in this example, see:

• -sources
• -I
• Preprocessor definitions (-D)

See Also
-options-file | polyspace-bug-finder-nodesktop

Topics
“Run Polyspace Analysis from Command Line”

2 Polyspace Command-Line Options

2-34

-preemptable-interrupts
Specify functions that represent preemptable interrupts

Syntax
-preemptable-interrupts function1[,function2[,...]]

Description
This option affects a Bug Finder analysis only.

-preemptable-interrupts function1[,function2[,...]] specifies functions
that represent preemptable interrupts.

The function acts as an interrupt in every way except that it can be interrupted by other
interrupts on page 1-124, preemptable or nonpreemptable.

To specify a function as a preemptable interrupt, you must first specify the following
options:

• Configure multitasking manually
• Interrupts (-interrupts): Specify the function name.

The functions that you specify must have the prototype:

void function_name(void);

If you are running an analysis from the user interface, on the Configuration pane, you
can enter this option in the Other field. See Other.

See Also
-non-preemptable-tasks | Cyclic tasks (-cyclic-tasks) | Interrupts (-
interrupts) | Tasks (-entry-points) | Critical section details (-
critical-section-begin -critical-section-end) | Temporally exclusive
tasks (-temporal-exclusions-file) | polyspace-bug-finder-nodesktop

 -preemptable-interrupts

2-35

Topics
“Specify Polyspace Analysis Options”
“Analyze Multitasking Programs in Polyspace”
“Configuring Polyspace Multitasking Analysis Manually”
“Protections for Shared Variables in Multitasking Code”

Introduced in R2016b

2 Polyspace Command-Line Options

2-36

-prog
Specify name of project

Syntax
-prog projectName

Description
-prog projectName specifies the name of your Polyspace project. This name must use
only letters, numbers, underscores (_), dashes (-), or periods (.).

Examples
Assign a session name to your Polyspace Project.

polyspace-bug-finder-nodesktop -prog MyApp

See Also
-author | -date | polyspace-bug-finder-nodesktop

Topics
“Run Polyspace Analysis from Command Line”

 -prog

2-37

-regex-replace-rgx -regex-replace-fmt
Make replacements in preprocessor directives

Syntax
-regex-replace-rgx matchFileName -regex-replace-fmt
replacementFileName

Description
-regex-replace-rgx matchFileName -regex-replace-fmt
replacementFileName replaces tokens in preprocessor directives for the purposes of
Polyspace analysis. The original source code is unchanged. You match a token using a
regular expression in the file matchFileName and replace the token using a replacement
in the file replacementFileName.

Use this option only to replace or remove tokens in the preprocessor directives before
preprocessing. If a token in your source code causes a compilation error, you can typically
replace or remove the token from the preprocessed code. Use the more convenient option
Command/script to apply to preprocessed files (-post-preprocessing-
command). You cannot make the replacements in preprocessed code only for tokens in
preprocessor directives.

If you are running an analysis from the user interface, on the Configuration pane, you
can enter this option in the Other field. See Other.

In the user interface, specify absolute paths to the text files with the search and replace
patterns.

Examples
Suppose you want to replace _rom_beg in this #define directive:

#define ROM_BEG_ADDR (uint16*)(&_rom_beg)

2 Polyspace Command-Line Options

2-38

and modify the directive to:

#define ROM_BEG_ADDR (0x4000u)

Specify this regular expression in a file match.txt:

^\s*#define\s+ROM_BEG_ADDR\s+\(uint16_t*\)\(\&_rom_beg\)

These elements are used in the regular expression:

• ^ asserts position at the start of a line.
• \s* represents zero or more whitespace characters.
• \s+ represents one or more whitespace characters.

The characters *, &, (and) in the original expression are escaped with \. For a complete
list of regular expressions, see Perl documentation.

Specify the replacement in a file replace.txt.

#define ROM_BEG_ADDR \(0x4000u\)

Specify the two text files during analysis with the options -regex-replace-rgx and -
regex-replace-fmt.

polyspace-code-prover-nodesktop -sources filename
 -regex-replace-rgx match.txt
 -regex-replace-fmt replace.txt

See Also
Command/script to apply to preprocessed files (-post-preprocessing-
command) | polyspace-bug-finder-nodesktop

Topics
“Run Polyspace Analysis from Command Line”

 -regex-replace-rgx -regex-replace-fmt

2-39

https://perldoc.perl.org/perlre.html#Regular-Expressions

-report-output-name
Specify name of report

Syntax
-report-output-name reportName

Description
-report-output-name reportName specifies the name of an analysis report.

The default name for a report is Prog_Template.Format:

• Prog is the name of the project specified by -prog.
• TemplateName is the type of report template specified by -report-template.
• Format is the file extension for the report specified by -report-output-format.

If you are running an analysis from the user interface, on the Configuration pane, you
can enter this option in the Other field. See Other.

Examples
Specify the name of the analysis report.

polyspace-bug-finder-nodesktop -report-template Developer
 -report-output-name Airbag_v3.doc

See Also
Output format (-report-output-format) | Bug Finder and Code Prover
report (-report-template) | polyspace-bug-finder-nodesktop

2 Polyspace Command-Line Options

2-40

Topics
“Generate Reports”

 -report-output-name

2-41

-results-dir
Specify the results folder

Syntax
-results-dir

Description
-results-dir specifies where to save the analysis results. The default location at the
command line is the current folder.

If you are running analysis in the user interface, see “Run Polyspace Analysis on
Desktop”.

Examples
Specify to store your results in the RESULTS folder.

polyspace-bug-finder-nodesktop -results-dir RESULTS ...
 export RESULTS=results_'date + %d%B_%HH%M_%A'
polyspace-bug-finder-nodesktop -results-dir 'pwd'/$RESULTS

See Also
polyspace-bug-finder-nodesktop

Topics
“Run Polyspace Analysis from Command Line”

2 Polyspace Command-Line Options

2-42

-scheduler
Specify cluster or job scheduler

Syntax
-scheduler schedulingOption

Description
-scheduler schedulingOption specifies the head node of the cluster or MATLAB job
scheduler on the node host. Use this command to manage the cluster, or to specify where
to run batch analyses.

Examples
Run a batch analysis on a remote server.

polyspace-bug-finder-nodesktop -batch -scheduler NodeHost
polyspace-bug-finder-nodesktop -batch -scheduler 192.168.1.124:12400
polyspace-bug-finder-nodesktop -batch -scheduler MJSName@NodeHost

polyspace-job-manager listjobs -scheduler NodeHost

See Also
polyspace-bug-finder-nodesktop | polyspaceJobsManager

Topics
“Run Polyspace Analysis on Remote Clusters Using Scripts”

 -scheduler

2-43

-sources
Specify source files

Syntax
-sources file1[,file2,...]
-sources file1 -sources file2

Description
-sources file1[,file2,...] or -sources file1 -sources file2 specifies the
list of source files that you want to analyze. You can use standard UNIX wildcards with
this option to specify your sources.

The source files are compiled in the order in which they are specified.

Examples
Analyze the files mymain.c, funAlgebra.c, and funGeometry.c.

polyspace-bug-finder-nodesktop -sources mymain.c
 -sources funAlgebra.c -sources funGeometry.c

See Also
polyspace-bug-finder-nodesktop

Topics
“Run Polyspace Analysis from Command Line”

2 Polyspace Command-Line Options

2-44

-sources-list-file
Specify file containing list of sources

Syntax
-sources-list-file file_path

Description
-sources-list-file file_path specifies the absolute path to a text file that lists
each file name that you want to analyze.

To specify your sources in the text file, on each line, specify the absolute path to a source
file. For example:

C:\Sources\myfile.c
C:\Sources2\myfile2.c

Examples
Run analysis on files listed in files.txt.

polyspace-bug-finder-nodesktop -batch -scheduler NODEHOST
 -sources-list-file "C:\Analysis\files.txt"
polyspace-bug-finder-nodesktop -batch -scheduler NODEHOST
 -sources-list-file "/home/polyspace/files.txt"

See Also
polyspace-bug-finder-nodesktop

Topics
“Run Polyspace Analysis on Remote Clusters Using Scripts”

 -sources-list-file

2-45

-submit-job-from-previous-compilation-
results
Specify that the analysis job must be resubmitted without recompilation

Syntax
-submit-job-from-previous-compilation-results

Description
-submit-job-from-previous-compilation-results specifies that the Polyspace
analysis must start after the compilation phase with compilation results from a previous
analysis. If a remote analysis stops after compilation, for instance because of
communication problems between the server and client computers, use this option.

When you perform a remote analysis:

1 On the local host computer, the Polyspace software performs code compilation and
coding rule checking.

2 The Parallel Computing Toolbox™ software submits the analysis job to the MATLAB
job scheduler (MJS) on the head node of the MATLAB Distributed Computing Server
cluster.

3 The head node of the MATLAB Distributed Computing Server cluster assigns the
verification job to a worker node, where the remaining phases of the Polyspace
analysis occur.

If an analysis stops after completing the first step and you restart the analysis, use this
option to reuse compilation results from the previous analysis. You thereby avoid
restarting the analysis from the compilation phase.

If previous compilation results do not exist in the current folder, an error occurs. Remove
the option and restart analysis from the compilation phase.

If you are running an analysis from the user interface, on the Configuration pane, you
can enter this option in the Other field. See Other.

2 Polyspace Command-Line Options

2-46

Examples
Specify remote analysis with compilation results from a previous analysis.

polyspace-bug-finder-nodesktop -batch -scheduler localhost
 -submit-job-from-previous-compilation-results

See Also
polyspace-bug-finder-nodesktop

Topics
“Run Polyspace Analysis on Remote Clusters”
“Run Polyspace Analysis on Remote Clusters Using Scripts”

 -submit-job-from-previous-compilation-results

2-47

-termination-functions
Specify process termination functions

Syntax
-termination-functions function1[,function2[,...]]

Description
-termination-functions function1[,function2[,...]] specifies functions that
behave like the exit function and terminate your program.

Use this option to specify program termination functions that are declared but not defined
in your code.

If you are running an analysis from the user interface, on the Configuration pane, you
can enter this option in the Other field. See Other.

Examples
Polyspace detects an Integer division by zero defect in the following code because it
does not recognize that my_exit terminates the program.

void my_exit();

double reciprocal(int val) {
 if(val==0)
 my_exit();
 return (1/val);
}

To prevent Polyspace from flagging the division operation, use the -termination-
functions option:

polyspace-bug-finder-nodesktop -termination-functions my_exit

2 Polyspace Command-Line Options

2-48

http://www.cplusplus.com/reference/cstdlib/exit/

See Also
polyspaceBugFinder

Topics
“Run Polyspace Analysis from Command Line”

 -termination-functions

2-49

-tmp-dir-in-results-dir
Keep temporary files in results folder

Syntax
-tmp-dir-in-results-dir

Description
-tmp-dir-in-results-dir specifies that temporary files must be stored in a subfolder
of the results folder. Use this option only when the standard temporary folder does not
have enough disk space. If the results folder is mounted on a network drive, this option
can slow down your processor.

To learn how Polyspace determines the temporary folder location, see “Storage of
Temporary Files”.

If you are running an analysis from the user interface, on the Configuration pane, you
can enter this option in the Other field. See Other.

Examples
Store temporary files in the results folder.

polyspace-bug-finder-nodesktop -tmp-dir-in-results-dir

See Also
polyspace-bug-finder-nodesktop

Topics
“Run Polyspace Analysis from Command Line”

2 Polyspace Command-Line Options

2-50

-v[ersion]
Display Polyspace version number

Syntax
-v
-version

Description
-v or -version displays the version number of your Polyspace product.

Examples
Display the version number and release of your Polyspace product.

polyspace-bug-finder-nodesktop -v

See Also
polyspace-bug-finder-nodesktop

Topics
“Run Polyspace Analysis from Command Line”

 -v[ersion]

2-51

-xml-annotations-description
Apply custom code annotations to Polyspace analysis results

Syntax
-xml-annotations-description file_path

Description
-xml-annotations-description file_path uses the annotation syntax defined in
the XML file located in file_path to interpret code comments in your source files. You
can use the XML file to specify an annotation syntax and map it to the Polyspace
annotation syntax. When you run an analysis by using this option, you can justify and hide
results with annotations that use your syntax. If you run Polyspace at the command line,
file_path is the absolute path or path relative to the folder from which you run the
command. If you run Polyspace through the user interface, file_path is the absolute
path.

If you are running an analysis through the user interface, you can enter this option in the
Other field, under the Advanced Settings node on the Configuration pane. See Other.

Why Use This Option
If you have existing annotations from previous code reviews, you can import these
annotations to Polyspace. You do not have to review and justify results that you have
already annotated. Similarly, if your code comments must adhere to a specific format, you
can map and import that format to Polyspace.

2 Polyspace Command-Line Options

2-52

Examples
Import Existing Annotations for Coding Rule Violations
Suppose that you have previously reviewed source file zero_div.c containing the
following code, and justified certain MISRA C: 2012 violations by using custom
annotations.

#include <stdio.h>

/* Violation of Misra C:2012
rules 8.4 and 8.7 on the next
line of code. */

int func(int p) //My_rule 50, 51
{
 int i;
 int j = 1;

 i = 1024 / (j - p);
 return i;
}

/* Violation of Misra C:2012
rule 8.4 on the next line of
code */

int main(void){ //My_rule 50
 int x=func(2);
 return x;
}

The code comments My_rule 50, 51 and My_rule 50 do not use the Polyspace
annotation syntax. Instead, you use a convention where you place all MISRA rules in a
single numbered list. In this list, rules 8.4 and 8.7 correspond to the numbers 50 and
51.You can check this code for MISRA C: 2012 violations by typing the command:

polyspace-bug-finder-nodesktop -sources source_path -misra3 all

source_path is the path to zero_div.c.

The annotated violations appear in the Results List pane. You must review and justify
them again.

 -xml-annotations-description

2-53

This XML example defines the annotation format used in zero_div.c and maps it to the
Polyspace annotation syntax:

• The format of the annotation is the keyword My_rule, followed by a space and one or
more comma-separated alphanumeric rule identifiers.

• Rule identifiers 50 and 51 are mapped to MISRA C: 2012 rules 8.4 and 8.7
respectively. The mapping uses the Polyspace annotation syntax.

<?xml version="1.0" encoding="UTF-8"?>

<Annotations xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="annotations_xml_schema.xsd"
 Group="example annotation">

 <Expressions Search_For_Keywords="My_rule"
 Separator_Result_Name="," >

 <!-- This section defines the annotation syntax format -->
 <Expression Mode="SAME_LINE"

2 Polyspace Command-Line Options

2-54

 Regex="My_rule\s(\w+(\s*,\s*\w+)*)"
 Rule_Identifier_Position="1"
 />

 </Expressions>
 <!-- This section maps the user annotation to the Polyspace
 annotation syntax -->
 <Mapping>
 <Result_Name_Mapping Rule_Identifier="50" Family="MISRA-C3" Result_Name="8.4"/>
 <Result_Name_Mapping Rule_Identifier="51" Family="MISRA-C3" Result_Name="8.7"/>
 </Mapping>
</Annotations>

To import the existing annotations and apply them to the corresponding Polyspace results:

1 Copy the preceding code example to a text editor and save it on your machine as
annotations_description.xml, for instance in C:\Polyspace_workspace
\annotations\.

2 Rerun the analysis on zero_div.c by using the command:

polyspace-bug-finder-nodesktop -sources source_path -misra3 all ^
-xml-annotations-desription ^
C:\Polyspace_workspace\annotations\annotations_description.xml

Polyspace considers the annotated results justified and hides them in the Results List
pane.

 -xml-annotations-description

2-55

See Also
polyspace-bug-finder-nodesktop

Topics
“Define Custom Annotation Format”
“Annotation Description Full XML Template”

Introduced in R2017b

2 Polyspace Command-Line Options

2-56

Defects

3

*this not returned in copy assignment
operator
operator= method does not return a pointer to the current object

Description
*this not returned from copy assignment operator occurs when assignment
operators such as operator= and operator+= do not return a reference to *this,
where this is a pointer to the current object. If the operator= method does not return
*this, it means that a=b or a.operator=(b) is not returning the assignee a following
the assignment.

For instance:

• The operator returns its parameter instead of a reference to the current object.

That is, the operator has a form MyClass & operator=(const MyClass & rhs)
{ ... return rhs; } instead of MyClass & operator=(const MyClass &
rhs) { ... return *this; }.

• The operator returns by value and not reference.

That is, the operator has a form MyClass operator=(const MyClass & rhs)
{ ... return *this; } instead of MyClass & operator=(const MyClass &
rhs) { ... return *this; }.

Risk
Users typically expect object assignments to behave like assignments between built-in
types and expect an assignment to return the assignee. For instance, a right-associative
chained assignment a=b=c requires that b=c return the assignee b following the
assignment. If your assignment operator behaves differently, users of your class can face
unexpected consequences.

The unexpected consequences occur when the assignment is part of another statement.
For instance:

3 Defects

3-2

• If the operator= returns its parameter instead of a reference to the current object,
the assignment a=b returns b instead of a. If the operator= performs a partial
assignment of data members, following an assignment a=b, the data members of a and
b are different. If you or another user of your class read the data members of the
return value and expect the data members of a, you might have unexpected results.
For an example, see “Return Value of operator= Same as Argument” on page 3-3.

• If the operator= method returns *this by value and not reference, a copy of *this
is returned. If you expect to modify the result of the assignment using a statement
such as (a=b).modifyValue(), you modify a copy of a instead of a itself.

Fix
Return *this from your assignment operators.

Examples
Return Value of operator= Same as Argument
class MyClass {
 public:
 MyClass(bool b, int i): m_b(b), m_i(i) {}
 const MyClass& operator=(const MyClass& obj) {
 if (&obj!=this) {
 /* Note: Only m_i is copied. m_b retains its original value. */
 m_i = obj.m_i;
 }
 return obj;
 }
 bool isOk() const { return m_b;}
 int getI() const { return m_i;}
 private:
 bool m_b;
 int m_i;
};

void main() {
 MyClass r0(true, 0), r1(false, 1);
 /* Object calling isOk is r0 and the if block executes. */
 if ((r1 = r0).isOk()) {
 /* Do something */

 *this not returned in copy assignment operator

3-3

 }
}

In this example, the operator operator= returns its current argument instead of a
reference to *this.

Therefore, in main, the assignment r1 = r0 returns r0 and not r1. Because the
operator= does not copy the data member m_b, the value of r0.m_b and r1.m_b are
different. The following unexpected behavior occurs.

What You Might Expect What Actually Happens
• The statement (r1 = r0).isOk()

returns r1.m_b which has value false
• The if block does not execute.

• The statement (r1 = r0).isOk()
returns r0.m_b which has value true

• The if block executes.

One possible correction is to return *this from operator=.

class MyClass {
 public:
 MyClass(bool b, int i): m_b(b), m_i(i) {}
 const MyClass& operator=(const MyClass& obj) {
 if (&obj!=this) {
 /* Note: Only m_i is copied. m_b retains its original value. */
 m_i = obj.m_i;
 }
 return *this;
 }
 bool isOk() const { return m_b;}
 int getI() const { return m_i;}
 private:
 bool m_b;
 int m_i;
};

void main() {
 MyClass r0(true, 0), r1(false, 1);
 /* Object calling isOk is r0 and the if block executes. */
 if ((r1 = r0).isOk()) {
 /* Do something */
 }
}

3 Defects

3-4

Result Information
Group: Object oriented
Language: C++
Default: Off
Command-Line Syntax: RETURN_NOT_REF_TO_THIS
Impact: Low

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2015b

 *this not returned in copy assignment operator

3-5

Abnormal termination of exit handler
Exit handler function interrupts the normal execution of a program

Description
Abnormal termination of exit handler looks for registered exit handlers. Exit handlers
are registered with specific functions such as atexit, (WinAPI) _onexit, or
at_quick_exit(). If the exit handler calls a function that interrupts the program’s
expected termination sequence, Polyspace raises a defect. Some functions that can cause
abnormal exits are exit, abort, longjmp, or (WinAPI) _onexit.

Risk
If your exit handler terminates your program, you can have undefined behavior. Abnormal
program termination means other exit handlers are not invoked. These additional exit
handlers may do additional clean up or other required termination steps.

Fix
In inside exit handlers, remove calls to functions that prevent the exit handler from
terminating normally.

Examples

Exit Handler With Call to exit
#include <stdlib.h>

volatile int some_condition = 1;
void demo_exit1(void)
{
 /* ... Cleanup code ... */
 return;
}

3 Defects

3-6

void exitabnormalhandler(void)
{
 if (some_condition)
 {
 /* Clean up */
 exit(0);
 }
 return;
}

int demo_install_exitabnormalhandler(void)
{

 if (atexit(demo_exit1) != 0) /* demo_exit1() performs additional cleanup */
 {
 /* Handle error */
 }
 if (atexit(exitabnormalhandler) != 0)
 {
 /* Handle error */
 }
 /* ... Program code ... */
 return 0;
}

In this example, demo_install_exitabnormalhandler registers two exit handlers,
demo_exit1 and exitabnormalhandler. Exit handlers are invoked in the reverse
order of which they are registered. When the program ends, exitabnormalhandler
runs, then demo_exit1. However, exitabnormalhandler calls exit interrupting the
program exit process. Having this exit inside an exit handler causes undefined behavior
because the program is not finished cleaning up safely.

One possible correction is to let your exit handlers terminate normally. For this example,
exit is removed from exitabnormalhandler, allowing the exit termination process to
complete as expected.

#include <stdlib.h>

volatile int some_condition = 1;
void demo_exit1(void)
{
 /* ... Cleanup code ... */
 return;

 Abnormal termination of exit handler

3-7

}
void exitabnormalhandler(void)
{
 if (some_condition)
 {
 /* Clean up */
 /* Return normally */
 }
 return;
}

int demo_install_exitabnormalhandler(void)
{

 if (atexit(demo_exit1) != 0) /* demo_exit1() continues clean up */
 {
 /* Handle error */
 }
 if (atexit(exitabnormalhandler) != 0)
 {
 /* Handle error */
 }
 /* ... Program code ... */
 return 0;
}

Result Information
Group: Programming
Language: C | C++
Default: Off
Command-Line Syntax: EXIT_ABNORMAL_HANDLER
Impact: Medium
CWE ID: 705
CERT C ID: ENV32-C
CERT C++ ID: ENV32-C

3 Defects

3-8

https://cwe.mitre.org/data/definitions/705.html
https://www.securecoding.cert.org/confluence/x/voAg
https://wiki.sei.cmu.edu/confluence/x/KdYxBQ

See Also

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2016b

 Abnormal termination of exit handler

3-9

Absorption of float operand
One addition or subtraction operand is absorbed by the other operand

Description
Absorption of float operand occurs when one operand of an addition or subtraction
operation is always negligibly small compared to the other operand. Therefore, the result
of the operation is always equal to the value of the larger operand, making the operation
redundant.

Risk
Redundant operations waste execution cycles of your processor.

The absorption of a float operand can indicate design issues elsewhere in the code. It is
possible that the developer expected a different range for one of the operands and did not
expect the redundancy of the operation. However, the operand range is different from
what the developer expects because of issues elsewhere in the code.

Fix
See if the operand ranges are what you expect. To see the ranges, place your cursor on
the operation.

• If the ranges are what you expect, justify why you have the redundant operation in
place. For instance, the code is only partially written and you anticipate other values
for one or both of the operands from future unwritten code.

If you cannot justify the redundant operation, remove it.
• If the ranges are not what you expect, in your code, trace back to see where the

ranges come from. To begin your traceback, search for instances of the operand in
your code. Browse through previous instances of the operand and determine where
the unexpected range originates.

To determine when one operand is negligible compared to the other operand, the defect
uses rules based on IEEE 754 standards. To fix the defect, instead of using the actual

3 Defects

3-10

rules, you can use this heuristic: the ratio of the larger to the smaller operand must be
less than 2p-1 at least for some values. Here, p is equal to 24 for 32-bit precision and 53
for 64-bit precision. To determine the precision, the defect uses your specification for
Target processor type (-target).

This defect appears only if one operand is always negligibly smaller than the other
operand. To see instances of subnormal operands or results, use the check Subnormal
Float in Polyspace Code Prover.

Examples

One Addition Operand Negligibly Smaller Than The Other
Operand
#include <stdlib.h>

float get_signal(void);
void do_operation(float);

float input_signal1(void) {
 float temp = get_signal();
 if(temp > 0. && temp < 1e-30)
 return temp;
 else {
 /* Reject value */
 exit(EXIT_FAILURE);
 }
}

float input_signal2(void) {
 float temp = get_signal();
 if(temp > 1.)
 return temp;
 else {
 /* Reject value */
 exit(EXIT_FAILURE);
 }
}

void main() {
 float signal1 = input_signal1();

 Absorption of float operand

3-11

 float signal2 = input_signal2();
 float super_signal = signal1 + signal2;
 do_operation(super_signal);
}

In this example, the defect appears on the addition because the operand signal1 is in
the range (0,1e-30) but signal2 is greater than 1.

One possible correction is to remove the redundant addition operation. In the following
corrected code, the operand signal2 and its associated code is also removed from
consideration.

#include <stdlib.h>

float get_signal(void);
void do_operation(float);

float input_signal1(void) {
 float temp = get_signal();
 if(temp > 0. && temp < 1e-30)
 return temp;
 else {
 /* Reject value */
 exit(EXIT_FAILURE);
 }
}

void main() {
 float signal1 = input_signal1();
 do_operation(signal1);
}

Another possible correction is to see if the operand ranges are what you expect. For
instance, if one of the operand range is not supposed to be negligibly small, fix the issue
causing the small range. In the following corrected code, the range (0,1e-2) is imposed
on signal2 so that it is not always negligibly small as compared to signal1.

#include <stdlib.h>

float get_signal(void);
void do_operation(float);

3 Defects

3-12

float input_signal1(void) {
 float temp = get_signal();
 if(temp > 0. && temp < 1e-2)
 return temp;
 else {
 /* Reject value */
 exit(EXIT_FAILURE);
 }
}

float input_signal2(void) {
 float temp = get_signal();
 if(temp > 1.)
 return temp;
 else {
 /* Reject value */
 exit(EXIT_FAILURE);
 }
}

void main() {
 float signal1 = input_signal1();
 float signal2 = input_signal2();
 float super_signal = signal1 + signal2;
 do_operation(super_signal);
}

Result Information
Group: Numerical
Language: C | C++
Default: On
Command-Line Syntax: FLOAT_ABSORPTION
Impact: High
CWE ID: 189, 682, 873
CERT C ID: FLP00-C

See Also
Polyspace Analysis Options
Find defects (-checkers)

 Absorption of float operand

3-13

https://cwe.mitre.org/data/definitions/189.html
https://cwe.mitre.org/data/definitions/682.html
https://cwe.mitre.org/data/definitions/873.html
https://www.securecoding.cert.org/confluence/x/VQIFAQ

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2016b

3 Defects

3-14

Accessing object with temporary lifetime
Read or write operations on the object are undefined behavior

Description
Accessing object with temporary lifetime occurs when you attempt to read from or
write to an object with temporary lifetime that is returned by a function call. In a
structure or union returned by a function, and containing an array, the array members are
temporary objects. The lifetime of temporary objects ends:

• When the full expression or full declarator containing the call ends, as defined in the
C11 Standard.

• After the next sequence point, as defined in the C90 and C99 Standards. A sequence
point is a point in the execution of a program where all previous evaluations are
complete and no subsequent evaluation has started yet.

For C++ code, Accessing object with temporary lifetime raises a defect only when
you write to an object with a temporary lifetime.

If the temporary lifetime object is returned by address, no defect is raised.

Risk
Modifying objects with temporary lifetime is undefined behavior and can cause abnormal
program termination and portability issues.

Fix
Assign the object returned from the function call to a local variable. The content of the
temporary lifetime object is copied to the variable. You can now modify it safely.

 Accessing object with temporary lifetime

3-15

Examples

Modifying Temporary Lifetime Object Returned by Function
Call
#include <stdio.h>
#include <assert.h>
#include <stdlib.h>
#include <string.h>

#define SIZE6 6

struct S_Array
{
 int t;
 int a[SIZE6];
};

struct S_Array func_temp(void);

/* func_temp() returns a struct value containing
* an array with a temporary lifetime.
*/
int func(void) {

/*Writing to temporary lifetime object is
 undefined behavior
 */
 return ++(func_temp().a[0]);
}

void main(void) {
 (void)func();
}

In this example, func_temp() returns by value a structure with an array member a. This
member has temporary lifetime. Incrementing it is undefined behavior.

One possible correction is to assign the return of the call to func_temp() to a local
variable. The content of the temporary object a is copied to the variable, which you can
safely increment.

3 Defects

3-16

 #include <stdio.h>
#include <assert.h>
#include <stdlib.h>
#include <string.h>

#define SIZE6 6

struct S_Array
{
 int t;
 int a[SIZE6];
};

struct S_Array func_temp(void);

int func(void) {

/* Assign object returned by function call to
 *local variable
 */
 struct S_Array s = func_temp();

/* Local variable can safely be
 *incremented
 */
 ++(s.a[0]);
 return s.a[0];
}

void main(void) {
 (void)func();
}

Result Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: TEMP_OBJECT_ACCESS
Impact: Low
CWE ID: 825
CERT C ID: EXP35-C

 Accessing object with temporary lifetime

3-17

https://cwe.mitre.org/data/definitions/825.html
https://www.securecoding.cert.org/confluence/x/pYEt

CERT C++ ID: EXP35-C, EXP54-CPP

See Also

Topics
Large pass-by-value argument
Misuse of structure with flexible array member
Write without a further read
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2018a

3 Defects

3-18

https://wiki.sei.cmu.edu/confluence/x/utUxBQ
https://wiki.sei.cmu.edu/confluence/x/OXw-BQ

Alignment changed after memory
reallocation
Memory reallocation changes the originally stricter alignment of an object

Description
Alignment changed after memory reallocation occurs when you use realloc() to
modify the size of objects with strict memory alignment requirements.

Risk
The pointer returned by realloc() can be suitably assigned to objects with less strict
alignment requirements. A misaligned memory allocation can lead to buffer underflow or
overflow, an illegally dereferenced pointer, or access to arbitrary memory locations. In
processors that support misaligned memory, the allocation impacts the performance of
the system.

Fix
To reallocate memory:

1 Resize the memory block.

• In Windows, use _aligned_realloc() with the alignment argument used in
_aligned_malloc() to allocate the original memory block.

• In UNIX/Linux, use the same function with the same alignment argument used to
allocate the original memory block.

2 Copy the original content to the new memory block.
3 Free the original memory block.

Note This fix has implementation-defined behavior. The implementation might not
support the requested memory alignment and can have additional constraints for the size
of the new memory.

 Alignment changed after memory reallocation

3-19

Examples

Memory Reallocated Without Preserving the Original
Alignment
#include <stdio.h>
#include <stdlib.h>

#define SIZE1024 1024

void func(void)
{
 size_t resize = SIZE1024;
 size_t alignment = 1 << 12; /* 4096 bytes alignment */
 int *ptr = NULL;
 int *ptr1;

 /* Allocate memory with 4096 bytes alignment */

 if (posix_memalign((void **)&ptr, alignment, sizeof(int)) != 0)
 {
 /* Handle error */
 }

 /*Reallocate memory without using the original alignment.
 ptr1 may not be 4096 bytes aligned. */

 ptr1 = (int *)realloc(ptr, sizeof(int) * resize);

 if (ptr1 == NULL)
 {
 /* Handle error */
 }

 /* Processing using ptr1 */

 /* Free before exit */
 free(ptr1);
}

3 Defects

3-20

In this example, the allocated memory is 4096-bytes aligned. realloc() then resizes the
allocated memory. The new pointer ptr1 might not be 4096-bytes aligned.

When you reallocate the memory, use posix_memalign() and pass the alignment
argument that you used to allocate the original memory.

#include <stdio.h>
#include <stdlib.h>

#define SIZE1024 1024

void func(void)
{
 size_t resize = SIZE1024;
 size_t alignment = 1 << 12; /* 4096 bytes alignment */
 int *ptr = NULL;

 /* Allocate memory with 4096 bytes alignment */
 if (posix_memalign((void **)&ptr, alignment, sizeof(int)) != 0)
 {
 /* Handle error */
 }

 /* Reallocate memory using the original alignment. */
 if (posix_memalign((void **)&ptr, alignment, sizeof(int) * resize) != 0)
 {
 /* Handle error */
 free(ptr);
 ptr = NULL;
 }

 /* Processing using ptr */

 /* Free before exit */
 free(ptr);
}

Result Information
Group: Dynamic memory
Language: C | C++
Default: On

 Alignment changed after memory reallocation

3-21

Command-Line Syntax: ALIGNMENT_CHANGE
Impact: Low
CERT C ID: MEM36-C
CERT C++ ID: MEM36-C

See Also

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2017b

3 Defects

3-22

https://www.securecoding.cert.org/confluence/x/4YEzAg
https://wiki.sei.cmu.edu/confluence/x/f9YxBQ

Alternating input and output from a stream
without flush or positioning call
Undefined behavior for input or output stream operations

Description
Alternating input and output from a stream without flush or positioning call
occurs when:

• You do not perform a flush or function positioning call between an output operation
and a following input operation on a file stream in update mode.

• You do not perform a function positioning call between an input operation and a
following output operation on a file stream in update mode.

Risk
Alternating input and output operations on a stream without an intervening flush or
positioning call is undefined behavior.

Fix
Call fflush() or a file positioning function such as fseek() or fsetpos() between
output and input operations on an update stream.

Call a file positioning function between input and output operations on an update stream.

Examples

Read After Write Without Intervening Flush
#include <stdio.h>
#define SIZE20 20

 Alternating input and output from a stream without flush or positioning call

3-23

void initialize_data(char* data, size_t s) {};
const char *temp_filename = "/tmp/demo.txt";

void func()
{
 char data[SIZE20];
 char append_data[SIZE20];
 FILE *file;

 file = fopen(temp_filename, "a+");
 if (file == NULL)
 {
 /* Handle error. */;
 }

 initialize_data(append_data, SIZE20);

 if (fwrite(append_data, 1, SIZE20, file) != SIZE20)
 {
 (void)fclose(file);
 /* Handle error. */;
 }
 /* Read operation after write without
 intervening flush. */
 if (fread(data, 1, SIZE20, file) < SIZE20)
 {
 (void)fclose(file);
 /* Handle error. */;
 }

 if (fclose(file) == EOF)
 {
 /* Handle error. */;
 }
}

In this example, the file demo.txt is opened for reading and appending. After the call to
fwrite(), a call to fread() without an intervening flush operation is undefined
behavior.

After writing data to the file, before calling fread(), perform a flush call.

3 Defects

3-24

#include <stdio.h>
#define SIZE20 20

void initialize_data(char* data, size_t s) {};
const char *temp_filename = "/tmp/demo.txt";

void func()
{
 char data[SIZE20];
 char append_data[SIZE20];
 FILE *file;

 file = fopen(temp_filename, "a+");
 if (file == NULL)
 {
 /* Handle error. */;
 }

 initialize_data(append_data, SIZE20);

 if (fwrite(append_data, 1, SIZE20, file) != SIZE20)
 {
 (void)fclose(file);
 /* Handle error. */;
 }
 /* Buffer flush after write and before read */
 if (fflush(file) != 0)
 {
 (void)fclose(file);
 /* Handle error. */;
 }
 if (fread(data, 1, SIZE20, file) < SIZE20)
 {
 (void)fclose(file);
 /* Handle error. */;
 }

 if (fclose(file) == EOF)
 {
 /* Handle error. */;
 }
}

 Alternating input and output from a stream without flush or positioning call

3-25

Result Information
Group:Programming
Language: C | C++
Default: On
Command-Line Syntax: IO_INTERLEAVING
Impact: Low
CERT C ID: FIO39-C
CERT C++ ID: FIO39-C
ISO/IEC TS 17961 ID: ioileave

See Also

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2017b

3 Defects

3-26

https://www.securecoding.cert.org/confluence/x/tQA1
https://wiki.sei.cmu.edu/confluence/x/L9YxBQ

Arithmetic operation with NULL pointer
Arithmetic operation performed on NULL pointer

Description
Arithmetic operation with NULL pointer occurs when an arithmetic operation
involves a pointer whose value is NULL.

Examples

Arithmetic Operation with NULL Pointer Error
#include<stdlib.h>

int Check_Next_Value(int *loc, int val)
 {
 int *ptr = loc, found = 0;

 if (ptr==NULL)
 {
 ptr++;
 /* Defect: NULL pointer shifted */

 if (*ptr==val) found=1;
 }

 return(found);
 }

When ptr is a NULL pointer, the code enters the if statement body. Therefore, a NULL
pointer is shifted in the statement ptr++.

One possible correction is to perform the arithmetic operation when ptr is not NULL.

#include<stdlib.h>

 Arithmetic operation with NULL pointer

3-27

int Check_Next_Value(int *loc, int val)
 {
 int *ptr = loc, found = 0;

 /* Fix: Perform operation when ptr is not NULL */
 if (ptr!=NULL)
 {
 ptr++;

 if (*ptr==val) found=1;
 }

 return(found);
 }

Check Information
Group: Static memory
Language: C | C++
Default: Off
Command-Line Syntax: NULL_PTR_ARITH
Impact: Low
CERT C ID: EXP34-C
CERT C++ ID: EXP34-C
ISO/IEC TS 17961 ID: nullref

See Also
Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Null pointer

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2013b

3 Defects

3-28

https://www.securecoding.cert.org/confluence/x/PAw
https://wiki.sei.cmu.edu/confluence/x/QdcxBQ

Array access out of bounds
Array index outside bounds during array access

Description
Array access out of bounds occurs when an array index falls outside the range
[0...array_size-1] during array access.

Examples

Array Access Out of Bounds Error
#include <stdio.h>

void fibonacci(void)
{
 int i;
 int fib[10];

 for (i = 0; i < 10; i++)
 {
 if (i < 2)
 fib[i] = 1;
 else
 fib[i] = fib[i-1] + fib[i-2];
 }

 printf("The 10-th Fibonacci number is %i .\n", fib[i]);
 /* Defect: Value of i is greater than allowed value of 9 */
}

The array fib is assigned a size of 10. An array index for fib has allowed values of
[0,1,2,...,9]. The variable i has a value 10 when it comes out of the for-loop.
Therefore, the printf statement attempts to access fib[10] through i.

One possible correction is to print fib[i-1] instead of fib[i] after the for-loop.

 Array access out of bounds

3-29

#include <stdio.h>

void fibonacci(void)
{
 int i;
 int fib[10];

 for (i = 0; i < 10; i++)
 {
 if (i < 2)
 fib[i] = 1;
 else
 fib[i] = fib[i-1] + fib[i-2];
 }

 /* Fix: Print fib[9] instead of fib[10] */
 printf("The 10-th Fibonacci number is %i .\n", fib[i-1]);
}

The printf statement accesses fib[9] instead of fib[10].

Check Information
Group: Static memory
Language: C | C++
Default: On
Command-Line Syntax: OUT_BOUND_ARRAY
Impact: High
CWE ID: 119, 131, 466
CERT C ID: API02-C, ARR00-C, ARR30-C, ARR38-C, FIO37-C, MSC15-C, STR31-C
CERT C++ ID: ARR30-C, ARR38-C, CTR50-CPP, FIO37-C, STR31-C, STR50-CPP, STR53-
CPP
ISO/IEC TS 17961 ID: invptr

See Also
Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Pointer access out of bounds

3 Defects

3-30

https://cwe.mitre.org/data/definitions/119.html
https://cwe.mitre.org/data/definitions/131.html
https://cwe.mitre.org/data/definitions/466.html
https://wiki.sei.cmu.edu/confluence/x/otYxBQ
https://wiki.sei.cmu.edu/confluence/x/9dUxBQ
https://wiki.sei.cmu.edu/confluence/x/wtYxBQ
https://wiki.sei.cmu.edu/confluence/x/W9UxBQ
https://wiki.sei.cmu.edu/confluence/x/JtcxBQ
https://wiki.sei.cmu.edu/confluence/x/stUxBQ
https://wiki.sei.cmu.edu/confluence/x/sNUxBQ
https://wiki.sei.cmu.edu/confluence/x/wtYxBQ
https://wiki.sei.cmu.edu/confluence/x/W9UxBQ
https://wiki.sei.cmu.edu/confluence/x/cHw-BQ
https://wiki.sei.cmu.edu/confluence/x/JtcxBQ
https://wiki.sei.cmu.edu/confluence/x/sNUxBQ
https://wiki.sei.cmu.edu/confluence/x/i3w-BQ
https://wiki.sei.cmu.edu/confluence/x/h3s-BQ
https://wiki.sei.cmu.edu/confluence/x/h3s-BQ

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2013b

 Array access out of bounds

3-31

Array access with tainted index
Array index from unsecure source possibly outside array bounds

Description
Array access with tainted index detects reading or writing to an array by using a
tainted index that has not been validated.

Risk
The index might be outside the valid array range. If the tainted index is outside the array
range, it can cause:

• Buffer underflow/underwrite — writing to memory before the beginning of the buffer.
• Buffer overflow — writing to memory after the end of a buffer.
• Over-reading a buffer — accessing memory after the end of the targeted buffer.
• Under-reading a buffer, or accessing memory before the beginning of the targeted
buffer.

An attacker can use an invalid read or write operation create to problems in your
program.

Fix
Before using the index to access the array, validate the index value to make sure that it is
inside the array range.

Examples

Use Index to Return Buffer Value
#define SIZE100 100
extern int tab[SIZE100];

3 Defects

3-32

int taintedarrayindex(int num) {
 return tab[num];
}

In this example, the index num accesses the array tab. The function does not check to see
if num is inside the range of tab.

One possible correction is to check that num is in range before using it.

#define SIZE100 100
extern int tab[SIZE100];

int taintedarrayindex(int num) {
 if (num >= 0 && num < SIZE100) {
 return tab[num];
 } else {
 return -9999;
 }
}

Result Information
Group: Tainted Data
Language: C | C++
Default: Off
Command-Line Syntax: TAINTED_ARRAY_INDEX
Impact: Medium
CWE ID: 121, 124, 125, 129
CERT C ID: INT04-C, ARR30-C, API00-C, API02-C
CERT C++ ID: ARR30-C, CTR50-CPP, STR53-CPP
ISO/IEC TS 17961 ID: invptr

See Also
Loop bounded with tainted value | Pointer dereference with tainted
offset | Tainted size of variable length array

Topics
“Interpret Polyspace Bug Finder Results”

 Array access with tainted index

3-33

https://cwe.mitre.org/data/definitions/121.html
https://cwe.mitre.org/data/definitions/124.html
https://cwe.mitre.org/data/definitions/125.html
https://cwe.mitre.org/data/definitions/129.html
https://www.securecoding.cert.org/confluence/x/kgI
https://www.securecoding.cert.org/confluence/x/DYDXAg
https://www.securecoding.cert.org/confluence/x/egAV
https://www.securecoding.cert.org/confluence/x/oIAzAg
https://wiki.sei.cmu.edu/confluence/x/wtYxBQ
https://wiki.sei.cmu.edu/confluence/x/cHw-BQ
https://wiki.sei.cmu.edu/confluence/x/h3s-BQ

“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2015b

3 Defects

3-34

Assertion
Failed assertion statement

Description
Assertion occurs when you use an assert, and the asserted expression is or could be
false.

Note Polyspace does not flag assert(0) as an assertion defect because these
statements are commonly used to disable certain sections of code.

Examples

Check Assertion on Unsigned Integer
#include <assert.h>

void asserting_x(unsigned int theta) {
 theta =+ 5;
 assert(theta < 0);
}

In this example, the assert function checks if the input variable, theta, is less than or
equal to zero. The assertion fails because theta is an unsigned integer, so the value at
the beginning of the function is at least zero. The += statement increases this positive
value by five. Therefore, the range of theta is [5..MAX_INT]. theta is always greater
than zero.

One possible correction is to change the assertion expression. By changing the less-than-
or-equal-to sign to a greater-than-or-equal-to sign, the assertion does not fail.

#include <assert.h>

void asserting_x(unsigned int theta) {

 Assertion

3-35

 theta =+ 5;
 assert(theta > 0);
}

One possible correction is to fix the code related to the assertion expression. If the
assertion expression is true, fix your code so the assertion passes.

#include <assert.h>
#include <stdlib.h>

void asserting_x(int theta) {
 theta = -abs(theta);
 assert(theta < 0);
}

Asserting Zero
#include <assert.h>

#define FLAG 0

int main(void){
 int i_test_z = 0;
 float f_test_z = (float)i_test_z;

 assert(i_test_z);
 assert(f_test_z);
 assert(FLAG);

 return 0;
}

In this example, Polyspace does not flag assert(FLAG) as a violation because a macro
defines FLAG as 0. The Polyspace Bug Finder assertion checker does not flag assertions
with a constant zero parameter, assert(0). These types of assertions are commonly
used as dynamic checks during runtime. By inserting assert(0), you indicate that the
program must not reach this statement during run time, otherwise the program crashes.

However, the assertion checker does flag failed assertions caused by a variable value
equal to zero, as seen in the example with assert(i_test_z) and assert(f_test_z).

3 Defects

3-36

Check Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: ASSERT
Impact: High

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2013b

 Assertion

3-37

Atomic load and store sequence not atomic
Variable accessible between load and store operations

Description
Atomic load and store sequence not atomic occurs when you use these functions to
load, and then store an atomic variable.

• C functions:

• atomic_load()
• atomic_load_explicit()
• atomic_store()
• atomic_store_explicit()

• C++ functions:

• std::atomic_load()
• std::atomic_load_explicit()
• std::atomic_store()
• std::atomic_store_explicit()
• std::atomic::load()
• std::atomic::store()

A thread cannot interrupt an atomic load or an atomic store operation on a variable, but a
thread can interrupt a store, and then load sequence.

Risk
A thread can modify a variable between the load and store operations, resulting in a data
race condition.

3 Defects

3-38

Fix
To read, modify, and store a variable atomically, use a compound assignment operator
such as +=, atomic_compare_exchange() or atomic_fetch_*-family functions.

Examples

Loading Then Storing an Atomic Variable
#include <stdatomic.h>
#include <stdbool.h>

static atomic_bool flag = ATOMIC_VAR_INIT(false);

void init_flag(void)
{
 atomic_init(&flag, false);
}

void toggle_flag(void)
{
 bool temp_flag = atomic_load(&flag);
 temp_flag = !temp_flag;
 atomic_store(&flag, temp_flag);
}

bool get_flag(void)
{
 return atomic_load(&flag);
}

In this example, variable flag of type atomic_bool is referenced twice inside the
toggle_flag() function. The function loads the variable, negates its value, then stores
the new value back to the variable. If two threads call toggle_flag(), the second
thread can access flag between the load and store operations of the first thread. flag
can end up in an incorrect state.

One possible correction is to use a compound assignment operator to toggle the value of
flag. The C standard defines the operation by using ^= as atomic.

 Atomic load and store sequence not atomic

3-39

 #include <stdatomic.h>
#include <stdbool.h>

static atomic_bool flag = ATOMIC_VAR_INIT(false);

void toggle_flag(void)
{
 flag ^= 1;
}

bool get_flag(void)
{
 return flag;
}

Result Information
Group: Concurrency
Language: C | C++
Default: On
Command-Line Syntax: ATOMIC_VAR_SEQUENCE_NOT_ATOMIC
Impact: Medium
CERT C ID: CON40-C
CERT C++ ID: CON40-C

See Also
Atomic variable accessed twice in an expression | Data race | Data race
including atomic operations

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2018b

3 Defects

3-40

https://wiki.sei.cmu.edu/confluence/x/MtUxBQ
https://wiki.sei.cmu.edu/confluence/x/MtUxBQ

Atomic variable accessed twice in an
expression
Variable can be modified between accesses

Description
Atomic variable accessed twice in an expression occurs when C atomic types or C++
std::atomic class variables appear twice in an expression and there are:

• Two atomic read operations on the variable.
• An atomic read and a distinct atomic write operation on the variable.

The C standard defines certain operations on atomic variables that are thread safe and do
not cause data race conditions. Unlike individual operations, a pair of operations on the
same atomic variable in an expression is not thread safe.

Risk
A thread can modify the atomic variable between the pair of atomic operations, which can
result in a data race condition.

Fix
Do not reference an atomic variable twice in the same expression.

Examples

Referencing Atomic Variable Twice in an Expression
#include <stdatomic.h>

atomic_int n = ATOMIC_VAR_INIT(0);

 Atomic variable accessed twice in an expression

3-41

https://en.cppreference.com/w/c/atomic
https://en.cppreference.com/w/cpp/atomic/atomic
https://en.cppreference.com/w/cpp/atomic/atomic

int compute_sum(void)
{
 return n * (n + 1) / 2;
}

In this example, the global variable n is referenced twice in the return statement of
compute_sum(). The value of n can change between the two distinct read operations.
compute_sum() can return an incorrect value.

One possible correction is to pass the variable as a function argument n. The variable is
copied to memory and the read operations on the copy guarantee that compute_sum()
returns a correct result. If you pass a variable of type int instead of type atomic_int,
the correction is still valid.

#include <stdatomic.h>

int compute_sum(atomic_int n)
{
 return n * (n + 1) / 2;
}

Result Information
Group: Concurrency
Language: C | C++
Default: On
Command-Line Syntax: ATOMIC_VAR_ACCESS_TWICE
Impact: Medium
CERT C ID: CON40-C
CERT C++ ID: CON40-C

See Also
Atomic load and store sequence not atomic | Data race | Data race
including atomic operations

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

3 Defects

3-42

https://wiki.sei.cmu.edu/confluence/x/MtUxBQ
https://wiki.sei.cmu.edu/confluence/x/MtUxBQ

Introduced in R2018b

 Atomic variable accessed twice in an expression

3-43

Bad file access mode or status
Access mode argument of function in fopen or open group is invalid

Description
Bad file access mode or status occurs when you use functions in the fopen or open
group with invalid or incompatible file access modes, file creation flags, or file status flags
as arguments. For instance, for the open function, examples of valid:

• Access modes include O_RDONLY, O_WRONLY, and O_RDWR
• File creation flags include O_CREAT, O_EXCL, O_NOCTTY, and O_TRUNC.
• File status flags include O_APPEND, O_ASYNC, O_CLOEXEC, O_DIRECT, O_DIRECTORY,

O_LARGEFILE, O_NOATIME, O_NOFOLLOW, O_NONBLOCK, O_NDELAY, O_SHLOCK,
O_EXLOCK, O_FSYNC, O_SYNC and so on.

The defect can occur in the following situations.

Situation Risk Fix
You pass an empty or invalid
access mode to the fopen
function.

According to the ANSI C
standard, the valid access
modes for fopen are:

• r,r+
• w,w+
• a,a+
• rb, wb, ab
• r+b, w+b, a+b
• rb+, wb+, ab+

fopen has undefined
behavior for invalid access
modes.

Some implementations allow
extension of the access
mode such as:

• GNU: rb
+cmxe,ccs=utf

• Visual C++: a+t, where
t specifies a text mode.

However, your access mode
string must begin with one
of the valid sequences.

Pass a valid access mode to
fopen.

3 Defects

3-44

Situation Risk Fix
You pass the status flag
O_APPEND to the open
function without combining
it with either O_WRONLY or
O_RDWR.

O_APPEND indicates that
you intend to add new
content at the end of a file.
However, without O_WRONLY
or O_RDWR, you cannot write
to the file.

The open function does not
return -1 for this logical
error.

Pass either O_APPEND|
O_WRONLY or O_APPEND|
O_RDWR as access mode.

You pass the status flags
O_APPEND and O_TRUNC
together to the open
function.

O_APPEND indicates that
you intend to add new
content at the end of a file.
However, O_TRUNC indicates
that you intend to truncate
the file to zero. Therefore,
the two modes cannot
operate together.

The open function does not
return -1 for this logical
error.

Depending on what you
intend to do, pass one of the
two modes.

You pass the status flag
O_ASYNC to the open
function.

On certain implementations,
the mode O_ASYNC does not
enable signal-driven I/O
operations.

Use the fcntl(pathname,
F_SETFL, O_ASYNC);
instead.

Examples
Invalid Access Mode with fopen
#include <stdio.h>

void func(void) {
 FILE *file = fopen("data.txt", "rw");
 if(file!=NULL) {
 fputs("new data",file);

 Bad file access mode or status

3-45

 fclose(file);
 }
}

In this example, the access mode rw is invalid. Because r indicates that you open the file
for reading and w indicates that you create a new file for writing, the two access modes
are incompatible.

One possible correction is to use the access mode corresponding to what you intend to do.

#include <stdio.h>

void func(void) {
 FILE *file = fopen("data.txt", "w");
 if(file!=NULL) {
 fputs("new data",file);
 fclose(file);
 }
}

Result Information
Group: Programming
Language: C | C++
Default: Off
Command-Line Syntax: BAD_FILE_ACCESS_MODE_STATUS
Impact: Medium
CWE ID: 628, 686
CERT C ID: EXP37-C, FIO11-C
CERT C++ ID: EXP37-C

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

3 Defects

3-46

https://cwe.mitre.org/data/definitions/628.html
https://cwe.mitre.org/data/definitions/686.html
https://www.securecoding.cert.org/confluence/x/VQBc
https://www.securecoding.cert.org/confluence/x/swA1
https://wiki.sei.cmu.edu/confluence/x/49UxBQ

Introduced in R2015b

 Bad file access mode or status

3-47

Bad order of dropping privileges
Dropped higher elevated privileges before dropping lower elevated privileges

Description
Bad order of dropping privileges checks the order of privilege drops. If you drop
higher elevated privileges before dropping lower elevated privileges, Polyspace raises a
defect. For example dropping elevated primary group privileges before dropping elevated
ancillary group privileges.

Risk
If you drop privileges in the wrong order, you can potentially drop higher privileges that
you need to drop lower privileges. The incorrect order can mean, privileges are not
dropped, compromising the security of your program.

Fix
Respect this order of dropping elevated privileges:

• Drop (elevated) ancillary group privileges, then drop (elevated) primary group
privileges.

• Drop (elevated) primary group privileges, then drop (elevated) user privileges.

Examples

Dropping User Privileges First
#define _BSD_SOURCE
#include <sys/types.h>
#include <unistd.h>
#include <grp.h>
#include <stdlib.h>
#define fatal_error() abort()

3 Defects

3-48

static void sanitize_privilege_drop_check(uid_t olduid, gid_t oldgid)
{
 if (seteuid(olduid) != -1)
 {
 /* Privileges can be restored, handle error */
 fatal_error();
 }
 if (setegid(oldgid) != -1)
 {
 /* Privileges can be restored, handle error */
 fatal_error();
 }
}
void badprivilegedroporder(void) {
 uid_t
 newuid = getuid(),
 olduid = geteuid();
 gid_t
 newgid = getgid(),
 oldgid = getegid();

 if (setuid(newuid) == -1) {
 /* handle error condition */
 fatal_error();
 }
 if (setgid(newgid) == -1) {
 /* handle error condition */
 fatal_error();
 }
 if (olduid == 0) {
 /* drop ancillary groups IDs only possible for root */
 if (setgroups(1, &newgid) == -1) {
 /* handle error condition */
 fatal_error();
 }
 }

 sanitize_privilege_drop_check(olduid, oldgid);
}

In this example, there are two privilege drops made in the incorrect order. setgid
attempts to drop group privileges. However, setgid requires the user privileges, which
were dropped previously using setuid, to perform this function. After dropping group

 Bad order of dropping privileges

3-49

privileges, this function attempts to drop ancillary groups privileges by using setgroups.
This task requires the higher primary group privileges that were dropped with setgid.
At the end of this function, it is possible to regain group privileges because the order of
dropping privileges was incorrect.

One possible correction is to drop the lowest level privileges first. In this correction,
ancillary group privileges are dropped, then primary group privileges are dropped, and
finally user privileges are dropped.

#define _BSD_SOURCE
#include <sys/types.h>
#include <unistd.h>
#include <grp.h>
#include <stdlib.h>
#define fatal_error() abort()

static void sanitize_privilege_drop_check(uid_t olduid, gid_t oldgid)
{
 if (seteuid(olduid) != -1)
 {
 /* Privileges can be restored, handle error */
 fatal_error();
 }
 if (setegid(oldgid) != -1)
 {
 /* Privileges can be restored, handle error */
 fatal_error();
 }
}
void badprivilegedroporder(void) {
 uid_t
 newuid = getuid(),
 olduid = geteuid();
 gid_t
 newgid = getgid(),
 oldgid = getegid();

 if (olduid == 0) {
 /* drop ancillary groups IDs only possible for root */
 if (setgroups(1, &newgid) == -1) {
 /* handle error condition */
 fatal_error();
 }

3 Defects

3-50

 }
 if (setgid(getgid()) == -1) {
 /* handle error condition */
 fatal_error();
 }
 if (setuid(getuid()) == -1) {
 /* handle error condition */
 fatal_error();
 }

 sanitize_privilege_drop_check(olduid, oldgid);
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: BAD_PRIVILEGE_DROP_ORDER
Impact: High
CWE ID: 250, 696
CERT C ID: POS36-C
CERT C++ ID: POS36-C

See Also

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2016b

 Bad order of dropping privileges

3-51

https://cwe.mitre.org/data/definitions/250.html
https://cwe.mitre.org/data/definitions/696.html
https://www.securecoding.cert.org/confluence/x/dgL7
https://wiki.sei.cmu.edu/confluence/x/y9YxBQ

Base class assignment operator not called
Copy assignment operator does not call copy assignment operators of base subobjects

Description
Base class assignment operator not called occurs when a derived class copy
assignment operator does not call the copy assignment operator of its base class.

Risk
If this defect occurs, unless you are initializing the base class data members explicitly in
the derived class assignment operator, the operator initializes the members implicitly by
using the default constructor of the base class. Therefore, it is possible that the base class
data members do not get assigned the right values.

If users of your class expect your assignment operator to perform a complete assignment
between two objects, they can face unintended consequences.

Fix
Call the base class copy assignment operator from the derived class copy assignment
operator.

Even if the base class data members are not private, and you explicitly initialize the
base class data members in the derived class copy assignment operator, replace this
explicit initialization with a call to the base class copy assignment operator. Otherwise,
determine why you retain the explicit initialization.

Examples

Base Class Copy Assignment Operator Not Called
class Base0 {
public:

3 Defects

3-52

 Base0();
 virtual ~Base0();
 Base0& operator=(const Base0&);
private:
 int _i;
};

class Base1 {
public:
 Base1();
 virtual ~Base1();
 Base1& operator=(const Base1&);
private:
 int _i;
};

class Derived: public Base0, Base1 {
public:
 Derived();
 ~Derived();
 Derived& operator=(const Derived& d) {
 if (&d == this) return *this;
 Base0::operator=(d);
 _j = d._j;
 return *this;
 }
private:
 int _j;
};

In this example, the class Derived is derived from two classes Base0 and Base1. In the
copy assignment operator of Derived, only the copy assignment operator of Base0 is
called. The copy assignment operator of Base1 is not called.

The defect appears on the copy assignment operator of the derived class. Following are
some tips for navigating in the source code:

• To find the derived class definition, right-click the derived class name and select Go To
Definition.

• To find the base class definition, first navigate to the derived class definition. In the
derived class definition, right-click the base class name and select Go To Definition.

 Base class assignment operator not called

3-53

• To find the definition of the base class copy assignment operator, first navigate to the
base class definition. In the base class definition, right-click the operator name and
select Go To Definition.

If you want your copy assignment operator to perform a complete assignment, one
possible correction is to call the copy assignment operator of class Base1.

class Base0 {
public:
 Base0();
 virtual ~Base0();
 Base0& operator=(const Base0&);
private:
 int _i;
};

class Base1 {
public:
 Base1();
 virtual ~Base1();
 Base1& operator=(const Base1&);
private:
 int _i;
};

class Derived: public Base0, Base1 {
public:
 Derived();
 ~Derived();
 Derived& operator=(const Derived& d) {
 if (&d == this) return *this;
 Base0::operator=(d);
 Base1::operator=(d);
 _j = d._j;
 return *this;
 }
private:
 int _j;
};

3 Defects

3-54

Result Information
Group: Object oriented
Language: C++
Default: On
Command-Line Syntax: MISSING_BASE_ASSIGN_OP_CALL
Impact: High

See Also
Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Copy constructor not called in initialization list

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2015b

 Base class assignment operator not called

3-55

Base class destructor not virtual
Class cannot behave polymorphically for deletion of derived class objects

Description
Base class destructor not virtual occurs when a class has virtual functions but not a
virtual destructor.

Risk
The presence of virtual functions indicates that the class is intended for use as a base
class. However, if the class does not have a virtual destructor, it cannot behave
polymorphically for deletion of derived class objects.

If a pointer to this class refers to a derived class object, and you use the pointer to delete
the object, only the base class destructor is called. Additional resources allocated in the
derived class are not released and can cause a resource leak.

Fix
One possible fix is to always use a virtual destructor in a class that contains virtual
functions.

Examples
Base Class Destructor Not Virtual
class Base {
 public:
 Base(): _b(0) {};
 virtual void update() {_b += 1;};
 private:
 int _b;
};

3 Defects

3-56

class Derived: public Base {
 public:
 Derived(): _d(0) {};
 ~Derived() {_d = 0;};
 virtual void update() {_d += 1;};
 private:
 int _d;
};

In this example, the class Base does not have a virtual destructor. Therefore, if a
Base* pointer points to a Derived object that is allocated memory dynamically, and the
delete operation is performed on that Base* pointer, the Base destructor is called. The
memory allocated for the additional member _d is not released.

The defect appears on the base class definition. Following are some tips for navigating in
the source code:

• To find classes derived from the base class, right-click the base class name and select
Search For All References. Browse through each search result to find derived class
definitions.

• To find if you are using a pointer or reference to a base class to point to a derived class
object, right-click the base class name and select Search For All References. Browse
through search results that start with Base* or Base& to locate pointers or references
to the base class. You can then see if you are using a pointer or reference to point to a
derived class object.

One possible correction is to declare a virtual destructor for the class Base.

class Base {
 public:
 Base(): _b(0) {};
 virtual ~Base() {_b = 0;};
 virtual void update() {_b += 1;};
 private:
 int _b;
};

class Derived: public Base {
 public:
 Derived(): _d(0) {};
 ~Derived() {_d = 0;};
 virtual void update() {_d += 1;};

 Base class destructor not virtual

3-57

 private:
 int _d;
};

Result Information
Group: Object oriented
Language: C++
Default: On
Command-Line Syntax: DTOR_NOT_VIRTUAL
Impact: Medium
CERT C++ ID: OOP52-CPP

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

External Websites
CERT C++ OOP52-CPP

Introduced in R2015b

3 Defects

3-58

https://wiki.sei.cmu.edu/confluence/x/5Xs-BQ
https://www.securecoding.cert.org/confluence/x/UQBO

Bitwise and arithmetic operation on the
same data
Statement with mixed bitwise and arithmetic operations

Description
Bitwise and arithmetic operation on a same data detects statements with bitwise and
arithmetic operations on the same variable or expression.

Risk
Mixed bitwise and arithmetic operations do compile. However, the size of integer types
affects the result of these mixed operations. Mixed operations also reduce readability and
maintainability.

Fix
Separate bitwise and arithmetic operations, or use only one type of operation per
statement.

Examples

Shift and Addition
unsigned int bitwisearithmix()
{
 unsigned int var = 50;
 var += (var << 2) + 1;
 return var;
}

This example shows bitwise and arithmetic operations on the variable var. var is shifted
by two (bitwise), then increased by 1 and added to itself (arithmetic).

 Bitwise and arithmetic operation on the same data

3-59

You can reduce this expression to arithmetic-only operations: var + (var << 2) is
equivalent to var * 5.

unsigned int bitwisearithmix()
{
 unsigned int var = 50;
 var = var * 5 +1;
 return var;
}

Result Information
Group: Good Practice
Language: C | C++
Default: Off
Command-Line Syntax: BITWISE_ARITH_MIX
Impact: Low
CWE ID: 710
CERT C ID: INT14-C

See Also

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2016b

3 Defects

3-60

https://cwe.mitre.org/data/definitions/710.html
https://www.securecoding.cert.org/confluence/x/dgAV

Bitwise operation on negative value
Undefined behavior for bitwise operations on negative values

Description
Bitwise operation on negative value detects bitwise operators (>>, ^, |, ~, but, not,
&) used on signed integer variables with negative values.

Risk
If the value of the signed integer is negative, bitwise operation results can be unexpected
because:

• Bitwise operations on negative values are compiler-specific.
• Unexpected calculations can lead to additional vulnerabilities, such as buffer overflow.

Fix
When performing bitwise operations, use unsigned integers to avoid unexpected results.

Examples
Right-Shift of Negative Integer
#include <stdio.h>
#include <stdarg.h>

static void demo_sprintf(const char *format, ...)
{
 int rc;
 va_list ap;
 char buf[sizeof("256")];

 va_start(ap, format);
 rc = vsprintf(buf, format, ap);

 Bitwise operation on negative value

3-61

 if (rc == -1 || rc >= sizeof(buf)) {
 /* Handle error */
 }
 va_end(ap);
}

void bug_bitwiseneg()
{
 int stringify = 0x80000000;
 demo_sprintf("%u", stringify >> 24);
}

In this example, the statement demo_sprintf("%u", stringify >> 24) stops the
program unexpectedly. You expect the result of stringify >> 24 to be 0x80. However,
the actual result is 0xffffff80 because stringify is signed and negative. The sign bit
is also shifted.

By adding the unsigned keyword, stringify is not negative and the right-shift
operation gives the expected result of 0x80.

#include <stdio.h>
#include <stdarg.h>

static void demo_sprintf(const char *format, ...)
{
 int rc;
 va_list ap;
 char buf[sizeof("256")];

 va_start(ap, format);
 rc = vsprintf(buf, format, ap);
 if (rc == -1 || rc >= sizeof(buf)) {
 /* Handle error */
 }
 va_end(ap);
}

void corrected_bitwiseneg()
{
 unsigned int stringify = 0x80000000;
 demo_sprintf("%u", stringify >> 24);
}

3 Defects

3-62

Result Information
Group: Numerical
Language: C | C++
Default: Off
Command-Line Syntax: BITWISE_NEG
Impact: Medium
CWE ID: 682, 758
CERT C ID: INT13-C

See Also

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2016b

 Bitwise operation on negative value

3-63

https://cwe.mitre.org/data/definitions/682.html
https://cwe.mitre.org/data/definitions/758.html
https://www.securecoding.cert.org/confluence/x/BoAD

Blocking operation while holding lock
Task performs lengthy operation while holding a lock

Description
Blocking operation while holding lock occurs when a task (thread) performs a
potentially lengthy operation while holding a lock.

The checker considers calls to these functions as potentially lengthy:

• Functions that access a network such as recv
• System call functions such as fork, pipe and system
• Functions for I/O operations such as getchar and scanf
• File handling functions such as fopen, remove and lstat
• Directory manipulation functions such as mkdir and rmdir

The checker automatically detects certain primitives that hold and release a lock, for
instance, pthread_mutex_lock and pthread_mutex_unlock. For the full list of
primitives that are automatically detected, see “Auto-Detection of Thread Creation and
Critical Section in Polyspace”.

Risk
If a thread performs a lengthy operation when holding a lock, other threads that use the
lock have to wait for the lock to be available. As a result, system performance can slow
down or deadlocks can occur.

Fix
Perform the blocking operation before holding the lock or after releasing the lock.

Some functions detected by this checker can be called in a way that does not make them
potentially lengthy. For instance, the function recv can be called with the parameter
O_NONBLOCK which causes the call to fail if no message is available. When called with this
parameter, recv does not wait for a message to become available.

3 Defects

3-64

Examples

Network I/O Operations with recv While Holding Lock
#include <pthread.h>
#include <sys/socket.h>

pthread_mutexattr_t attr;
pthread_mutex_t mutex;

void thread_foo(void *ptr) {
 unsigned int num;
 int result;
 int sock;

 /* sock is a connected TCP socket */

 if ((result = pthread_mutex_lock(&mutex)) != 0) {
 /* Handle Error */
 }

 if ((result = recv(sock, (void *)&num, sizeof(unsigned int), 0)) < 0) {
 /* Handle Error */
 }

 /* ... */

 if ((result = pthread_mutex_unlock(&mutex)) != 0) {
 /* Handle Error */
 }
}

int main() {
 pthread_t thread;
 int result;

 if ((result = pthread_mutexattr_settype(
 &attr, PTHREAD_MUTEX_ERRORCHECK)) != 0) {
 /* Handle Error */
 }

 if ((result = pthread_mutex_init(&mutex, &attr)) != 0) {
 /* Handle Error */

 Blocking operation while holding lock

3-65

 }

 if (pthread_create(&thread, NULL,(void*(*)(void*))& thread_foo, NULL) != 0) {
 /* Handle Error */
 }

 /* ... */

 pthread_join(thread, NULL);

 if ((result = pthread_mutex_destroy(&mutex)) != 0) {
 /* Handle Error */
 }

 return 0;
}

In this example, in each thread created with pthread_create, the function thread_foo
performs a network I/O operation with recv after acquiring a lock with
pthread_mutex_lock. Other threads using the same lock variable mutex have to wait
for the operation to complete and the lock to become available.

One possible correction is to call recv before acquiring the lock.

#include <pthread.h>
#include <sys/socket.h>

pthread_mutexattr_t attr;
pthread_mutex_t mutex;

void thread_foo(void *ptr) {
 unsigned int num;
 int result;
 int sock;

 /* sock is a connected TCP socket */
 if ((result = recv(sock, (void *)&num, sizeof(unsigned int), 0)) < 0) {
 /* Handle Error */
 }

 if ((result = pthread_mutex_lock(&mutex)) != 0) {
 /* Handle Error */
 }

3 Defects

3-66

 /* ... */

 if ((result = pthread_mutex_unlock(&mutex)) != 0) {
 /* Handle Error */
 }
}

int main() {
 pthread_t thread;
 int result;

 if ((result = pthread_mutexattr_settype(
 &attr, PTHREAD_MUTEX_ERRORCHECK)) != 0) {
 /* Handle Error */
 }

 if ((result = pthread_mutex_init(&mutex, &attr)) != 0) {
 /* Handle Error */
 }

 if (pthread_create(&thread, NULL,(void*(*)(void*))& thread_foo, NULL) != 0) {
 /* Handle Error */
 }

 /* ... */

 pthread_join(thread, NULL);

 if ((result = pthread_mutex_destroy(&mutex)) != 0) {
 /* Handle Error */
 }

 return 0;
}

Result Information
Group: Concurrency
Language: C | C++
Default: Off
Command-Line Syntax: BLOCKING_WHILE_LOCKED
Impact: Low
CWE ID: 667

 Blocking operation while holding lock

3-67

https://cwe.mitre.org/data/definitions/667.html

CERT C ID: CON05-C, POS52-C
CERT C++ ID: POS52-C

See Also

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2018b

3 Defects

3-68

https://wiki.sei.cmu.edu/confluence/x/bdUxBQ
https://wiki.sei.cmu.edu/confluence/x/mdUxBQ
https://wiki.sei.cmu.edu/confluence/x/y9YxBQ

Buffer overflow from incorrect string format
specifier
String format specifier causes buffer argument of standard library functions to overflow

Description
Buffer overflow from incorrect string format specifier occurs when the format
specifier argument for functions such as sscanf leads to an overflow or underflow in the
memory buffer argument.

Risk
If the format specifier specifies a precision that is greater than the memory buffer size, an
overflow occurs. Overflows can cause unexpected behavior such as memory corruption.

Fix
Use a format specifier that is compatible with the memory buffer size.

Examples

Memory Buffer Overflow
#include <stdio.h>

void func (char *str[]) {
 char buf[32];
 sscanf(str[1], "%33c", buf);
}

In this example, buf can contain 32 char elements. Therefore, the format specifier %33c
causes a buffer overflow.

 Buffer overflow from incorrect string format specifier

3-69

One possible correction is to use a smaller precision in the format specifier.

#include <stdio.h>

void func (char *str[]) {
 char buf[32];
 sscanf(str[1], "%32c", buf);
}

Result Information
Group: Static memory
Language: C | C++
Default: On
Command-Line Syntax: STR_FORMAT_BUFFER_OVERFLOW
Impact: High
CWE ID: 124, 125, 126, 127
CERT C ID: ARR38-C, STR03-C, STR31-C
CERT C++ ID: ARR38-C, STR31-C, STR50-CPP
ISO/IEC TS 17961 ID: taintformatio

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2015b

3 Defects

3-70

https://cwe.mitre.org/data/definitions/124.html
https://cwe.mitre.org/data/definitions/125.html
https://cwe.mitre.org/data/definitions/126.html
https://cwe.mitre.org/data/definitions/127.html
https://www.securecoding.cert.org/confluence/x/EYCGB
https://www.securecoding.cert.org/confluence/x/LQY
https://www.securecoding.cert.org/confluence/x/KAE
https://wiki.sei.cmu.edu/confluence/x/W9UxBQ
https://wiki.sei.cmu.edu/confluence/x/sNUxBQ
https://wiki.sei.cmu.edu/confluence/x/i3w-BQ

Call through non-prototyped function
pointer
Function pointer declared without its type or number of parameters causes unexpected
behavior

Description
Call through non-prototyped function pointer detects a call to a function through a
pointer without a prototype. A function prototype specifies the type and number of
parameters.

Risk
Arguments passed to a function without a prototype might not match the number and
type of parameters of the function definition, which can cause undefined behavior. If the
parameters are restricted to a subset of their type domain, arguments from untrusted
sources can trigger vulnerabilities in the called function.

Fix
Before calling the function through a pointer, provide a function prototype.

Examples
Argument Does Not Match Parameter Restriction
#include <stdio.h>
#include <limits.h>
#define SIZE2 2

typedef void (*func_ptr)();
extern int getchar_wrapper(void);
extern void restricted_int_sink(int i);
/* Integer value restricted to

 Call through non-prototyped function pointer

3-71

range [-1, 255] */
extern void restricted_float_sink(double i);
/* Double value restricted to > 0.0 */

func_ptr generic_callback[SIZE2] =
{
 (func_ptr)restricted_int_sink,
 (func_ptr)restricted_float_sink
};

void func(void)
{
 int ic;
 ic = getchar_wrapper();
 /* Wrong index used for generic_callback.
 Negative 'int' passed to restricted_float_sink. */
 (*generic_callback[1])(ic);
}

In this example, a call through func_ptr passes ic as an argument to function
generic_callback[1]. The type of ic can have negative values, while the parameter of
generic_callback[1] is restricted to float values greater than 0.0. Typically,
compilers and static analysis tools cannot perform type checking when you do not provide
a pointer prototype.

Pass the argument ic to a function with a parameter of type int, by using a properly
prototyped pointer.

#include <stdio.h>
#include <limits.h>
#define SIZE2 2

typedef void (*func_ptr_proto)(int);
extern int getchar_wrapper(void);
extern void restricted_int_sink(int i);
/* Integer value restricted to
range [-1, 255] */
extern void restricted_float_sink(double i);
/* Double value restricted to > 0.0 */

3 Defects

3-72

func_ptr_proto generic_callback[SIZE2] =
{
 (func_ptr_proto)restricted_int_sink,
 (func_ptr_proto)restricted_float_sink
};

void func(void)
{
 int ic;
 ic = getchar_wrapper();
 /* ic passed to function through
properly prototyped pointer. */
 (*generic_callback[0])(ic);
}

Result Information
Group: Programming
Language: C
Default: On
Command-Line Syntax: UNPROTOTYPED_FUNC_CALL
Impact: Medium
ISO/IEC TS 17961 ID: taintnoproto

See Also
Declaration mismatch | Unreliable cast of function pointer

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2017b

 Call through non-prototyped function pointer

3-73

Call to memset with unintended value
memset or wmemset used with possibly incorrect arguments

Description
Call to memset with unintended value occurs when Polyspace Bug Finder detects a
use of the memset or wmemset function with possibly incorrect arguments.

void *memset (void *ptr, int value, size_t num) fills the first num bytes of
the memory block that ptr points to with the specified value. If the argument value is
incorrect, the memory block is initialized with an unintended value.

The unintended initialization can occur in the following cases.

Issue Risk Possible Fix
The second argument is '0'
instead of 0 or '\0'.

The ASCII value of
character '0' is 48
(decimal), 0x30
(hexadecimal), 069 (octal)
but not 0 (or '\0') .

If you want to initialize with
'0', use one of the ASCII
values. Otherwise, use 0 or
'\0'.

The second and third
arguments are probably
reversed. For instance, the
third argument is a literal
and the second argument is
not a literal.

If the order is reversed, a
memory block of unintended
size is initialized with
incorrect arguments.

Reverse the order of the
arguments.

3 Defects

3-74

Issue Risk Possible Fix
The second argument
cannot be represented in a
byte.

If the second argument
cannot be represented in a
byte, and you expect each
byte of a memory block to
be filled with that argument,
the initialization does not
occur as intended.

Apply a bit mask to the
argument to produce a
wrapped or truncated result
that can be represented in a
byte. When you apply a bit
mask, make sure that it
produces an expected
result.

For instance, replace
memset(a, -13,
sizeof(a)) with
memset(a, (-13) &
0xFF, sizeof(a)).

Examples

Value Cannot Be Represented in a Byte
#include <string.h>

#define SIZE 32
void func(void) {
 char buf[SIZE];
 int c = -2;
 memset(buf, (char)c, sizeof(buf));
}

In this example, (char)c cannot be represented in a byte.

One possible correction is to apply a cast so that the result can be represented in a byte.
However, check that the result of the cast is an acceptable initialization value.

#include <string.h>

#define SIZE 32
void func(void) {
 char buf[SIZE];

 Call to memset with unintended value

3-75

 int c = -2;
 memset(buf, (unsigned char)c, sizeof(buf));
}

Result Information
Group: Programming
Language: C | C++
Default: Off
Command-Line Syntax: MEMSET_INVALID_VALUE
Impact: Low
CWE ID: 665, 683
CERT C ID: INT31-C
CERT C++ ID: INT31-C

See Also
Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Use of memset with size argument zero

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2015b

3 Defects

3-76

https://cwe.mitre.org/data/definitions/665.html
https://cwe.mitre.org/data/definitions/683.html
https://www.securecoding.cert.org/confluence/x/RQE
https://wiki.sei.cmu.edu/confluence/x/U9YxBQ

Character value absorbed into EOF
Data type conversion makes a valid character value same as End-of-File (EOF)

Description
Character value absorbed into EOF occurs when you perform a data type conversion
that makes a valid character value indistinguishable from EOF (End-of-File). Bug Finder
flags the defect in one of the following situations:

• End-of-File: You perform a data type conversion such as from int to char that
converts a non-EOF character value into EOF.

char ch = (char)getchar()

You then compare the result with EOF.

if((int)ch == EOF)

The conversion can be explicit or implicit.
• Wide End-of-File: You perform a data type conversion that can convert a non-WEOF

wide character value into WEOF, and then compare the result with WEOF.

Risk
The data type char cannot hold the value EOF that indicates the end of a file. Functions
such as getchar have return type int to accommodate EOF. If you convert from int to
char, the values UCHAR_MAX (a valid character value) and EOF get converted to the same
value -1 and become indistinguishable from each other. When you compare the result of
this conversion with EOF, the comparison can lead to false detection of EOF. This rationale
also applies to wide character values and WEOF.

Fix
Perform the comparison with EOF or WEOF before conversion.

 Character value absorbed into EOF

3-77

Examples

Return Value of getchar Converted to char
#include <stdio.h>
#include <stdlib.h>
#define fatal_error() abort()

char func(void)
{
 char ch;
 ch = getchar();
 if (EOF == (int)ch) {
 fatal_error();
 }
 return ch;
}

In this example, the return value of getchar is implicitly converted to char. If getchar
returns UCHAR_MAX, it is converted to -1, which is indistinguishable from EOF. When you
compare with EOF later, it can lead to a false positive.

One possible correction is to first perform the comparison with EOF, and then convert
from int to char.

#include <stdio.h>
#include <stdlib.h>
#define fatal_error() abort()

char func(void)
{
 int i;
 i = getchar();
 if (EOF == i) {
 fatal_error();
 }
 else {
 return (char)i;
 }
}

3 Defects

3-78

Result Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: CHAR_EOF_CONFUSED
Impact: High
CWE ID: 704
CERT C ID: FIO34-C
CERT C++ ID: FIO34-C
ISO/IEC TS 17961 ID: chreof

See Also
Polyspace Results
Errno not checked | Invalid use of standard library integer routine |
Misuse of sign-extended character value | Returned value of a
sensitive function not checked

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2017a

 Character value absorbed into EOF

3-79

https://cwe.mitre.org/data/definitions/704.html
https://www.securecoding.cert.org/confluence/x/dwGKBw
https://wiki.sei.cmu.edu/confluence/x/TNUxBQ

Closing a previously closed resource
Function closes a previously closed stream

Description
Closing a previously closed resource occurs when a function attempts to close a
stream that was closed earlier in your code and not reopened later.

Risk
The standard states that the value of a FILE* pointer is indeterminate after you close the
stream associated with it. Performing the close operation on the FILE* pointer again can
cause unwanted behavior.

Fix
Remove the redundant close operation.

Examples

Closing Previously Closed Resource
#include <stdio.h>

void func(char* data) {
 FILE* fp = fopen("file.txt", "w");
 if(fp!=NULL) {
 if(data)
 fputc(*data,fp);
 else
 fclose(fp);
 }
 fclose(fp);
}

3 Defects

3-80

In this example, if fp is not NULL and data is NULL, the fclose operation occurs on fp
twice in succession.

One possible correction is to remove the last fclose operation. To avoid a resource leak,
you must also place an fclose operation in the if(data) block.

#include <stdio.h>

void func(char* data) {
 FILE* fp = fopen("file.txt", "w");
 if(fp!=NULL) {
 if(data) {
 fputc(*data,fp);
 fclose(fp);
 }
 else
 fclose(fp);
 }
}

Result Information
Group: Resource management
Language: C | C++
Default: On
Command-Line Syntax: DOUBLE_RESOURCE_CLOSE
Impact: High
CWE ID: 672, 826, 910
CERT C ID: FIO46-C
CERT C++ ID: FIO46-C

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

 Closing a previously closed resource

3-81

https://cwe.mitre.org/data/definitions/672.html
https://cwe.mitre.org/data/definitions/826.html
https://cwe.mitre.org/data/definitions/910.html
https://www.securecoding.cert.org/confluence/x/KAGQBw
https://wiki.sei.cmu.edu/confluence/x/QdUxBQ

Introduced in R2015b

3 Defects

3-82

Code deactivated by constant false condition
Code segment deactivated by #if 0 directive or if(0) condition

Description
Code deactivated by constant false condition occurs when a block of code is
deactivated using a #if 0 directive or if(0) condition.

Examples

Code Deactivated by Constant False Condition Error
#include<stdio.h>
int Trim_Value(int* Arr,int Size,int Cutoff)
{
 int Count=0;

 for(int i=0;i < Size;i++){
 if(Arr[i]>Cutoff){
 Arr[i]=Cutoff;
 Count++;
 }
 }

 #if 0
 /* Defect: Code Segment Deactivated */

 if(Count==0){
 printf("Values less than cutoff.");
 }
 #endif

 return Count;
}

In the preceding code, the printf statement is placed within a #if #endif directive.
The software treats the portion within the directive as code comments and not compiled.

 Code deactivated by constant false condition

3-83

Unless you intended to deactivate the printf statement, one possible correction is to
reactivate the block of code in the #if #endif directive. To reactivate the block, change
#if 0 to #if 1.

#include<stdio.h>
int Trim_Value(int* Arr,int Size,int Cutoff)
{
 int Count=0;

 for(int i=0;i < Size;i++)
 {
 if(Arr[i]>Cutoff)
 {
 Arr[i]=Cutoff;
 Count++;
 }
 }

 /* Fix: Replace #if 0 by #if 1 */
 #if 1
 if(Count==0)
 {
 printf("Values less than cutoff.");
 }
 #endif

 return Count;
}

Check Information
Group: Data flow
Language: C | C++
Default: off
Command-Line Syntax: DEACTIVATED_CODE
Impact: Low

3 Defects

3-84

See Also
Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Dead code | Unreachable code | Useless if

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2013b

 Code deactivated by constant false condition

3-85

Command executed from externally
controlled path
Path argument from an unsecure source

Description
Command executed from externally controlled path checks the path of commands
that the application controls. If the path of a command is from or constructed from
external sources, Bug Finder flags the command function.

Risk
An attacker can:

• Change the command that the program executes, possibly to a command that only the
attack can control.

• Change the environment in which the command executes, by which the attacker
controls what the command means and does.

Fix
Before calling the command, validate the path to make sure that it is the intended
location.

Examples

Executing Path from Environment Variable
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

enum {

3 Defects

3-86

 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};

void bug_taintedpathcmd() {
 char cmd[SIZE128] = "";
 char* userpath = getenv("MYAPP_PATH");

 strncpy(cmd, userpath, SIZE100);
 strcat(cmd, "/ls *");
 /* Launching command */
 system(cmd);
}

This example obtains a path from an environment variable MYAPP_PATH. system runs a
command from that path without checking the value of the path. If the path is not the
intended path, your program executes in the wrong location.

One possible correction is to use a list of allowed paths to match against the environment
variable path.

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};

/* Function to sanitize a string */
int sanitize_str(char* s, size_t n) {
 int res = 0;
 /* String is ok if */
 if (s && n>0 && n<SIZE128) {
 /* - string is not null */
 /* - string has a positive and limited size */
 s[n-1] = '\0'; /* Add a security \0 char at end of string */
 /* Tainted pointer detected above, used as "firewall" */
 res = 1;
 }
 return res;

 Command executed from externally controlled path

3-87

}

/* Authorized path ids */
enum { PATH0=1, PATH1, PATH2 };

void taintedpathcmd() {
 char cmd[SIZE128] = "";

 char* userpathid = getenv("MYAPP_PATH_ID");
 if (sanitize_str(userpathid, SIZE100)) {
 int pathid = atoi(userpathid);

 char path[SIZE128] = "";
 switch(pathid) {
 case PATH0:
 strcpy(path, "/usr/local/my_app0");
 break;
 case PATH1:
 strcpy(path, "/usr/local/my_app1");
 break;
 case PATH2:
 strcpy(path, "/usr/local/my_app2");
 break;
 default:
 /* do nothing */
 break;
 }
 if (strlen(path)>0) {
 strncpy(cmd, path, SIZE100);
 strcat(cmd, "/ls *");
 system(cmd);
 }
 }
}

Result Information
Group: Tainted Data
Language: C | C++
Default: Off
Command-Line Syntax: TAINTED_PATH_CMD
Impact: Medium

3 Defects

3-88

CWE ID: 114, 426
CERT C ID: API00-C, ENV33-C, STR02-C
CERT C++ ID: ENV33-C
ISO/IEC TS 17961 ID: syscall

See Also
Execution of externally controlled command | Use of externally
controlled environment variable | Host change using externally
controlled elements | Library loaded from externally controlled path

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2015b

 Command executed from externally controlled path

3-89

https://cwe.mitre.org/data/definitions/114.html
https://cwe.mitre.org/data/definitions/426.html
https://www.securecoding.cert.org/confluence/x/egAV
https://www.securecoding.cert.org/confluence/x/1IAg
https://www.securecoding.cert.org/confluence/x/-AY
https://wiki.sei.cmu.edu/confluence/x/MdYxBQ

Constant block cipher initialization vector
Initialization vector is constant instead of randomized

Description
Constant block cipher initialization vector occurs when you use a constant for the
initialization vector (IV) during encryption.

Risk
Using a constant IV is equivalent to not using an IV. Your encrypted data is vulnerable to
dictionary attacks.

Block ciphers break your data into blocks of fixed size. Block cipher modes such as CBC
(Cipher Block Chaining) protect against dictionary attacks by XOR-ing each block with the
encrypted output from the previous block. To protect the first block, these modes use a
random initialization vector (IV). If you use a constant IV to encrypt multiple data streams
that have a common beginning, your data becomes vulnerable to dictionary attacks.

Fix
Produce a random IV by using a strong random number generator.

For a list of random number generators that are cryptographically weak, see
Vulnerable pseudo-random number generator.

Examples

Constants Used for Initialization Vector

#include <openssl/evp.h>
#include <stdlib.h>

3 Defects

3-90

#define SIZE16 16

/* Using the cryptographic routines */

int func(EVP_CIPHER_CTX *ctx, unsigned char *key){
 unsigned char iv[SIZE16] = {'1', '2', '3', '4','5','6','b','8','9',
 '1','2','3','4','5','6','7'};
 return EVP_CipherInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv, 1);
}

In this example, the initialization vector iv has constants only. The constant initialization
vector makes your cipher vulnerable to dictionary attacks.

One possible correction is to use a strong random number generator to produce the
initialization vector. The corrected code here uses the function RAND_bytes declared in
openssl/rand.h.

#include <openssl/evp.h>
#include <openssl/rand.h>
#include <stdlib.h>
#define SIZE16 16

/* Using the cryptographic routines */

int func(EVP_CIPHER_CTX *ctx, unsigned char *key){
 unsigned char iv[SIZE16];
 RAND_bytes(iv, 16);
 return EVP_CipherInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv, 1);
}

Result Information
Group: Cryptography
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_CIPHER_CONSTANT_IV
Impact: Medium
CWE ID: 310, 326, 329
CERT C ID: MSC18-C

 Constant block cipher initialization vector

3-91

https://cwe.mitre.org/data/definitions/310.html
https://cwe.mitre.org/data/definitions/326.html
https://cwe.mitre.org/data/definitions/329.html
https://www.securecoding.cert.org/confluence/x/vQFqAQ

See Also

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2017a

3 Defects

3-92

Constant cipher key
Encryption or decryption key is constant instead of randomized

Description
Constant cipher key occurs when you use a constant for the encryption or decryption
key.

Risk
If you use a constant for the encryption or decryption key, an attacker can retrieve your
key easily.

You use a key to encrypt and later decrypt your data. If a key is easily retrieved, data
encrypted using that key is not secure.

Fix
Produce a random key by using a strong random number generator.

For a list of random number generators that are cryptographically weak, see
Vulnerable pseudo-random number generator.

Examples

Constants Used for Key

#include <openssl/evp.h>
#include <stdlib.h>
#define SIZE16 16

int func(EVP_CIPHER_CTX *ctx, unsigned char *iv){
 unsigned char key[SIZE16] = {'1', '2', '3', '4','5','6','b','8','9',

 Constant cipher key

3-93

 '1','2','3','4','5','6','7'};
 return EVP_CipherInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv, 1);
}

In this example, the cipher key, key, has constants only. An attacker can easily retrieve a
constant key.

Use a strong random number generator to produce the cipher key. The corrected code
here uses the function RAND_bytes declared in openssl/rand.h.

#include <openssl/evp.h>
#include <openssl/rand.h>
#include <stdlib.h>
#define SIZE16 16

int func(EVP_CIPHER_CTX *ctx, unsigned char *iv){
 unsigned char key[SIZE16];
 RAND_bytes(key, 16);
 return EVP_CipherInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv, 1);
}

Result Information
Group: Cryptography
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_CIPHER_CONSTANT_KEY
Impact: Medium
CWE ID: 310, 320, 321, 326, 522
CERT C ID: MSC18-C

See Also

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

3 Defects

3-94

https://cwe.mitre.org/data/definitions/310.html
https://cwe.mitre.org/data/definitions/320.html
https://cwe.mitre.org/data/definitions/321.html
https://cwe.mitre.org/data/definitions/326.html
https://cwe.mitre.org/data/definitions/522.html
https://www.securecoding.cert.org/confluence/x/vQFqAQ

Introduced in R2017a

 Constant cipher key

3-95

Context initialized incorrectly for
cryptographic operation
Context used for public key cryptography operation is initialized for a different operation

Description
Context initialized incorrectly for cryptographic operation occurs when you
initialize an EVP_PKEY_CTX object for a specific public key cryptography operation but
use the object for a different operation.

For instance, you initialize the context for encryption.

ret = EVP_PKEY_encrypt_init(ctx);

However, you use the context for decryption without reinitializing the context.

ret = EVP_PKEY_decrypt(ctx, out, &out_len, in, in_len);

The checker detects if the context object used in these functions has been initialized by
using the corresponding initialization functions: EVP_PKEY_paramgen,
EVP_PKEY_keygen, EVP_PKEY_encrypt, EVP_PKEY_verify,
EVP_PKEY_verify_recover,EVP_PKEY_decrypt, EVP_PKEY_sign,
EVP_PKEY_derive,and EVP_PKEY_derive_set_peer.

Risk
Mixing up different operations on the same context can lead to obscure code. It is difficult
to determine at a glance whether the current object is used for encryption, decryption,
signature, or another operation. The mixup can also lead to a failure in the operation or
unexpected ciphertext.

Fix
After you set up a context for a certain family of operations, use the context for only that
family of operations.For instance, use these pairs of functions for initialization and usage
of the EVP_PKEY_CTX context object.

3 Defects

3-96

• For encryption with EVP_PKEY_encrypt, initialize the context with
EVP_PKEY_encrypt_init.

• For signature verification with EVP_PKEY_verify, initialize the context with
EVP_PKEY_verify_init.

• For key generation with EVP_PKEY_keygen, initialize the context with
EVP_PKEY_keygen_init.

If you want to reuse an existing context object for a different family of operations,
reinitialize the context.

Examples

Encryption Using Context Initialized for Decryption

#include <openssl/evp.h>

#define fatal_error() exit(-1)

int ret;
unsigned char *out_buf10;
size_t out_len10;
int func(unsigned char *src, size_t len, EVP_PKEY_CTX *ctx){
 if (ctx == NULL) fatal_error();

 ret = EVP_PKEY_decrypt_init(ctx);
 if (ret <= 0) fatal_error();
 return EVP_PKEY_encrypt(ctx, out_buf10, &out_len10, src, len);
}

In this example, the context is initialized for decryption but used for encryption.

One possible correction is to initialize the object for encryption.

#include <openssl/evp.h>

#define fatal_error() exit(-1)

int ret;

 Context initialized incorrectly for cryptographic operation

3-97

unsigned char *out_buf10;
size_t out_len10;
int func(unsigned char *src, size_t len, EVP_PKEY_CTX *ctx){
 if (ctx == NULL) fatal_error();

 ret = EVP_PKEY_encrypt_init(ctx);
 if (ret <= 0) fatal_error();
 return EVP_PKEY_encrypt(ctx, out_buf10, &out_len10, src, len);
}

Result Information
Group: Cryptography
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_PKEY_INCORRECT_INIT
Impact: Medium
CWE ID: 310, 325, 372, 573, 664

See Also
Incorrect key for cryptographic algorithm | Missing parameters for key
generation | Missing data for encryption, decryption or signing
operation | Missing peer key | Missing private key | Missing public key |
Nonsecure parameters for key generation

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2018a

3 Defects

3-98

https://cwe.mitre.org/data/definitions/310.html
https://cwe.mitre.org/data/definitions/325.html
https://cwe.mitre.org/data/definitions/372.html
https://cwe.mitre.org/data/definitions/573.html
https://cwe.mitre.org/data/definitions/664.html

Context initialized incorrectly for digest
operation
Context used for digest operation is initialized for a different digest operation

Description
Context initialized incorrectly for digest operation occurs when you initialize an
EVP_MD_CTX context object for a specific digest operation but use the context for a
different operation.

For instance, you initialize the context for creating a message digest only.

ret = EVP_DigestInit(ctx, EVP_sha256())

However, you perform a final step for signing:

ret = EVP_SignFinal(&ctx, out, &out_len, pkey);

The error is shown only if the final step is not consistent with the initialization of the
context. If the intermediate update steps are inconsistent, it does not trigger an error
because the intermediate steps do not depend on the nature of the operation. For
instance, EVP_DigestUpdate works identically to EVP_SignUpdate.

Risk
Mixing up different operations on the same context can lead to obscure code. It is difficult
to determine at a glance whether the current object is used for message digest creation,
signing, or verification. The mixup can also lead to a failure in the operation or
unexpected message digest.

Fix
After you set up a context for a certain family of operations, use the context for only that
family of operations. For instance, use these pairs of functions for initialization and final
steps.

 Context initialized incorrectly for digest operation

3-99

• EVP_DigestInit : EVP_DigestFinal
• EVP_DigestInit_ex : EVP_DigestFinal_ex
• EVP_DigestSignInit : EVP_DigestSignFinal

If you want to reuse an existing context object for a different family of operations,
reinitialize the context.

Examples

Inconsistent Initial and Final Digest Operation

#include <openssl/evp.h>

#define fatal_error() exit(-1)

int ret;
unsigned char *out_buf16;
unsigned int out_len16;

void func(unsigned char *src, size_t len){
 EVP_MD_CTX* ctx = EVP_MD_CTX_create();

 ret = EVP_SignInit_ex(ctx, EVP_sha256(), NULL);
 if (ret != 1) fatal_error();

 ret = EVP_SignUpdate(ctx, src, len);
 if (ret != 1) fatal_error();

 ret = EVP_DigestSignFinal(ctx, out_buf16, (size_t*) out_len16);

 if (ret != 1) fatal_error();
}

In this example, the context object is initialized for signing only with EVP_SignInit but
the final step attempts to create a signed digest with EVP_DigestSignFinal.

One possible correction is to use the context object for signing only. Change the final step
to EVP_SignFinal in keeping with the initialization step.

3 Defects

3-100

#include <openssl/evp.h>

#define fatal_error() exit(-1)

int ret;
unsigned char *out_buf16;
unsigned int out_len16;

void corrected_cryptomdbadfunction(unsigned char *src, size_t len, EVP_PKEY* pkey){
 EVP_MD_CTX* ctx = EVP_MD_CTX_create();

 ret = EVP_SignInit_ex(ctx, EVP_sha256(), NULL);
 if (ret != 1) fatal_error();

 ret = EVP_SignUpdate(ctx, src, len);
 if (ret != 1) fatal_error();

 ret = EVP_SignFinal(ctx, out_buf16, &out_len16, pkey);
 if (ret != 1) fatal_error();
}

Result Information
Group: Cryptography
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_MD_BAD_FUNCTION
Impact: Medium
CWE ID: 310, 353, 354, 372, 573, 664

See Also
Nonsecure hash algorithm

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2018a

 Context initialized incorrectly for digest operation

3-101

https://cwe.mitre.org/data/definitions/310.html
https://cwe.mitre.org/data/definitions/353.html
https://cwe.mitre.org/data/definitions/354.html
https://cwe.mitre.org/data/definitions/372.html
https://cwe.mitre.org/data/definitions/573.html
https://cwe.mitre.org/data/definitions/664.html

Copy constructor not called in initialization
list
Copy constructor does not call copy constructors of some members or base classes

Description
Copy constructor not called in initialization list occurs when the copy constructor of
a class does not call the copy constructor of the following in its initialization list:

• One or more of its members.
• Its base classes when applicable.

The defect occurs even when a base class constructor is called instead of the base
class copy constructor.

Risk
The calls to the copy constructors can be done only from the initialization list. If the calls
are missing, it is possible that an object is only partially copied.

• If the copy constructor of a member is not called, it is possible that the member is not
copied.

• If the copy constructor of a base class is not called, it is possible that the base class
members are not copied.

Fix
If you want your copy constructor to perform a complete copy, call the copy constructor of
all members and all base classes in its initialization list.

3 Defects

3-102

Examples

Base Class Copy Constructor Not Called
class Base {
public:
 Base();
 Base(int);
 Base(const Base&);
 virtual ~Base();
private:
 int ib;
};

class Derived:public Base {
public:
 Derived();
 ~Derived();
 Derived(const Derived& d): Base(), i(d.i) { }
private:
 int i;
};

In this example, the copy constructor of class Derived calls the default constructor, but
not the copy constructor of class Base.

The defect appears on the : symbol in the copy constructor definition. Following are some
tips for navigating in the source code:

• To navigate to the class definition, right-click a member that is initialized in the
constructor. Select Go To Definition. In the class definition, you see the class
members, including those members whose copy constructors are not called.

• To navigate to a base class definition, first navigate to the derived class definition. In
the derived class definition, where the derived class inherits from a base class, right-
click the base class name and select Go To Definition.

One possible correction is to call the copy constructor of class Base from the initialization
list of the Derived class copy constructor.

class Base {
public:

 Copy constructor not called in initialization list

3-103

 Base();
 Base(int);
 Base(const Base&);
 virtual ~Base();
private:
 int ib;
};

class Derived:public Base {
public:
 Derived();
 ~Derived();
 Derived(const Derived& d): Base(d), i(d.i) { }
private:
 int i;
};

Result Information
Group: Object oriented
Language: C++
Default: On
Command-Line Syntax: MISSING_COPY_CTOR_CALL
Impact: High

See Also
Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Base class assignment operator not called

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2015b

3 Defects

3-104

Copy operation modifying source operand
Copy operation modifies data member of source object

Description
Copy operation modifying source operand occurs when a copy constructor or copy
assignment operator modifies a mutable data member of its source operand.

For instance, this copy constructor A modifies the data member m of its source operand
other:

class A {
 mutable int m;

public:
 ...
 A(const A &other) : m(other.m) {
 other.m = 0; //Modification of source
 }
}

Risk
A copy operation with a copy constructor (or copy assignment operator):

className new_object = old_object; //Calls copy constructor of className

copies its source operand old_object to its destination operand new_object. After the
operation, you expect the destination operand to be a copy of the unmodified source
operand. If the source operand is modified during copy, this assumption is violated.

Fix
Do not modify the source operand in the copy operation.

If you are modifying the source operand in a copy constructor to implement a move
operation, use a move constructor instead. Move constructors are defined in the C++11
standard and later.

 Copy operation modifying source operand

3-105

Examples
Copy Constructor Modifying Source

#include <algorithm>
#include <vector>

class A {
 mutable int m;

public:
 A() : m(0) {}
 explicit A(int m) : m(m) {}

 A(const A &other) : m(other.m) {
 other.m = 0;
 }

 A& operator=(const A &other) {
 if (&other != this) {
 m = other.m;
 other.m = 0;
 }
 return *this;
 }

 int get_m() const { return m; }
};

void f() {
 std::vector<A> v{10};
 A obj(12);
 std::fill(v.begin(), v.end(), obj);
}

In this example, a vector of ten objects of type A is created. The std::fill function
copies an object of type A, which has a data member with value 12, to each of the ten
objects. After this operation, you might expect that all ten objects in the vector have a
data member with value 12.

However, the first copy modifies the data member of the source to the value 0. The
remaining nine copies copy this value. After the std::fill call, the first object in the

3 Defects

3-106

vector has a data member with value 12 and the remaining objects have data members
with value 0.

Do not modify data members of the source operand in a copy constructor or copy
assignment operator. If you want your class to have a move operation, use a move
constructor instead of a copy constructor.

In this corrected example, the copy constructor and copy assignment operator of class A
do not modify the data member m. A separate move constructor modifies the source
operand.

#include <algorithm>
#include <vector>

class A {
 int m;

public:
 A() : m(0) {}
 explicit A(int m) : m(m) {}

 A(const A &other) : m(other.m) {}
 A(A &&other) : m(other.m) { other.m = 0; }

 A& operator=(const A &other) {
 if (&other != this) {
 m = other.m;
 }
 return *this;
 }

 //Move constructor
 A& operator=(A &&other) {
 m = other.m;
 other.m = 0;
 return *this;
 }

 int get_m() const { return m; }
};

void f() {

 Copy operation modifying source operand

3-107

 std::vector<A> v{10};
 A obj(12);
 std::fill(v.begin(), v.end(), obj);
}

Result Information
Group: Object Oriented
Language: C++
Default: On
Command-Line Syntax: COPY_MODIFYING_SOURCE
Impact: Medium
CERT C++ ID: OOP58-CPP

See Also

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

External Websites
Move constructors (C++11 and beyond)

Introduced in R2018b

3 Defects

3-108

https://wiki.sei.cmu.edu/confluence/x/gXs-BQ
https://en.cppreference.com/w/cpp/language/move_constructor

Copy of overlapping memory
Source and destination arguments of a copy function have overlapping memory

Description
Copy of overlapping memory occurs when there is a memory overlap between the
source and destination argument of a copy function such as memcpy or strcpy. For
instance, the source and destination arguments of strcpy are pointers to different
elements in the same string.

Risk
If there is memory overlap between the source and destination arguments of copy
functions, according to C standards, the behavior is undefined.

Fix
Determine if the memory overlap is what you want. If so, find an alternative function. For
instance:

• If you are using memcpy to copy values from one memory location to another, use
memmove instead of memcpy.

• If you are using strcpy to copy one string to another, use memmove instead of
strcpy, as follows:

s = strlen(source);
memmove(destination, source, s + 1);

strlen determines the string length without the null terminator. Therefore, you must
move s+1 bytes instead of s bytes.

 Copy of overlapping memory

3-109

Examples

Overlapping Copy
#include <string.h>

char str[] = {"ABCDEFGH"};

void my_copy() {
 strcpy(&str[0],(const char*)&str[2]);
}

In this example, because the source and destination argument are pointers to the same
string str, there is memory overlap between their allowed buffers.

Result Information
Group: Programming
Language: C | C++
Default: Off
Command-Line Syntax: OVERLAPPING_COPY
Impact: Medium
CWE ID: 475, 628, 687
CERT C ID: EXP43-C, MSC15-C
ISO/IEC TS 17961 ID: restrict

See Also
Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Overlapping assignment

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

3 Defects

3-110

https://cwe.mitre.org/data/definitions/475.html
https://cwe.mitre.org/data/definitions/628.html
https://cwe.mitre.org/data/definitions/687.html
https://www.securecoding.cert.org/confluence/x/QQBLBw
https://www.securecoding.cert.org/confluence/x/EoLu

Introduced in R2015b

 Copy of overlapping memory

3-111

Data race
Multiple tasks perform unprotected nonatomic operations on shared variable

Description
Data race occurs when:

1 Multiple tasks perform unprotected operations on a shared variable.
2 At least one task performs a read operation and another task performs a write

operation.
3 At least one operation is nonatomic. For data race on both atomic and nonatomic

operations, see Data race including atomic operations.

See also “Define Atomic Operations in Multitasking Code”.

To find this defect, you must specify the multitasking options before analysis. To specify
these options, on the Configuration pane, select Multitasking. For more information,
see “Configuring Polyspace Multitasking Analysis Manually”.

Risk
Data race can result in unpredictable values of the shared variable because you do not
control the order of the operations in different tasks.

Data races between two write operations are more serious than data races between a
write and read operation. Two write operations can interfere with each other and result in
indeterminate values. To identify write-write conflicts, use the filters on the Detail
column of the Results List pane. For these conflicts, the Detail column shows the
additional line:

 Variable value may be altered by write-write concurrent access.

See “Filter and Group Results”.

Fix
To fix this defect, protect the operations on the shared variable using critical sections or
temporal exclusion. See Critical section details (-critical-section-begin

3 Defects

3-112

-critical-section-end) and Temporally exclusive tasks (-temporal-
exclusions-file).

To identify existing protections that you can reuse, see the table and graphs associated
with the result. The table shows each pair of conflicting calls. The Access Protections
column shows existing protections on the calls. To see the function call sequence leading

to the conflicts, click the icon. For an example, see below.

Examples

Unprotected Operation on Global Variable from Multiple Tasks

int var;
void begin_critical_section(void);
void end_critical_section(void);

void increment(void) {
 var++;
}

void task1(void) {
 increment();
}

void task2(void) {
 increment();
}

void task3(void) {
 begin_critical_section();
 increment();
 end_critical_section();
}

In this example, to emulate multitasking behavior, specify the following options:

 Data race

3-113

Option Specification
Configure multitasking
manually on page 1-114
Tasks on page 1-119 task1

task2

task3
Critical section details on
page 1-131

Starting routine Ending routine
begin_critical_sectio
n

end_critical_section

On the command-line, you can use the following:

 polyspace-bug-finder-nodesktop
 -entry-points task1,task2,task3
 -critical-section-begin begin_critical_section:cs1
 -critical-section-end end_critical_section:cs1

In this example, the tasks task1, task2, and task3 call the function increment.
increment contains the operation var++ that can involve multiple machine instructions
including:

• Reading var.
• Writing an increased value to var.

These machine instructions, when executed from task1 and task2, can occur
concurrently in an unpredictable sequence. For example, reading var from task1 can
occur either before or after writing to var from task2. Therefore the value of var can be
unpredictable.

Though task3 calls increment inside a critical section, other tasks do not use the same
critical section. The operations in the critical section of task3 are not mutually exclusive
with operations in other tasks.

Therefore, the three tasks are operating on a shared variable without common protection.
In your result details, you see each pair of conflicting function calls.

3 Defects

3-114

If you click the icon, you see the function call sequence starting from the entry point
to the read or write operation. You also see that the operation starting from task3 is in a
critical section. The Access Protections entry shows the lock and unlock function that
begin and end the critical section. In this example, you see the functions
begin_critical_section and end_critical_section.

One possible correction is to place the operation in critical section. You can implement
the critical section in multiple ways. For instance:

• You can place var++ in a critical section. When task1 enters its critical section, the
other tasks cannot enter their critical sections until task1 leaves its critical section.
The operation var++ from the three tasks cannot interfere with each other.

To implement the critical section, in the function increment, place the operation var
++ between calls to begin_critical_section and end_critical_section.

 Data race

3-115

int var;

void begin_critical_section(void);
void end_critical_section(void);

void increment(void) {
 begin_critical_section();
 var++;
 end_critical_section();
}

void task1(void) {
 increment();
}

void task2(void) {
 increment();
}

void task3(void) {
 increment();
}

• You can place the call to increment in the same critical section in the three tasks.
When task1 enters its critical section, the other tasks cannot enter their critical
sections until task1 leaves its critical section. The calls to increment from the three
tasks cannot interfere with each other.

To implement the critical section, in each of the three tasks, call increment between
calls to begin_critical_section and end_critical_section.

int var;

void begin_critical_section(void);
void end_critical_section(void);

void increment(void) {
 var++;
}

3 Defects

3-116

void task1(void) {
 begin_critical_section();
 increment();
 end_critical_section();
}

void task2(void) {
 begin_critical_section();
 increment();
 end_critical_section();
}

void task3(void) {
 begin_critical_section();
 increment();
 end_critical_section();
}

Another possible correction is to make the tasks, task1, task2 and task3, temporally
exclusive. Temporally exclusive tasks cannot execute concurrently.

On the Configuration pane, specify the following additional options:

Option Value
Temporally exclusive tasks
on page 1-135

task1 task2 task3

On the command-line, you can use the following:

 polyspace-code-prover-nodesktop
 -temporal-exclusions-file "C:\exclusions_file.txt"

where the file C:\exclusions_file.txt has the following line:

task1 task2 task3

Unprotected Operation in Threads Created with
pthread_create
#include <pthread.h>

 Data race

3-117

pthread_mutex_t count_mutex;
long long count;

void* increment_count(void* args)
{
 count = count + 1;
 return NULL;
}

void* set_count(void *args)
{
 long long c;
 c = count;
 return NULL;
}

int main(void)
{
 pthread_t thread_increment;
 pthread_t thread_get;

 pthread_create(&thread_increment, NULL, increment_count, NULL);
 pthread_create(&thread_get, NULL, set_count, NULL);

 pthread_join(thread_get, NULL);
 pthread_join(thread_increment, NULL);

 return 1;
}

In this example, Bug Finder detects the creation of separate threads with
pthread_create. The Data race defect is raised because the operation count =
count + 1 in the thread with id thread_increment conflicts with the operation c =
count in the thread wth id thread_get. The variable count is accessed in multiple
threads without a common protection.

The two conflicting operations are nonatomic. The operation c = count is nonatomic on
32-bit targets. See “Define Atomic Operations in Multitasking Code”.

To prevent concurrent access on the variable count, protect operations on count with a
critical section. Use the functions pthread_mutex_lock and pthread_mutex_unlock
to implement the critical section.

3 Defects

3-118

#include <pthread.h>

pthread_mutex_t count_mutex;
long long count;

void* increment_count(void* args)
{
 pthread_mutex_lock(&count_mutex);
 count = count + 1;
 pthread_mutex_unlock(&count_mutex);
 return NULL;
}

void* set_count(void *args)
{
 long long c;
 pthread_mutex_lock(&count_mutex);
 c = count;
 pthread_mutex_unlock(&count_mutex);
 return NULL;
}

int main(void)
{
 pthread_t thread_increment;
 pthread_t thread_get;

 pthread_create(&thread_increment, NULL, increment_count, NULL);
 pthread_create(&thread_get, NULL, set_count, NULL);

 pthread_join(thread_get, NULL);
 pthread_join(thread_increment, NULL);

 return 1;
}

Check Information
Group: Concurrency
Language: C | C++
Default: On
Command-Line Syntax: DATA_RACE

 Data race

3-119

Impact: High
CWE ID: 366, 413
CERT C ID: CON09-C, CON32-C, CON43-C, POS49-C
CERT C++ ID: CON43-C, POS49-C

See Also
Polyspace Analysis Options
Find defects (-checkers) | Target processor type (-target) | Configure
multitasking manually | Tasks (-entry-points) | Critical section
details (-critical-section-begin -critical-section-end) | Temporally
exclusive tasks (-temporal-exclusions-file) | Disabling all interrupts
(-routine-disable-interrupts -routine-enable-interrupts)

Polyspace Results
Data race including atomic operations | Data race through standard
library function call | Deadlock | Destruction of locked mutex | Double
lock | Double unlock | Missing lock | Missing unlock

Topics
“Analyze Multitasking Programs in Polyspace”
“Protections for Shared Variables in Multitasking Code”
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”
“Define Atomic Operations in Multitasking Code”

Introduced in R2014b

3 Defects

3-120

https://cwe.mitre.org/data/definitions/366.html
https://cwe.mitre.org/data/definitions/413.html
https://www.securecoding.cert.org/confluence/x/FABJAw
https://www.securecoding.cert.org/confluence/x/lAAV
https://www.securecoding.cert.org/confluence/x/aAAV
https://www.securecoding.cert.org/confluence/x/eoBcBQ
https://wiki.sei.cmu.edu/confluence/x/zNUxBQ
https://wiki.sei.cmu.edu/confluence/x/zNUxBQ

Data race including atomic operations
Multiple tasks perform unprotected operations on shared variable

Description
Data race occurs when:

1 Multiple tasks perform unprotected operations on a shared variable.
2 At least one task performs a read operation and another task performs a write

operation.

If you check for this defect, you can see data races on both atomic and non-atomic
operations. To see data races on non-atomic operations alone, select Data race. See also
“Define Atomic Operations in Multitasking Code”.

To find this defect, you must specify the multitasking options before analysis. To specify
these options, on the Configuration pane, select Multitasking.

Examples
Unprotected Atomic Operation on Global Variable from
Multiple Tasks

#include<stdio.h>

int var;

void begin_critical_section(void);
void end_critical_section(void);

void task1(void) {
 var = 1;
}

void task2(void) {

 Data race including atomic operations

3-121

 int local_var;
 local_var = var;
 printf("%d", local_var);
}

void task3(void) {
 begin_critical_section();
 /* Operations in task3 */
 end_critical_section();
}

In this example, to emulate multitasking behavior, specify the following options:

Option Specification
Configure multitasking
manually on page 1-114
Tasks on page 1-119 task1

task2

task3
Critical section details on
page 1-131

Starting routine Ending routine
begin_critical_sectio
n

end_critical_section

On the command-line, you can use the following:

 polyspace-bug-finder-nodesktop
 -entry-points task1,task2,task3
 -critical-section-begin begin_critical_section:cs1
 -critical-section-end end_critical_section:cs1

In this example, the write operation var=1; in task task1 executes concurrently with
the read operation local_var=var; in task task2.

task3 uses a critical section that can be reused for the other tasks.

One possible correction is to place these operations in the same critical section:

3 Defects

3-122

• var=1; in task1
• local_var=var; in task2

When task1 enters its critical section, the other tasks cannot enter their critical sections
until task1 leaves its critical section. Therefore, the two operations cannot execute
concurrently.

To implement the critical section, reuse the already existing critical section in task3.
Place the two operations between calls to begin_critical_section and
end_critical_section.

#include<stdio.h>

int var;

void begin_critical_section();
void end_critical_section();

void task1(void) {
 begin_critical_section();
 var = 1;
 end_critical_section();
}

void task2(void) {
 int local_var;
 begin_critical_section();
 local_var = var;
 end_critical_section();
 printf("%d", local_var);
}

void task3(void) {
 begin_critical_section();
 /* Operations in task3 */
 end_critical_section();
}

Another possible correction is to make the tasks task1 and task2 temporally exclusive.
Temporally exclusive tasks cannot execute concurrently.

 Data race including atomic operations

3-123

On the Configuration pane, specify the following additional options:

Option Value
Temporally exclusive tasks
on page 1-135

task1 task2

On the command-line, use the following:

 polyspace-code-prover-nodesktop
 -temporal-exclusions-file "C:\exclusions_file.txt"

where the file C:\exclusions_file.txt has the following line:

task1 task2

Check Information
Group: Concurrency
Language: C | C++
Default: Off
Command-Line Syntax: DATA_RACE_ALL
Impact: Medium
CWE ID: 366, 413
CERT C ID: CON00-C
CERT C++ ID: CON52-CPP

See Also
Polyspace Analysis Options
Find defects (-checkers) | Configure multitasking manually | Tasks (-
entry-points) | Critical section details (-critical-section-begin -
critical-section-end) | Temporally exclusive tasks (-temporal-
exclusions-file) | Disabling all interrupts (-routine-disable-
interrupts -routine-enable-interrupts)

Polyspace Results
Data race | Data race through standard library function call | Deadlock
| Destruction of locked mutex | Double lock | Double unlock | Missing lock
| Missing unlock

3 Defects

3-124

https://cwe.mitre.org/data/definitions/366.html
https://cwe.mitre.org/data/definitions/413.html
https://wiki.sei.cmu.edu/confluence/x/cXs-BQ

Topics
“Configuring Polyspace Multitasking Analysis Manually”
“Protections for Shared Variables in Multitasking Code”
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”
“Define Atomic Operations in Multitasking Code”

Introduced in R2014b

 Data race including atomic operations

3-125

Data race through standard library function
call
Multiple tasks make unprotected calls to thread-unsafe standard library function

Description
Data race through standard library function call occurs when:

1 Multiple tasks call the same standard library function.

For instance, multiple tasks call the strerror function.
2 The calls are not protected using a common protection.

For instance, the calls are not protected by the same critical section.

Functions flagged by this defect are not guaranteed to be reentrant. A function is
reentrant if it can be interrupted and safely called again before its previous invocation
completes execution. If a function is not reentrant, multiple tasks calling the function
without protection can cause concurrency issues. For the list of functions that are
flagged, see CON33-C: Avoid race conditions when using library functions.

To find this defect, you must specify the multitasking options before analysis. To specify
these options, on the Configuration pane, select Multitasking. For more information,
see “Configuring Polyspace Multitasking Analysis Manually”.

Risk
The functions flagged by this defect are nonreentrant because their implementations can
use global or static variables. When multiple tasks call the function without protection,
the function call from one task can interfere with the call from another task. The two
invocations of the function can concurrently access the global or static variables and
cause unpredictable results.

The calls can also cause more serious security vulnerabilities, such as abnormal
termination, denial-of-service attack, and data integrity violations.

3 Defects

3-126

https://www.securecoding.cert.org/confluence/x/xIEzAg

Fix
To fix this defect, do one of the following:

• Use a reentrant version of the standard library function if it exists.

For instance, instead of strerror(), use strerror_r() or strerror_s(). For
alternatives to functions flagged by this defect, see the documentation for CON33-C.

• Protect the function calls using common critical sections or temporal exclusion.

See Critical section details (-critical-section-begin -critical-
section-end) and Temporally exclusive tasks (-temporal-exclusions-
file).

To identify existing protections that you can reuse, see the table and graphs associated
with the result. The table shows each pair of conflicting calls. The Access
Protections column shows existing protections on the calls. To see the function call

sequence leading to the conflicts, click the icon. For an example, see below.

Examples

Unprotected Call to Standard Library Function from Multiple
Tasks

#include <errno.h>
#include <stdio.h>
#include <string.h>

void begin_critical_section(void);
void end_critical_section(void);

FILE *getFilePointer(void);

void func(FILE *fp) {
 fpos_t pos;
 errno = 0;
 if (0 != fgetpos(fp, &pos)) {
 char *errmsg = strerror(errno);

 Data race through standard library function call

3-127

https://www.securecoding.cert.org/confluence/x/xIEzAg

 printf("Could not get the file position: %s\n", errmsg);
 }
}

void task1(void) {
 FILE* fptr1 = getFilePointer();
 func(fptr1);
}

void task2(void) {
 FILE* fptr2 = getFilePointer();
 func(fptr2);
}

void task3(void) {
 FILE* fptr3 = getFilePointer();
 begin_critical_section();
 func(fptr3);
 end_critical_section();
}

In this example, to emulate multitasking behavior, specify the following options:

Option Specification
Configure multitasking
manually on page 1-114
Tasks on page 1-119 task1

task2

task3
Critical section details on
page 1-131

Starting routine Ending routine
begin_critical_sectio
n

end_critical_section

On the command-line, you can use the following:

 polyspace-bug-finder-nodesktop
 -entry-points task1,task2,task3
 -critical-section-begin begin_critical_section:cs1
 -critical-section-end end_critical_section:cs1

3 Defects

3-128

In this example, the tasks, task1, task2 and task3, call the function func. func calls
the nonreentrant standard library function, strerror.

Though task3 calls func inside a critical section, other tasks do not use the same critical
section. Operations in the critical section of task3 are not mutually exclusive with
operations in other tasks.

These three tasks are calling a nonreentrant standard library function without common
protection. In your result details, you see each pair of conflicting function calls.

If you click the icon, you see the function call sequence starting from the entry point
to the standard library function call. You also see that the call starting from task3 is in a
critical section. The Access Protections entry shows the lock and unlock function that
begin and end the critical section. In this example, you see the functions
begin_critical_section and end_critical_section.

 Data race through standard library function call

3-129

One possible correction is to use a reentrant version of the standard library function
strerror. You can use the POSIX version strerror_r which has the same functionality
but also guarantees thread-safety.

#include <errno.h>
#include <stdio.h>
#include <string.h>

void begin_critical_section(void);
void end_critical_section(void);

FILE *getFilePointer(void);
enum { BUFFERSIZE = 64 };

void func(FILE *fp) {
 fpos_t pos;
 errno = 0;
 if (0 != fgetpos(fp, &pos)) {
 char errmsg[BUFFERSIZE];
 if (strerror_r(errno, errmsg, BUFFERSIZE) != 0) {
 /* Handle error */
 }
 printf("Could not get the file position: %s\n", errmsg);
 }
}

3 Defects

3-130

void task1(void) {
 FILE* fptr1 = getFilePointer();
 func(fptr1);
}

void task2(void) {
 FILE* fptr2 = getFilePointer();
 func(fptr2);
}

void task3(void) {
 FILE* fptr3 = getFilePointer();
 begin_critical_section();
 func(fptr3);
 end_critical_section();
}

One possible correction is to place the call to strerror in critical section. You can
implement the critical section in multiple ways.

For instance, you can place the call to the intermediate function func in the same critical
section in the three tasks. When task1 enters its critical section, the other tasks cannot
enter their critical sections until task1 leaves its critical section. The calls to func and
therefore the calls to strerror from the three tasks cannot interfere with each other.

To implement the critical section, in each of the three tasks, call func between calls to
begin_critical_section and end_critical_section.

#include <errno.h>
#include <stdio.h>
#include <string.h>

void begin_critical_section(void);
void end_critical_section(void);

FILE *getFilePointer(void);

void func(FILE *fp) {
 fpos_t pos;
 errno = 0;
 if (0 != fgetpos(fp, &pos)) {

 Data race through standard library function call

3-131

 char *errmsg = strerror(errno);
 printf("Could not get the file position: %s\n", errmsg);
 }
}

void task1(void) {
 FILE* fptr1 = getFilePointer();
 begin_critical_section();
 func(fptr1);
 end_critical_section();
}

void task2(void) {
 FILE* fptr2 = getFilePointer();
 begin_critical_section();
 func(fptr2);
 end_critical_section();
}

void task3(void) {
 FILE* fptr3 = getFilePointer();
 begin_critical_section();
 func(fptr3);
 end_critical_section();
}

Another possible correction is to make the tasks, task1, task2 and task3, temporally
exclusive. Temporally exclusive tasks cannot execute concurrently.

On the Configuration pane, specify the following additional options:

Option Value
Temporally exclusive tasks
on page 1-135

task1 task2 task3

On the command-line, you can use the following:

 polyspace-code-prover-nodesktop
 -temporal-exclusions-file "C:\exclusions_file.txt"

where the file C:\exclusions_file.txt has the following line:

3 Defects

3-132

task1 task2 task3

Result Information
Group: Concurrency
Language: C | C++
Default: On
Command-Line Syntax: DATA_RACE_STD_LIB
Impact: High
CWE ID: 366, 413
CERT C ID: CON33-C
CERT C++ ID: CON33-C

See Also
Polyspace Analysis Options
Find defects (-checkers) | Configure multitasking manually | Tasks (-
entry-points) | Critical section details (-critical-section-begin -
critical-section-end) | Temporally exclusive tasks (-temporal-
exclusions-file)

Polyspace Results
Data race including atomic operations | Data race | Destruction of
locked mutex | Double lock | Double unlock | Missing lock | Missing unlock

Topics
“Analyze Multitasking Programs in Polyspace”
“Protections for Shared Variables in Multitasking Code”
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2016b

 Data race through standard library function call

3-133

https://cwe.mitre.org/data/definitions/366.html
https://cwe.mitre.org/data/definitions/413.html
https://www.securecoding.cert.org/confluence/x/xIEzAg
https://wiki.sei.cmu.edu/confluence/x/d9YxBQ

Deadlock
Call sequence to lock functions cause two tasks to block each other

Description
Deadlock occurs when multiple tasks are stuck in their critical sections (CS) because:

• Each CS waits for another CS to end.
• The critical sections (CS) form a closed cycle. For example:

• CS #1 waits for CS #2 to end, and CS #2 waits for CS #1 to end.
• CS #1 waits for CS #2 to end, CS #2 waits for CS #3 to end and CS #3 waits for

CS #1 to end.

Polyspace expects critical sections of code to follow a specific format. A critical section
lies between a call to a lock function and a call to an unlock function. When a task
my_task calls a lock function my_lock, other tasks calling my_lock must wait until
my_task calls the corresponding unlock function. Both lock and unlock functions must
have the form void func(void).

To find this defect, you must specify the multitasking options before analysis. To specify
these options, on the Configuration pane, select Multitasking.

Examples

Deadlock with Two Tasks

void task1(void);
void task2(void);

int var;
void perform_task_cycle(void) {

3 Defects

3-134

 var++;
}

void begin_critical_section_1(void);
void end_critical_section_1(void);

void begin_critical_section_2(void);
void end_critical_section_2(void);

void task1() {
 while(1) {
 begin_critical_section_1();
 begin_critical_section_2();
 perform_task_cycle();
 end_critical_section_2();
 end_critical_section_1();
 }
}

void task2() {
 while(1) {
 begin_critical_section_2();
 begin_critical_section_1();
 perform_task_cycle();
 end_critical_section_1();
 end_critical_section_2();
 }
}

In this example, to emulate multitasking behavior, you must specify the following options:

Option Specification
Configure
multitasking
manually
Entry points task1

task2
Critical section
details

Starting routine Ending routine
begin_critical_section_1 end_critical_section_1
begin_critical_section_2 end_critical_section_2

 Deadlock

3-135

A Deadlock occurs because the instructions can execute in the following sequence:

1 task1 calls begin_critical_section_1.
2 task2 calls begin_critical_section_2.
3 task1 reaches the instruction begin_critical_section_2();. Since task2 has

already called begin_critical_section_2, task1 waits for task2 to call
end_critical_section_2.

4 task2 reaches the instruction begin_critical_section_1();. Since task1 has
already called begin_critical_section_1, task2 waits for task1 to call
end_critical_section_1.

One possible correction is to follow the same sequence of calls to lock and unlock
functions in both task1 and task2.

void task1(void);
void task2(void);
void perform_task_cycle(void);

void begin_critical_section_1(void);
void end_critical_section_1(void);

void begin_critical_section_2(void);
void end_critical_section_2(void);

void task1() {
 while(1) {
 begin_critical_section_1();
 begin_critical_section_2();
 perform_task_cycle();
 end_critical_section_2();
 end_critical_section_1();
 }
}

void task2() {
 while(1) {
 begin_critical_section_1();
 begin_critical_section_2();
 perform_task_cycle();

3 Defects

3-136

 end_critical_section_2();
 end_critical_section_1();
 }
}

Deadlock with More Than Two Tasks

int var;
void performTaskCycle() {
 var++;
}

void lock1(void);
void lock2(void);
void lock3(void);

void unlock1(void);
void unlock2(void);
void unlock3(void);

void task1() {
 while(1) {
 lock1();
 lock2();
 performTaskCycle();
 unlock2();
 unlock1();
 }
}

void task2() {
 while(1) {
 lock2();
 lock3();
 performTaskCycle();
 unlock3();
 unlock2();
 }
}

 Deadlock

3-137

void task3() {
 while(1) {
 lock3();
 lock1();
 performTaskCycle();
 unlock1();
 unlock3();
 }
}

In this example, to emulate multitasking behavior, you must specify the following options:

Option Specification
Configure multitasking
manually
Entry points task1

task2

task3
Critical section details Starting routine Ending routine

lock1 unlock1
lock2 unlock2
lock3 unlock3

A Deadlock occurs because the instructions can execute in the following sequence:

1 task1 calls lock1.
2 task2 calls lock2.
3 task3 calls lock3.
4 task1 reaches the instruction lock2();. Since task2 has already called lock2,

task1 waits for call to unlock2.
5 task2 reaches the instruction lock3();. Since task3 has already called lock3,

task2 waits for call to unlock3.
6 task3 reaches the instruction lock1();. Since task1 has already called lock1,

task3 waits for call to unlock1.

3 Defects

3-138

To break the cyclic order between critical sections, note every lock function in your code
in a certain sequence, for example:

1 lock1
2 lock2
3 lock3

If you use more than one lock function in a task, use them in the order in which they
appear in the sequence. For example, you can use lock1 followed by lock2 but not
lock2 followed by lock1.

int var;
void performTaskCycle() {
 var++;
}

void lock1(void);
void lock2(void);
void lock3(void);

void unlock1(void);
void unlock2(void);
void unlock3(void);

void task1() {
 while(1) {
 lock1();
 lock2();
 performTaskCycle();
 unlock2();
 unlock1();
 }
}

void task2() {
 while(1) {
 lock2();
 lock3();
 performTaskCycle();
 unlock3();

 Deadlock

3-139

 unlock2();
 }
}

void task3() {
 while(1) {
 lock1();
 lock3();
 performTaskCycle();
 unlock3();
 unlock1();
 }
}

Check Information
Group: Concurrency
Language: C | C++
Default: On
Command-Line Syntax: DEADLOCK
Impact: High
CWE ID: 833
CERT C ID: CON35-C, POS51-C
CERT C++ ID: CON53-CPP, POS51-C

See Also
Polyspace Analysis Options
Find defects (-checkers) | Configure multitasking manually | Tasks (-
entry-points) | Critical section details (-critical-section-begin -
critical-section-end) | Temporally exclusive tasks (-temporal-
exclusions-file)

Polyspace Results
Data race including atomic operations | Data race | Data race through
standard library function call | Destruction of locked mutex | Double
lock | Double unlock | Missing lock | Missing unlock

Topics
“Analyze Multitasking Programs in Polyspace”

3 Defects

3-140

https://cwe.mitre.org/data/definitions/833.html
https://www.securecoding.cert.org/confluence/x/0gGMAg
https://www.securecoding.cert.org/confluence/x/roBcBQ
https://wiki.sei.cmu.edu/confluence/x/d3s-BQ
https://wiki.sei.cmu.edu/confluence/x/d3s-BQ

“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2014b

 Deadlock

3-141

Dead code
Code does not execute

Description
Dead code occurs when a block of code cannot be reached via any execution path. This
defect excludes:

• Code deactivated by constant false condition, which checks for directives
such as #if 0.

• Unreachable code, which checks for code after a control escape such as goto,
break, or return.

• Useless if, which checks for if statements that are always true.

If you see dead code from use of functions such as isinf and isnan, enable an analysis
mode that takes into account non-finite values. See Consider non finite floats (-
allow-non-finite-floats).

Examples
Dead Code from if-Statement
#include <stdio.h>

int Return_From_Table(int ch){

 int table[5];

 /* Create a table */
 for(int i=0;i<=4;i++){
 table[i]=i^2+i+1;
 }

 if(table[ch]>100){ /* Defect: Condition always false */
 return 0;
 }

3 Defects

3-142

 return table[ch];
}

The maximum value in the array table is 4^2+4+1=21, so the test expression
table[ch]>100 always evaluates to false. The return 0 in the if statement is not
executed.

One possible correction is to remove the if condition from the code.

#include <stdio.h>

int Return_From_Table(int ch){

 int table[5];

 /* Create a table */
 for(int i=0;i<=4;i++){
 table[i]=i^2+i+1;
 }

 return table[ch];
}

Dead Code for if with Enumerated Type
typedef enum _suit {UNKNOWN_SUIT, SPADES, HEARTS, DIAMONDS, CLUBS} suit;
suit nextcard(void);
void do_something(suit s);

void bridge(void)
{
 suit card = nextcard();
 if ((card < SPADES) || (card > CLUBS))
 card = UNKNOWN_SUIT;

 if (card > 7) {
 do_something(card);
 }
}

The type suit is enumerated with five options. However, the conditional expression card
> 7 always evaluates to false because card can be at most 5. The content in the if
statement is not executed.

 Dead code

3-143

One possible correction is to change the if-condition in the code. In this correction, the 7
is changed to HEART to relate directly to the type of card.

typedef enum _suit {UNKNOWN_SUIT, SPADES, HEARTS, DIAMONDS, CLUBS} suit;
suit nextcard(void);
void do_something(suit s);

void bridge(void)
{
 suit card = nextcard();
 if ((card < SPADES) || (card > CLUBS))
 card = UNKNOWN_SUIT;

 if (card > HEARTS) {
 do_something(card);
 }
}

Check Information
Group: Data flow
Language: C | C++
Default: On
Command-Line Syntax: DEAD_CODE
Impact: Low
CWE ID: 561
CERT C ID: MSC01-C, MSC07-C, MSC12-C
ISO/IEC TS 17961 ID: swtchdflt

See Also
Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Code deactivated by constant false condition | Unreachable code |
Useless if

3 Defects

3-144

https://cwe.mitre.org/data/definitions/561.html
https://www.securecoding.cert.org/confluence/x/YgE
https://www.securecoding.cert.org/confluence/x/JwAy
https://www.securecoding.cert.org/confluence/x/NYA5

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2013b

 Dead code

3-145

Deallocation of previously deallocated
pointer
Memory freed more than once without allocation

Description
Deallocation of previously deallocated pointer occurs when a block of memory is
freed more than once using the free function without an intermediate allocation.

Examples

Deallocation of Previously Deallocated Pointer Error
#include <stdlib.h>

void allocate_and_free(void)
{

 int* pi = (int*)malloc(sizeof(int));
 if (pi == NULL) return;

 *pi = 2;
 free(pi);
 free (pi);
 /* Defect: pi has already been freed */
}

The first free statement releases the block of memory that pi refers to. The second free
statement on pi releases a block of memory that has been freed already.

One possible correction is to remove the second free statement.

#include <stdlib.h>

void allocate_and_free(void)

3 Defects

3-146

{

 int* pi = (int*)malloc(sizeof(int));
 if (pi == NULL) return;

 *pi = 2;
 free(pi);
 /* Fix: remove second deallocation */
 }

Check Information
Group: Dynamic memory
Language: C | C++
Default: On
Command-Line Syntax: DOUBLE_DEALLOCATION
Impact: High
CWE ID: 415, 825
CERT C ID: MEM00-C, MEM30-C
CERT C++ ID: MEM30-C, MEM50-CPP, MEM51-CPP
ISO/IEC TS 17961 ID: accfree, dblfree

See Also
Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Use of previously freed pointer

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2013b

 Deallocation of previously deallocated pointer

3-147

https://cwe.mitre.org/data/definitions/415.html
https://cwe.mitre.org/data/definitions/825.html
https://www.securecoding.cert.org/confluence/x/twE
https://www.securecoding.cert.org/confluence/x/vAE
https://wiki.sei.cmu.edu/confluence/x/GdYxBQ
https://wiki.sei.cmu.edu/confluence/x/onw-BQ
https://wiki.sei.cmu.edu/confluence/x/Gns-BQ

Declaration mismatch
Mismatch between function or variable declarations

Description
Declaration mismatch occurs when a function or variable declaration does not match
other instances of the function or variable.

Examples

Inconsistent Declarations in Two Files
file1.c

int foo(void) {
 return 1;
}

file2.c

double foo(void);

int bar(void) {
 return (int)foo();
}

In this example, file1.c declares foo() as returning an integer. In file2.c, foo() is
declared as returning a double. This difference raises a defect on the second instance of
foo in file2.

One possible correction is to change the function declarations so that they match. In this
example, by changing the declaration of foo in file2.c to match file1.c, the defect is fixed.

file1.c

3 Defects

3-148

int foo(void) {
 return 1;
}

file2.c

int foo(void);

int bar(void) {
 return foo();
}

Inconsistent Structure Alignment
test1.c

#include "square.h"
#include "circle.h"
struct aCircle circle;
struct aSquare square;

int main(){
 square.side=1;
 circle.radius=1;
 return 0;
}

test2.c

#include "circle.h"
#include "square.h"
struct aCircle circle;
struct aSquare square;

int main(){
 square.side=1;
 circle.radius=1;
 return 0;
}

circle.h

#pragma pack(1)

extern struct aCircle{
 int radius;
} circle;

square.h

extern struct aSquare {
 unsigned int side:1;
} square;

In this example, a declaration mismatch defect is raised on square in square.h because
Polyspace infers that square.h does not have the same alignment as square in test2.c.
This error occurs because the #pragma pack(1) statement in circle.h declares specific
alignment. In test2.c, circle.h is included before square.h. Therefore, the #pragma
pack(1) statement from circle.h is not reset to the default alignment after the aCircle
structure. Because of this omission, test2.c infers that the aSquare square structure
also has an alignment of 1 byte.

 Declaration mismatch

3-149

One possible correction is to reset the structure alignment after the aCircle struct
declaration. For the GNU or Microsoft Visual compilers, fix the defect by adding a
#pragma pack() statement at the end of circle.h.

test1.c

#include "square.h"
#include "circle.h"
struct aCircle circle;
struct aSquare square;

int main(){
 square.side=1;
 circle.radius=1;
 return 0;
}

test2.c

#include "circle.h"
#include "square.h"
struct aCircle circle;
struct aSquare square;

int main(){
 square.side=1;
 circle.radius=1;
 return 0;
}

circle.h

#pragma pack(1)

extern struct aCircle{
 int radius;
} circle;

#pragma pack()

square.h

extern struct aSquare {
 unsigned int side:1;
} square;

Other compilers require different #pragma pack syntax. For your syntax, see the
documentation for your compiler.

One possible correction is to add the Ignore pragma pack directives option to your
Bug Finder analysis. If you want the structure alignment to change for each structure,
and you do not want to see this Declaration mismatch defect, use this correction.

1 On the Configuration pane, select the Advanced Settings pane.
2 In the Other box, enter -ignore-pragma-pack.
3 Rerun your analysis.

The Declaration mismatch defect is resolved.

3 Defects

3-150

Check Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: DECL_MISMATCH
Impact: High
CWE ID: 685, 686
CERT C ID: DCL40-C, EXP37-C, MSC15-C
CERT C++ ID: DCL40-C, EXP37-C
ISO/IEC TS 17961 ID: argcomp, funcdecl

See Also
Polyspace Analysis Options
Find defects (-checkers) | Ignore pragma pack directives (-ignore-
pragma-pack)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2013b

 Declaration mismatch

3-151

https://cwe.mitre.org/data/definitions/685.html
https://cwe.mitre.org/data/definitions/686.html
https://www.securecoding.cert.org/confluence/x/cwGTAw
https://www.securecoding.cert.org/confluence/x/VQBc
https://www.securecoding.cert.org/confluence/x/EoLu
https://wiki.sei.cmu.edu/confluence/x/ftUxBQ
https://wiki.sei.cmu.edu/confluence/x/49UxBQ

Delete of void pointer
delete operates on a void* pointer pointing to an object

Description
Delete of void pointer occurs when the delete operator operates on a void* pointer.

Risk
Deleting a void* pointer is undefined according to the C++ Standard.

If the object is of type MyClass and the delete operator operates on a void* pointer
pointing to the object, the MyClass destructor is not called.

If the destructor contains cleanup operations such as release of resources or decreasing a
counter value, the operations do not take place.

Fix
Cast the void* pointer to the appropriate type. Perform the delete operation on the
result of the cast.

For instance, if the void* pointer points to a MyClass object, cast the pointer to
MyClass*.

Examples

Delete of void* Pointer
#include <iostream>

class MyClass {
public:
 explicit MyClass(int i):m_i(i) {}
 ~MyClass() {

3 Defects

3-152

 std::cout << "Delete MyClass(" << m_i << ")" << std::endl;
 }
private:
 int m_i;
};

void my_delete(void* ptr) {
 delete ptr;
}

int main() {
 MyClass* pt = new MyClass(0);
 my_delete(pt);
 return 0;
}

In this example, the function my_delete is designed to perform the delete operation on
any type. However, in the function body, the delete operation acts on a void* pointer,
ptr. Therefore, when you call my_delete with an argument of type MyClass, the
MyClass destructor is not called.

One possible solution is to use a function template instead of a function for my_delete.

#include <iostream>

class MyClass {
public:
 explicit MyClass(int i):m_i(i) {}
 ~MyClass() {
 std::cout << "Delete MyClass(" << m_i << ")" << std::endl;
 }
private:
 int m_i;
};

template<typename T> void safe_delete(T*& ptr) {
 delete ptr;
 ptr = NULL;
}

int main() {

 Delete of void pointer

3-153

 MyClass* pt = new MyClass(0);
 safe_delete(pt);
 return 0;
}

Result Information
Group: Good practice
Language: C++
Default: Off
Command-Line Syntax: DELETE_OF_VOID_PTR
Impact: Low

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2015b

3 Defects

3-154

Destination buffer overflow in string
manipulation
Function writes to buffer at offset greater than buffer size

Description
Destination buffer overflow in string manipulation occurs when certain string
manipulation functions write to their destination buffer argument at an offset greater
than the buffer size.

For instance, when calling the function sprintf(char* buffer, const char*
format), you use a constant string format of greater size than buffer.

Risk
Buffer overflow can cause unexpected behavior such as memory corruption or stopping
your system. Buffer overflow also introduces the risk of code injection.

Fix
One possible solution is to use alternative functions to constrain the number of characters
written. For instance:

• If you use sprintf to write formatted data to a string, use snprintf, _snprintf or
sprintf_s instead to enforce length control. Alternatively, use asprintf to
automatically allocate the memory required for the destination buffer.

• If you use vsprintf to write formatted data from a variable argument list to a string,
use vsnprintf or vsprintf_s instead to enforce length control.

• If you use wcscpy to copy a wide string, use wcsncpy, wcslcpy, or wcscpy_s
instead to enforce length control.

Another possible solution is to increase the buffer size.

 Destination buffer overflow in string manipulation

3-155

Examples

Buffer Overflow in sprintf Use
#include <stdio.h>

void func(void) {
 char buffer[20];
 char *fmt_string = "This is a very long string, it does not fit in the buffer";

 sprintf(buffer, fmt_string);
}

In this example, buffer can contain 20 char elements but fmt_string has a greater
size.

One possible correction is to use the snprintf function to enforce length control.

#include <stdio.h>

void func(void) {
 char buffer[20];
 char *fmt_string = "This is a very long string, it does not fit in the buffer";

 snprintf(buffer, 20, fmt_string);
}

Result Information
Group: Static memory
Language: C | C++
Default: On
Command-Line Syntax: STRLIB_BUFFER_OVERFLOW
Impact: High
CWE ID: 121, 125, 135, 251, 787
CERT C ID: ARR38-C, STR07-C, STR31-C, STR38-C, ENV01-C
CERT C++ ID: ARR38-C, STR31-C, STR38-C, STR50-CPP
ISO/IEC TS 17961 ID: libptr, taintformatio

3 Defects

3-156

https://cwe.mitre.org/data/definitions/121.html
https://cwe.mitre.org/data/definitions/125.html
https://cwe.mitre.org/data/definitions/135.html
https://cwe.mitre.org/data/definitions/251.html
https://cwe.mitre.org/data/definitions/787.html
https://www.securecoding.cert.org/confluence/x/EYCGB
https://www.securecoding.cert.org/confluence/x/QwY
https://www.securecoding.cert.org/confluence/x/KAE
https://www.securecoding.cert.org/confluence/x/FADAAQ
https://www.securecoding.cert.org/confluence/x/OIAc
https://wiki.sei.cmu.edu/confluence/x/W9UxBQ
https://wiki.sei.cmu.edu/confluence/x/sNUxBQ
https://wiki.sei.cmu.edu/confluence/x/xtYxBQ
https://wiki.sei.cmu.edu/confluence/x/i3w-BQ

See Also
Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Destination buffer underflow in string manipulation

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2015b

 Destination buffer overflow in string manipulation

3-157

Destination buffer underflow in string
manipulation
Function writes to buffer at a negative offset from beginning of buffer

Description
Destination buffer underflow in string manipulation occurs when certain string
manipulation functions write to their destination buffer argument at a negative offset
from the beginning of the buffer.

For instance, for the function sprintf(char* buffer, const char* format), you
obtain the buffer from an operation buffer = (char*)arr; ... buffer +=
offset;. arr is an array and offset is a negative value.

Risk
Buffer underflow can cause unexpected behavior such as memory corruption or stopping
your system. Buffer underflow also introduces the risk of code injection.

Fix
If the destination buffer argument results from pointer arithmetic, see if you are
decrementing a pointer. Fix the pointer decrement by modifying either the original value
before decrement or the decrement value.

Examples

Buffer Underflow in sprintf Use
#include <stdio.h>
#define offset -2

void func(void) {

3 Defects

3-158

 char buffer[20];
 char *fmt_string ="Text";

 sprintf(&buffer[offset], fmt_string);
}

In this example, &buffer[offset] is at a negative offset from the memory allocated to
buffer.

One possible correction is to change the value of offset.

#include <stdio.h>
#define offset 2

void func(void) {
 char buffer[20];
 char *fmt_string ="Text";

 sprintf(&buffer[offset], fmt_string);
}

Result Information
Group: Static memory
Language: C | C++
Default: On
Command-Line Syntax: STRLIB_BUFFER_UNDERFLOW
Impact: High
CWE ID: 124, 786, 787
CERT C ID: ARR38-C
CERT C++ ID: ARR38-C

See Also
Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Destination buffer overflow in string manipulation

 Destination buffer underflow in string manipulation

3-159

https://cwe.mitre.org/data/definitions/124.html
https://cwe.mitre.org/data/definitions/786.html
https://cwe.mitre.org/data/definitions/787.html
https://www.securecoding.cert.org/confluence/x/EYCGB
https://wiki.sei.cmu.edu/confluence/x/W9UxBQ

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2015b

3 Defects

3-160

Destruction of locked mutex
Task tries to destroy a mutex in the locked state

Description
Destruction of locked mutex occurs when a task destroys a mutex after it is locked
(and before it is unlocked). The locking and destruction can happen in the same task or
different tasks.

Risk
A mutex is locked to protect shared variables from concurrent access. If a mutex is
destroyed in the locked state, the protection does not apply.

Fix
To fix this defect, destroy the mutex only after you unlock it. It is a good design practice
to:

• Initialize a mutex before creating the threads where you use the mutex.
• Destroy a mutex after joining the threads that you created.

On the Result Details pane, you see two events, the locking and destruction of the
mutex, and the tasks that initiated the events. To navigate to the corresponding line in
your source code, click the event.

Examples

Locking and Destruction in Different Tasks

#include <pthread.h>

 Destruction of locked mutex

3-161

pthread_mutex_t lock1;
pthread_mutex_t lock2;
pthread_mutex_t lock3;

void t0 (void) {
 pthread_mutex_lock (&lock1);
 pthread_mutex_lock (&lock2);
 pthread_mutex_lock (&lock3);
 pthread_mutex_unlock (&lock2);
 pthread_mutex_unlock (&lock1);
 pthread_mutex_unlock (&lock3);
}

void t1 (void) {
 pthread_mutex_lock (&lock1);
 pthread_mutex_lock (&lock2);
 pthread_mutex_destroy (&lock3);
 pthread_mutex_unlock (&lock2);
 pthread_mutex_unlock (&lock1);
}

In this example, after task t0 locks the mutex lock3, task t1 can destroy it. The
destruction occurs if the following events happen in sequence:

1 t0 acquires lock3.
2 t0 releases lock2.
3 t0 releases lock1.
4 t1 acquires the lock lock1 released by t0.
5 t1 acquires the lock lock2 released by t0.
6 t1 destroys lock3.

For simplicity, this example uses a mix of automatic and manual concurrency detection.
The tasks t0 and t1 are manually specified as entry points by using the option Tasks (-
entry-points). The critical sections are implemented through primitives
pthread_mutex_lock and pthread_mutex_unlock that the software detects
automatically. In practice, for entry point specification (thread creation), you will use
primitives such as pthread_create. The next example shows how the defect can appear
when you use pthread_create.

3 Defects

3-162

The locking and destruction of lock3 occurs inside the critical section imposed by lock1
and lock2, but the unlocking occurs outside. One possible correction is to place the lock-
unlock pair in the same critical section as the destruction of the mutex. Use one of these
critical sections:

• Critical section imposed by lock1 alone.
• Critical section imposed by lock1 and lock2.

In this corrected code, the lock-unlock pair and the destruction is placed in the critical
section imposed by lock1 and lock2. When t0 acquires lock1 and lock2, t1 has to
wait for their release before it executes the instruction pthread_mutex_destroy
(&lock3);. Therefore, t1 cannot destroy mutex lock3 in the locked state.

#include <pthread.h>

pthread_mutex_t lock1;
pthread_mutex_t lock2;
pthread_mutex_t lock3;

void t0 (void) {
 pthread_mutex_lock (&lock1);
 pthread_mutex_lock (&lock2);

 pthread_mutex_lock (&lock3);
 pthread_mutex_unlock (&lock3);

 pthread_mutex_unlock (&lock2);
 pthread_mutex_unlock (&lock1);
}

void t1 (void) {
 pthread_mutex_lock (&lock1);
 pthread_mutex_lock (&lock2);

 pthread_mutex_destroy (&lock3);

 pthread_mutex_unlock (&lock2);
 pthread_mutex_unlock (&lock1);
}

 Destruction of locked mutex

3-163

Locking and Destruction in Start Routine of Thread
#include <pthread.h>

/* Define globally accessible variables and a mutex */
#define NUMTHREADS 4
pthread_t callThd[NUMTHREADS];
pthread_mutex_t lock;
void atomic_operation(void);

void *do_create(void *arg) {
 /* Creation thread */
 pthread_mutex_init(&lock, NULL);
 pthread_exit((void*) 0);
}

void *do_work(void *arg) {
 /* Worker thread */
 pthread_mutex_lock (&lock);
 atomic_operation();
 pthread_mutex_unlock (&lock);
 pthread_exit((void*) 0);
}

void *do_destroy(void *arg) {
 /* Destruction thread */
 pthread_mutex_destroy(&lock);
 pthread_exit((void*) 0);
}

int main (int argc, char *argv[]) {
 int i;
 void *status;
 pthread_attr_t attr;

 /* Create threads */
 pthread_attr_init(&attr);
 pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);

 /* Thread that initializes mutex */
 pthread_create(&callThd[0], &attr, do_create, NULL);

 /* Threads that use mutex for atomic operation*/

3 Defects

3-164

 for(i=0; i<NUMTHREADS-1; i++) {
 pthread_create(&callThd[i], &attr, do_work, (void *)i);
 }

 /* Thread that destroys mutex */
 pthread_create(&callThd[NUMTHREADS -1], &attr, do_destroy, NULL);

 pthread_attr_destroy(&attr);

 /* Join threads */
 for(i=0; i<NUMTHREADS; i++) {
 pthread_join(callThd[i], &status);
 }

 pthread_exit(NULL);
}

In this example, four threads are created. The threads are assigned different actions.

• The first thread callThd[0] initializes the mutex lock.
• The second and third threads, callThd[1] and callThd[2], perform an atomic

operation protected by the mutex lock.
• The fourth thread callThd[3] destroys the mutex lock.

The threads can interrupt each other. Therefore, immediately after the second or third
thread locks the mutex, the fourth thread can destroy it.

One possible correction is to initialize and destroy the mutex in the main function outside
the start routine of the threads. The threads perform only the atomic operation. You need
two fewer threads because the mutex initialization and destruction threads are not
required.

#include <pthread.h>

/* Define globally accessible variables and a mutex */
#define NUMTHREADS 2
pthread_t callThd[NUMTHREADS];
pthread_mutex_t lock;
void atomic_operation(void);

void *do_work(void *arg) {
 pthread_mutex_lock (&lock);

 Destruction of locked mutex

3-165

 atomic_operation();
 pthread_mutex_unlock (&lock);
 pthread_exit((void*) 0);
}

int main (int argc, char *argv[]) {
 int i;
 void *status;
 pthread_attr_t attr;

 /* Create threads */
 pthread_attr_init(&attr);
 pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);

 /* Initialize mutex */
 pthread_mutex_init(&lock, NULL);

 for(i=0; i<NUMTHREADS; i++) {
 pthread_create(&callThd[i], &attr, do_work, (void *)i);
 }

 pthread_attr_destroy(&attr);

 /* Join threads */
 for(i=0; i<NUMTHREADS; i++) {
 pthread_join(callThd[i], &status);
 }

 /* Destroy mutex */
 pthread_mutex_destroy(&lock);

 pthread_exit(NULL);
}

Another possible correction is to use a second mutex and protect the lock-unlock pair
from the destruction. This corrected code uses the mutex lock2 to achieve this
protection. The second mutex is initialized in the main function outside the start routine
of the threads.

#include <pthread.h>

/* Define globally accessible variables and a mutex */
#define NUMTHREADS 4

3 Defects

3-166

pthread_t callThd[NUMTHREADS];
pthread_mutex_t lock;
pthread_mutex_t lock2;
void atomic_operation(void);

void *do_create(void *arg) {
 /* Creation thread */
 pthread_mutex_init(&lock, NULL);
 pthread_exit((void*) 0);
}

void *do_work(void *arg) {
 /* Worker thread */
 pthread_mutex_lock (&lock2);
 pthread_mutex_lock (&lock);
 atomic_operation();
 pthread_mutex_unlock (&lock);
 pthread_mutex_unlock (&lock2);
 pthread_exit((void*) 0);
}

void *do_destroy(void *arg) {
 /* Destruction thread */
 pthread_mutex_lock (&lock2);
 pthread_mutex_destroy(&lock);
 pthread_mutex_unlock (&lock2);
 pthread_exit((void*) 0);
}

int main (int argc, char *argv[]) {
 int i;
 void *status;
 pthread_attr_t attr;

 /* Create threads */
 pthread_attr_init(&attr);
 pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);

 /* Initialize second mutex */
 pthread_mutex_init(&lock2, NULL);

 /* Thread that initializes first mutex */

 Destruction of locked mutex

3-167

 pthread_create(&callThd[0], &attr, do_create, NULL);

 /* Threads that use first mutex for atomic operation */
 /* The threads use second mutex to protect first from destruction in locked state*/
 for(i=0; i<NUMTHREADS-1; i++) {
 pthread_create(&callThd[i], &attr, do_work, (void *)i);
 }

 /* Thread that destroys first mutex */
 /* The thread uses the second mutex to prevent destruction of locked mutex */
 pthread_create(&callThd[NUMTHREADS -1], &attr, do_destroy, NULL);

 pthread_attr_destroy(&attr);

 /* Join threads */
 for(i=0; i<NUMTHREADS; i++) {
 pthread_join(callThd[i], &status);
 }

 /* Destroy second mutex */
 pthread_mutex_destroy(&lock2);

 pthread_exit(NULL);
}

Result Information
Group: Concurrency
Language: C | C++
Default: Off
Command-Line Syntax: DESTROY_LOCKED
Impact: Medium
CWE ID: 667, 826
CERT C ID: CON31-C, POS48-C
CERT C++ ID: CON50-CPP, POS48-C

3 Defects

3-168

https://cwe.mitre.org/data/definitions/667.html
https://cwe.mitre.org/data/definitions/826.html
https://www.securecoding.cert.org/confluence/x/zIAg
https://www.securecoding.cert.org/confluence/x/aYBcBQ
https://wiki.sei.cmu.edu/confluence/x/fXs-BQ
https://wiki.sei.cmu.edu/confluence/x/fXs-BQ

See Also
Polyspace Analysis Options
Find defects (-checkers) | Target processor type (-target) | Configure
multitasking manually | Tasks (-entry-points)

Polyspace Results
Data race including atomic operations | Data race | Data race through
standard library function call | Deadlock | Double lock | Double unlock |
Missing lock | Missing unlock

Topics
“Analyze Multitasking Programs in Polyspace”
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2016b

 Destruction of locked mutex

3-169

Deterministic random output from constant
seed
Seeding routine uses a constant seed making the output deterministic

Description
Deterministic random output from constant seed detects random standard functions
that when given a constant seed, have deterministic output.

Risk
When some random functions, such as srand, srandom, and initstate, have constant
seeds, the results produce the same output every time that your program is run. A hacker
can disrupt your program if they know how your program behaves.

Fix
Use a different random standard function or use a nonconstant seed.

Some standard random routines are inherently cryptographically weak on page 3-817,
and should not be used for security purposes.

Examples

Random Number Generator Initialization
#include <stdlib.h>

void random_num(void)
{
 srand(12345U);
 /* ... */
}

3 Defects

3-170

This example initializes a random number generator using srand with a constant seed.
The random number generation is deterministic, making this function cryptographically
weak.

One possible correction is to use a random number generator that does not require a
seed. This example uses rand_s.

#define _CRT_RAND_S
#include <stdlib.h>
#include <stdio.h>

unsigned int random_num_time(void)
{

 unsigned int number;
 errno_t err;
 err = rand_s(&number);

 if(err != 0)
 {
 return number;
 }
 else
 {
 return err;
 }
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: RAND_SEED_CONSTANT
Impact: Medium
CWE ID: 330, 336
CERT C ID: MSC32-C
CERT C++ ID: MSC32-C, MSC51-CPP

 Deterministic random output from constant seed

3-171

https://cwe.mitre.org/data/definitions/330.html
https://cwe.mitre.org/data/definitions/336.html
https://www.securecoding.cert.org/confluence/x/hABhAQ
https://wiki.sei.cmu.edu/confluence/x/W9YxBQ
https://wiki.sei.cmu.edu/confluence/x/-ns-BQ

See Also
Predictable random output from predictable seed | Unsafe standard
encryption function | Vulnerable pseudo-random number generator

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2015b

3 Defects

3-172

Double lock
Lock function is called twice in a task without an intermediate call to unlock function

Description
Double lock occurs when:

• A task calls a lock function my_lock.
• The task calls my_lock again before calling the corresponding unlock function.

In multitasking code, a lock function begins a critical section of code and an unlock
function ends it. When a task task1 calls a lock function lock, other tasks calling lock
must wait until task calls the corresponding unlock function. Polyspace requires that
both lock and unlock functions must have the form void func(void).

To find this defect, you must specify the multitasking options before analysis. To specify
these options, on the Configuration pane, select Multitasking.

Examples

Double Lock

int global_var;

void lock(void);
void unlock(void);

void task1(void)
{
 lock();
 global_var += 1;
 lock();
 global_var += 1;

 Double lock

3-173

 unlock();
}

void task2(void)
{
 lock();
 global_var += 1;
 unlock();
}

In this example, to emulate multitasking behavior, you must specify the following options:

Option Value
Configure multitasking
manually on page 1-114
Tasks on page 1-119 task1

task2
Critical section details on
page 1-131

Starting routine Ending routine
lock unlock

On the command-line, you can use the following:

 polyspace-bug-finder-nodesktop
 -entry-points task1,task2
 -critical-section-begin lock:cs1
 -critical-section-end unlock:cs1

task1 enters a critical section through the call lock();. task1 calls lock again before
it leaves the critical section through the call unlock();.

If you want the first global_var+=1; to be outside the critical section, one possible
correction is to remove the first call to lock. However, if other tasks are using
global_var, this code can produce a Data race error.

int global_var;

void lock(void);

3 Defects

3-174

void unlock(void);

void task1(void)
{
 global_var += 1;
 lock();
 global_var += 1;
 unlock();
}

void task2(void)
{
 lock();
 global_var += 1;
 unlock();
}

If you want the first global_var+=1; to be inside the critical section, one possible
correction is to remove the second call to lock.

int global_var;

void lock(void);
void unlock(void);

void task1(void)
{
 lock();
 global_var += 1;
 global_var += 1;
 unlock();
}

void task2(void)
{
 lock();
 global_var += 1;
 unlock();
}

 Double lock

3-175

If you want the second global_var+=1; to be inside a critical section, another possible
correction is to add another call to unlock.

int global_var;

void lock(void);
void unlock(void);

void task1(void)
{
 lock();
 global_var += 1;
 unlock();
 lock();
 global_var += 1;
 unlock();
}

void task2(void)
{
 lock();
 global_var += 1;
 unlock();
}

Double Lock with Function Call

int global_var;

void lock(void);
void unlock(void);

void performOperation(void) {
 lock();
 global_var++;
}

3 Defects

3-176

void task1(void)
{
 lock();
 global_var += 1;
 performOperation();
 unlock();
}

void task2(void)
{
 lock();
 global_var += 1;
 unlock();
}

In this example, to emulate multitasking behavior, you must specify the following options:

Option Specification
Configure multitasking
manually on page 1-114
Tasks on page 1-119 task1

task2
Critical section details on
page 1-131

Starting routine Ending routine
lock unlock

On the command-line, you can use the following:

 polyspace-bug-finder-nodesktop
 -entry-points task1,task2
 -critical-section-begin lock:cs1
 -critical-section-end unlock:cs1

task1 enters a critical section through the call lock();. task1 calls the function
performOperation. In performOperation, lock is called again even though task1
has not left the critical section through the call unlock();.

In the result details for the defect, you see the sequence of instructions leading to the
defect. For instance, you see that following the first entry into the critical section, the
execution path:

 Double lock

3-177

• Enters function performOperation.
• Inside performOperation, attempts to enter the same critical section once again.

You can click each event to navigate to the corresponding line in the source code.

One possible correction is to remove the call to lock in task1.

int global_var;

void lock(void);
void unlock(void);

void performOperation(void) {
 global_var++;
}

void task1(void)
{
 lock();
 global_var += 1;
 performOperation();
 unlock();
}

void task2(void)
{
 lock();

3 Defects

3-178

 global_var += 1;
 unlock();
}

Check Information
Group: Concurrency
Language: C | C++
Default: On
Command-Line Syntax: DOUBLE_LOCK
Impact: High
CWE ID: 764
CERT C ID: CON01-C

See Also
Polyspace Analysis Options
Find defects (-checkers) | Configure multitasking manually | Tasks (-
entry-points) | Critical section details (-critical-section-begin -
critical-section-end) | Temporally exclusive tasks (-temporal-
exclusions-file)

Polyspace Results
Data race including atomic operations | Data race | Data race through
standard library function call | Deadlock | Destruction of locked mutex
| Double unlock | Missing lock | Missing unlock

Topics
“Analyze Multitasking Programs in Polyspace”
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2014b

 Double lock

3-179

https://cwe.mitre.org/data/definitions/764.html
https://www.securecoding.cert.org/confluence/x/SADQAg

Double unlock
Unlock function is called twice in a task without an intermediate call to lock function

Description
Double unlock occurs when:

• A task calls a lock function my_lock.
• The task calls the corresponding unlock function my_unlock.
• The task calls my_unlock again. The task does not call my_lock a second time

between the two calls to my_unlock.

In multitasking code, a lock function begins a critical section of code and an unlock
function ends it. When a task task1 calls a lock function my_lock, other tasks calling
my_lock must wait until task1 calls the corresponding unlock function. Polyspace
requires that both lock and unlock functions must have the form void func(void).

To find this defect, you must specify the multitasking options before analysis. To specify
these options, on the Configuration pane, select Multitasking.

Examples
Double Unlock

int global_var;

void BEGIN_CRITICAL_SECTION(void);
void END_CRITICAL_SECTION(void);

void task1(void)
{
 BEGIN_CRITICAL_SECTION();
 global_var += 1;

3 Defects

3-180

 END_CRITICAL_SECTION();
 global_var += 1;
 END_CRITICAL_SECTION();
}

void task2(void)
{
 BEGIN_CRITICAL_SECTION();
 global_var += 1;
 END_CRITICAL_SECTION();
}

In this example, to emulate multitasking behavior, you must specify the following options:

Option Value
Configure multitasking
manually on page 1-114
Tasks on page 1-119 task1

task2
Critical section details on
page 1-131

Starting routine Ending routine
BEGIN_CRITICAL_SECTIO
N

END_CRITICAL_SECTION

On the command-line, you can use the following:

 polyspace-bug-finder-nodesktop
 -entry-points task1,task2
 -critical-section-begin BEGIN_CRITICAL_SECTION:cs1
 -critical-section-end END_CRITICAL_SECTION:cs1

task1 enters a critical section through the call BEGIN_CRITICAL_SECTION();. task1
leaves the critical section through the call END_CRITICAL_SECTION();. task1 calls
END_CRITICAL_SECTION again without an intermediate call to
BEGIN_CRITICAL_SECTION.

If you want the second global_var+=1; to be outside the critical section, one possible
correction is to remove the second call to END_CRITICAL_SECTION. However, if other
tasks are using global_var, this code can produce a Data race error.

 Double unlock

3-181

int global_var;

void BEGIN_CRITICAL_SECTION(void);
void END_CRITICAL_SECTION(void);

void task1(void)
{
 BEGIN_CRITICAL_SECTION();
 global_var += 1;
 END_CRITICAL_SECTION();
 global_var += 1;
}

void task2(void)
{
 BEGIN_CRITICAL_SECTION();
 global_var += 1;
 END_CRITICAL_SECTION();
}

If you want the second global_var+=1; to be inside the critical section, one possible
correction is to remove the first call to END_CRITICAL_SECTION.

int global_var;

void BEGIN_CRITICAL_SECTION(void);
void END_CRITICAL_SECTION(void);

void task1(void)
{
 BEGIN_CRITICAL_SECTION();
 global_var += 1;
 global_var += 1;
 END_CRITICAL_SECTION();
}

void task2(void)
{

3 Defects

3-182

 BEGIN_CRITICAL_SECTION();
 global_var += 1;
 END_CRITICAL_SECTION();
}

If you want the second global_var+=1; to be inside a critical section, another possible
correction is to add another call to BEGIN_CRITICAL_SECTION.

int global_var;

void BEGIN_CRITICAL_SECTION(void);
void END_CRITICAL_SECTION(void);

void task1(void)
{
 BEGIN_CRITICAL_SECTION();
 global_var += 1;
 END_CRITICAL_SECTION();
 BEGIN_CRITICAL_SECTION();
 global_var += 1;
 END_CRITICAL_SECTION();
}

void task2(void)
{
 BEGIN_CRITICAL_SECTION();
 global_var += 1;
 END_CRITICAL_SECTION();
}

Check Information
Group: Concurrency
Language: C | C++
Default: On
Command-Line Syntax: DOUBLE_UNLOCK
Impact: High
CWE ID: 765
CERT C ID: CON01-C

 Double unlock

3-183

https://cwe.mitre.org/data/definitions/765.html
https://www.securecoding.cert.org/confluence/x/SADQAg

See Also
Polyspace Analysis Options
Find defects (-checkers) | Configure multitasking manually | Tasks (-
entry-points) | Critical section details (-critical-section-begin -
critical-section-end) | Temporally exclusive tasks (-temporal-
exclusions-file)

Polyspace Results
Data race including atomic operations | Data race | Data race through
standard library function call | Deadlock | Destruction of locked mutex
| Double lock | Missing lock | Missing unlock

Topics
“Analyze Multitasking Programs in Polyspace”
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2014b

3 Defects

3-184

Environment pointer invalidated by previous
operation
Call to setenv or putenv family function modifies environment pointed to by pointer

Description
Environment pointer invalidated by previous operation occurs when you use the
third argument of main() in a hosted environment to access the environment after an
operation modifies the environment. In a hosted environment, many C implementations
support the nonstandard syntax:

main (int argc, char *argv[], char *envp[])

A call to a setenv or putenv family function modifies the environment pointed to by
*envp.

Risk
When you modify the environment through a call to a setenv or putenv family function,
the environment memory can potentially be reallocated. The hosted environment pointer
is not updated and might point to an incorrect location. A call to this pointer can return
unexpected results or cause an abnormal program termination.

Fix
Do not use the hosted environment pointer. Instead, use global external variable environ
in Linux, _environ or _wenviron in Windows, or their equivalent. When you modify the
environment, these variables are updated.

Examples
Access Environment Through Pointer envp
#include <stdio.h>
#include <stdlib.h>

 Environment pointer invalidated by previous operation

3-185

extern int check_arguments(int argc, char **argv, char **envp);
extern void use_envp(char **envp);

/* envp is from main function */
int func(char **envp)
{
 /* Call to setenv may cause environment
 *memory to be reallocated
 */
 if (setenv(("MY_NEW_VAR"),("new_value"),1) != 0)
 {
 /* Handle error */
 return -1;
 }
 /* envp not updated after call to setenv, and may
 *point to incorrect location.
 **/
 if (envp != ((void *)0)) {
 use_envp(envp);
/* No defect on second access to
*envp because defect already raised */
 }
 return 0;
}

void main(int argc, char **argv, char **envp)
{
 if (check_arguments(argc, argv, envp))
 {
 (void)func(envp);
 }
}

In this example, envp is accessed inside func() after a call to setenv that can
reallocate the environment memory. envp can point to an incorrect location because it is
not updated after setenv modifies the environment. No defect is raised when
use_envp() is called because the defect is already raised on the previous line of code.

One possible correction is to access the environment by using a variable that is always
updated after a call to setenv. For instance, in the following code, the pointer envp is
still available from main(), but the environment is accessed in func() through the
global external variable environ.

3 Defects

3-186

#include <stdio.h>
#include <stdlib.h>
extern char **environ;

extern int check_arguments(int argc, char **argv, char **envp);
extern void use_envp(char **envp);

int func(void)
{
 if (setenv(("MY_NEW_VAR"), ("new_value"),1) != 0) {
 /* Handle error */
 return -1;
 }
 /* Use global external variable environ
 *which is always updated after a call to setenv */

 if (environ != NULL) {
 use_envp(environ);
 }
 return 0;
}

void main(int argc, char **argv, char **envp)
{
 if (check_arguments(argc, argv, envp))
 {
 (void)func();
 }
}

Result Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: INVALID_ENV_POINTER
Impact: Medium
CWE ID: 825
CERT C ID: ENV31-C
CERT C++ ID: ENV31-C

 Environment pointer invalidated by previous operation

3-187

https://cwe.mitre.org/data/definitions/825.html
https://www.securecoding.cert.org/confluence/x/OYAt
https://wiki.sei.cmu.edu/confluence/x/5NUxBQ

See Also

Topics
Misuse of return value from nonreentrant standard function
Modification of internal buffer returned from nonreentrant standard
function
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2018a

3 Defects

3-188

Errno not checked
errno is not checked for error conditions following function call

Description
Errno not checked occurs when you call a function that sets errno to indicate error
conditions, but do not check errno after the call. For these functions, checking errno is
the only reliable way to determine if an error occurred.

Functions that set errno on errors include:

• fgetwc, strtol, and wcstol.

For a comprehensive list of functions, see documentation about errno.
• POSIX errno-setting functions such as encrypt and setkey.

Risk
To see if the function call completed without errors, check errno for error values.

The return values of these errno-setting functions do not indicate errors. The return
value can be one of the following:

• void
• Even if an error occurs, the return value can be the same as the value from a

successful call. Such return values are called in-band error indicators.

You can determine if an error occurred only by checking errno.

For instance, strtol converts a string to a long integer and returns the integer. If the
result of conversion overflows, the function returns LONG_MAX and sets errno to ERANGE.
However, the function can also return LONG_MAX from a successful conversion. Only by
checking errno can you distinguish between an error and a successful conversion.

Fix
Before calling the function, set errno to zero.

 Errno not checked

3-189

https://www.securecoding.cert.org/confluence/x/KwBl

After the function call, to see if an error occurred, compare errno to zero. Alternatively,
compare errno to known error indicator values. For instance, strtol sets errno to
ERANGE to indicate errors.

The error message in the Polyspace result shows the error indicator value that you can
compare to.

Examples
errno Not Checked After Call to strtol
#include<stdio.h>
#include<stdlib.h>
#include<errno.h>

int main(int argc, char *argv[]) {
 char *str, *endptr;
 int base;

 str = argv[1];
 base = 10;

 long val = strtol(str, &endptr, base);
 printf("Return value of strtol() = %ld\n", val);
}

You are using the return value of strtol without checking errno.

Before calling strtol, set errno to zero . After a call to strtol, check the return value
for LONG_MIN or LONG_MAX and errno for ERANGE.

#include<stdlib.h>
#include<stdio.h>
#include<errno.h>
#include<limits.h>

int main(int argc, char *argv[]) {
 char *str, *endptr;
 int base;

 str = argv[1];

3 Defects

3-190

 base = 10;

 errno = 0;
 long val = strtol(str, &endptr, base);
 if((val == LONG_MIN || val == LONG_MAX) && errno == ERANGE) {
 printf("strtol error");
 exit(EXIT_FAILURE);
 }
 printf("Return value of strtol() = %ld\n", val);
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: ERRNO_NOT_CHECKED
Impact: Medium
CWE ID: 253, 391
CERT C ID: ERR33-C
CERT C++ ID: ERR33-C
ISO/IEC TS 17961 ID: inverrno

See Also
Polyspace Results
Errno not reset | Misuse of errno | Returned value of a sensitive
function not checked

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2017a

 Errno not checked

3-191

https://cwe.mitre.org/data/definitions/253.html
https://cwe.mitre.org/data/definitions/391.html
https://www.securecoding.cert.org/confluence/x/w4C4Ag
https://wiki.sei.cmu.edu/confluence/x/kNYxBQ

Errno not reset
errno not reset before calling a function that sets errno

Description
Errno not reset occurs when you do not reset errno before calling a function that sets
errno to indicate error conditions. However, you check errno for those error conditions
after the function call.

Risk
The errno is not clean and can contain values from a previous call. Checking errno for
errors can give the false impression that an error occurred.

errno is set to zero at program startup but subsequently, errno is not reset by a C
standard library function. You must explicitly set errno to zero when required.

Fix
Before calling a function that sets errno to indicate error conditions, reset errno to zero
explicitly.

Examples

errno Not Reset Before Call to strtod
#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <float.h>

#define fatal_error() abort()

double func(const char *s1, const char *s2)
{

3 Defects

3-192

 double f1;
 f1 = strtod (s1, NULL);
 if (0 == errno) {
 double f2 = strtod (s2, NULL);
 if (0 == errno) {
 long double result = (long double)f1 + f2;
 if ((result <= (long double)DBL_MAX) && (result >= (long double)-DBL_MAX))
 {
 return (double)result;
 }
 }
 }
 fatal_error();
 return 0.0;
}

In this example, errno is not reset to 0 before the first call to strtod. Checking errno
for 0 later can lead to a false positive.

One possible correction is to reset errno to 0 before calling strtod.

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <float.h>

#define fatal_error() abort()

double func(const char *s1, const char *s2)
{
 double f1;
 errno = 0;
 f1 = strtod (s1, NULL);
 if (0 == errno) {
 double f2 = strtod (s2, NULL);
 if (0 == errno) {
 long double result = (long double)f1 + f2;
 if ((result <= (long double)DBL_MAX) && (result >= (long double)-DBL_MAX))
 {
 return (double)result;
 }
 }
 }
 fatal_error();

 Errno not reset

3-193

 return 0.0;
}

Result Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: MISSING_ERRNO_RESET
Impact: High
CWE ID: 253, 456, 703
CERT C ID: ERR30-C
CERT C++ ID: ERR30-C
ISO/IEC TS 17961 ID: inverrno

See Also
Polyspace Results
Errno not reset | Errno not checked | Returned value of a sensitive
function not checked

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2017a

3 Defects

3-194

https://cwe.mitre.org/data/definitions/253.html
https://cwe.mitre.org/data/definitions/456.html
https://cwe.mitre.org/data/definitions/703.html
https://www.securecoding.cert.org/confluence/x/KwBl
https://wiki.sei.cmu.edu/confluence/x/39YxBQ

Exception caught by value
catch statement accepts an object by value

Description
Exception caught by value occurs when a catch statement accepts an object by value.

Risk
If a throw statement passes an object and the corresponding catch statement accepts
the exception by value, the object is copied to the catch statement parameter. This copy
can lead to unexpected behavior such as:

• Object slicing, if the throw statement passes a derived class object.
• Undefined behavior of the exception, if the copy fails.

Fix
Catch the exception by reference or by pointer. Catching an exception by reference is
recommended.

Examples

Standard Exception Caught by Value
#include <exception>

extern void print_str(const char* p);
extern void throw_exception();

void func() {
 try {
 throw_exception();
 }

 Exception caught by value

3-195

 catch(std::exception exc) {
 print_str(exc.what());
 }
}

In this example, the catch statement takes a std::exception object by value. Catching
an exception by value causes copying of the object. It can cause undefined behavior of the
exception if the copy fails.

One possible solution is to catch the exception by reference.

#include <exception>

extern void print_str(const char* p);
extern void throw_exception();

void corrected_excpcaughtbyvalue() {
 try {
 throw_exception();
 }
 catch(std::exception& exc) {
 print_str(exc.what());
 }
}

Derived Class Exception Caught by Value
#include <exception>
#include <string>
#include <typeinfo>
#include <iostream>

// Class declarations
class BaseExc {
public:
 explicit BaseExc();
 virtual ~BaseExc() {};
protected:
 BaseExc(const std::string& type);
private:
 std::string _id;
};

3 Defects

3-196

class IOExc: public BaseExc {
public:
 explicit IOExc();
};

//Class method declarations
BaseExc::BaseExc():_id(typeid(this).name()) {
}
BaseExc::BaseExc(const std::string& type): _id(type) {
}
IOExc::IOExc(): BaseExc(typeid(this).name()) {
}

int input(void);

int main(void) {
 int rnd = input();
 try {
 if (rnd==0) {
 throw IOExc();
 } else {
 throw BaseExc();
 }
 }

 catch(BaseExc exc) {
 std::cout << "Intercept BaseExc" << std::endl;
 }
 return 0;
}

In this example, the catch statement takes a BaseExc object by value. Catching
exceptions by value causes copying of the object. The copying can cause:

• Undefined behavior of the exception if it fails.
• Object slicing if an exception of the derived class IOExc is caught.

One possible correction is to catch exceptions by reference.

#include <exception>
#include <string>

 Exception caught by value

3-197

#include <typeinfo>
#include <iostream>

// Class declarations
class BaseExc {
public:
 explicit BaseExc();
 virtual ~BaseExc() {};
protected:
 BaseExc(const std::string& type);
private:
 std::string _id;
};

class IOExc: public BaseExc {
public:
 explicit IOExc();
};

//Class method declarations
BaseExc::BaseExc():_id(typeid(this).name()) {
}
BaseExc::BaseExc(const std::string& type): _id(type) {
}
IOExc::IOExc(): BaseExc(typeid(this).name()) {
}

int input(void);

int main(void) {
 int rnd = input();
 try {
 if (rnd==0) {
 throw IOExc();
 } else {
 throw BaseExc();
 }
 }

 catch(BaseExc& exc) {
 std::cout << "Intercept BaseExc" << std::endl;
 }

3 Defects

3-198

 return 0;
}

Result Information
Group: Programming
Language: C++
Default: On
Command-Line Syntax: EXCP_CAUGHT_BY_VALUE
Impact: Medium

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2015b

 Exception caught by value

3-199

Exception handler hidden by previous
handler
catch statement is not reached because of an earlier catch statement for the same
exception

Description
Exception handler hidden by previous handler occurs when a catch statement is not
reached because a previous catch statement handles the exception.

For instance, a catch statement accepts an object of a class my_exception and a later
catch statement accepts one of the following:

• An object of the my_exception class.
• An object of a class derived from the my_exception class.

Risk
Because the catch statement is not reached, it is effectively dead code.

Fix
One possible fix is to remove the redundant catch statement.

Another possible fix is to reverse the order of catch statements. Place the catch
statement that accepts the derived class exception before the catch statement that
accepts the base class exception.

Examples
catch Statement Hidden by Previous Statement
#include <new>

3 Defects

3-200

extern void print_str(const char* p);
extern void throw_exception();

void func() {
 try {
 throw_exception();
 }
 catch(std::exception& exc) {
 print_str(exc.what());
 }

 catch(std::bad_alloc& exc) {
 print_str(exc.what());
 }
}

In this example, the second catch statement accepts a std::bad_alloc object.
Because the std::bad_alloc class is derived from a std::exception class, the
second catch statement is hidden by the previous catch statement that accepts a
std::exception object.

The defect appears on the parameter type of the catch statement. To find which catch
statement hides the current catch statement:

1 On the Source pane, right-click the keyword catch and select Search For
"catch"in Current Source File.

2 On the Search pane, click each search result, proceeding backwards from the
current catch statement. Continue until you find the catch statement that hides the
catch statement with the defect.

One possible correction is to place the catch statement with the derived class parameter
first.

#include <new>

extern void print_str(const char* p);
extern void throw_exception();

void corrected_excphandlerhidden() {
 try {
 throw_exception();
 }

 Exception handler hidden by previous handler

3-201

 catch(std::bad_alloc& exc) {
 print_str(exc.what());
 }
 catch(std::exception& exc) {
 print_str(exc.what());
 }
}

Result Information
Group: Programming
Language: C++
Default: On
Command-Line Syntax: EXCP_HANDLER_HIDDEN
Impact: Medium
CWE ID: 755

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2015b

3 Defects

3-202

https://cwe.mitre.org/data/definitions/755.html

Execution of a binary from a relative path
can be controlled by an external actor
Command with relative path is vulnerable to malicious attack

Description
Execution of a binary from a relative path can be controlled by an external actor
detects calls to an external command. If the call uses a relative path or no path to call the
external command, Bug Finder flags the call as a defect.

This defect also finds results that the Execution of externally controlled command
defect checker finds.

Risk
By using a relative path or no path to call an external command, your program uses an
unsafe search process to find the command. An attacker can control the search process
and replace the intended command with a command of their own.

Fix
When you call an external command, specify the full path.

Examples

Call Command with Relative Path
define _GNU_SOURCE
include <sys/types.h>
include <sys/socket.h>
include <unistd.h>
include <stdio.h>
include <stdlib.h>
include <wchar.h>

 Execution of a binary from a relative path can be controlled by an external actor

3-203

include <string.h>
define MAX_BUFFER 100

void rel_path()
{
 char * data;
 char data_buf[MAX_BUFFER] = "";
 data = data_buf;

 strcpy(data, "ls -la");
 FILE *pipe;
 pipe = popen(data, "wb");
 if (pipe != NULL) pclose(pipe);
}

In this example, Bug Finder flags popen because it tries to call ls -la using a relative
path. An attacker can manipulate the command to use a malicious version.

One possible correction is to use the full path when calling the command.

define _GNU_SOURCE
include <sys/types.h>
include <sys/socket.h>
include <unistd.h>
include <stdio.h>
include <stdlib.h>
include <wchar.h>
include <string.h>
define MAX_BUFFER 100

void rel_path()
{
 char * data;
 char data_buf[MAX_BUFFER] = "";
 data = data_buf;

 strcpy(data, "/usr/bin/ls -la");
 FILE *pipe;
 pipe = popen(data, "wb");
 if (pipe != NULL) pclose(pipe);
}

3 Defects

3-204

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: RELATIVE_PATH_CMD
Impact: Medium
CWE ID: 114, 427

See Also
Load of library from a relative path can be controlled by an
external actor | Vulnerable path manipulation | Execution of externally
controlled command | Command executed from externally controlled path

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2015b

 Execution of a binary from a relative path can be controlled by an external actor

3-205

https://cwe.mitre.org/data/definitions/114.html
https://cwe.mitre.org/data/definitions/427.html

Execution of externally controlled command
Command argument from an unsecure source vulnerable to operating system command
injection

Description
Execution of externally controlled command checks for commands that are fully or
partially constructed from externally controlled input.

Risk
Attackers can use the externally controlled input as operating system commands, or
arguments to the application. An attacker could read or modify sensitive data can be read
or modified, execute unintended code, or gain access to other aspects of the program.

Fix
Validate the inputs to allow only intended input values. For example, create a whitelist of
acceptable inputs and compare the input against this list.

Examples

Call Argument Command
#define _XOPEN_SOURCE
#define _GNU_SOURCE

#include "stdlib.h"
#include "stdio.h"
#include "string.h"
#include "unistd.h"
#include "dlfcn.h"
#include "limits.h"

enum {

3 Defects

3-206

 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};

void taintedexternalcmd(char* usercmd)
{
 char cmd[SIZE128] = "/usr/bin/cat ";
 strcat(cmd, usercmd);
 system(cmd);
}

This example function calls a command from a user argument without checking the
command variable.

One possible correction is to use a switch statement to run a predefined command,
using the user input as the switch variable.

#define _XOPEN_SOURCE
#define _GNU_SOURCE

#include "stdlib.h"
#include "stdio.h"
#include "string.h"
#include "unistd.h"
#include "dlfcn.h"
#include "limits.h"

enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};
enum { CMD0 = 1, CMD1, CMD2 };

void taintedexternalcmd(int usercmd)
{
 char cmd[SIZE128] = "/usr/bin/cat ";

 switch(usercmd) {
 case CMD0:
 strcat(cmd, "*.c");
 break;
 case CMD1:

 Execution of externally controlled command

3-207

 strcat(cmd, "*.h");
 break;
 case CMD2:
 strcat(cmd, "*.cpp");
 break;
 default:
 strcat(cmd, "*.c");
 }
 system(cmd);
}

Result Information
Group: Tainted Data
Language: C | C++
Default: Off
Command-Line Syntax: TAINTED_EXTERNAL_CMD
Impact: Medium
CWE ID: 77, 78, 88, 114
CERT C ID: API00-C, ENV33-C, STR02-C
CERT C++ ID: ENV33-C
ISO/IEC TS 17961 ID: syscall

See Also
Use of externally controlled environment variable | Host change using
externally controlled elements | Command executed from externally
controlled path | Library loaded from externally controlled path |
Execution of a binary from a relative path can be controlled by an
external actor

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2015b

3 Defects

3-208

https://cwe.mitre.org/data/definitions/77.html
https://cwe.mitre.org/data/definitions/78.html
https://cwe.mitre.org/data/definitions/88.html
https://cwe.mitre.org/data/definitions/114.html
https://www.securecoding.cert.org/confluence/x/egAV
https://www.securecoding.cert.org/confluence/x/1IAg
https://www.securecoding.cert.org/confluence/x/-AY
https://wiki.sei.cmu.edu/confluence/x/MdYxBQ

File access between time of check and use
(TOCTOU)
File or folder might change state due to access race

Description
File access between time of check and use (TOCTOU) detects race condition issues
between checking the existence of a file or folder, and using a file or folder.

Risk
An attacker can access and manipulate your file between your check for the file and your
use of a file. Symbolic links are particularly risky because an attacker can change where
your symbolic link points.

Fix
Before using a file, do not check its status. Instead, use the file and check the results
afterward.

Examples

Check File Before Using
#include <stdio.h>
#include <fcntl.h>
#include <unistd.h>

extern void print_tofile(FILE* f);

void toctou(char * log_path) {
 if (access(log_path, W_OK)==0) {
 FILE* f = fopen(log_path, "w");
 if (f) {

 File access between time of check and use (TOCTOU)

3-209

 print_tofile(f);
 fclose(f);
 }
 }
}

In this example, before opening and using the file, the function checks if the file exists.
However, an attacker can change the file between the first and second lines of the
function.

One possible correction is to open the file, and then check the existence and contents
afterward.

#include <stdio.h>
#include <fcntl.h>
#include <unistd.h>

extern void print_tofile(FILE* f);

void toctou(char * log_path) {
 int fd = open(log_path, O_WRONLY);
 if (fd!=-1) {
 FILE *f = fdopen(fd, "w");
 if (f) {
 print_tofile(f);
 fclose(f);
 }
 }
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: TOCTOU
Impact: Medium
CWE ID: 367
CERT C ID: FIO01-C, FIO45-C, POS35-C
CERT C++ ID: FIO45-C, POS35-C

3 Defects

3-210

https://cwe.mitre.org/data/definitions/367.html
https://www.securecoding.cert.org/confluence/x/MwU
https://www.securecoding.cert.org/confluence/x/yQCQBw
https://www.securecoding.cert.org/confluence/x/ZgAI
https://wiki.sei.cmu.edu/confluence/x/RdUxBQ
https://wiki.sei.cmu.edu/confluence/x/RdUxBQ

See Also
Data race | Bad file access mode or status

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2015b

 File access between time of check and use (TOCTOU)

3-211

File descriptor exposure to child process
Copied file descriptor used in multiple processes

Description
File descriptor exposure to child process occurs when a process is forked and the
child process uses file descriptors inherited from the parent process.

Risk
When you fork a child process, file descriptors are copied from the parent process, which
means that you can have concurrent operations on the same file. Use of the same file
descriptor in the parent and child processes can lead to race conditions that may not be
caught during standard debugging. If you do not properly manage the file descriptor
permissions and privileges, the file content is vulnerable to attacks targeting the child
process.

Fix
Check that the file has not been modified before forking the process. Close all inherited
file descriptors and reopen them with stricter permissions and privileges, such as read-
only permission.

Examples

File Descriptor Accessed from Forked Process
include <stdio.h>
include <stdlib.h>
include <string.h>
include <unistd.h>
include <fcntl.h>
include <sys/types.h>
include <sys/stat.h>

3 Defects

3-212

const char *test_file="/home/user/test.txt";

void func(void)
{
 char c;
 pid_t pid;
 /* create file descriptor in read and write mode */
 int fd = open(test_file, O_RDWR);
 if (fd == -1)
 {
 /* Handle error */
 abort();
 }
 /* fork process */
 pid = fork();
 if (pid == -1)
 {
 /* Handle error */
 abort();
 }
 else if (pid == 0)
 { /* Child process accesses file descriptor inherited
 from parent process */
 (void)read(fd, &c, 1);
 }
 else
 { /* Parent process access same file descriptor as
 child process */
 (void)read(fd, &c, 1);
 }
}

In this example, a file descriptor fd is created in read and write mode. The process is
then forked. The child process inherits and accesses fd with the same permissions as the
parent process. A race condition exists between the parent and child processes. The
contents of the file is vulnerable to attacks through the child process.

After you create the file descriptor, check the file for tampering. Then, close the inherited
file descriptor in the child process and reopen it in read-only mode.

 File descriptor exposure to child process

3-213

include <stdio.h>
include <stdlib.h>
include <string.h>
include <unistd.h>
include <fcntl.h>
include <sys/types.h>
include <sys/stat.h>

const char *test_file="/home/user/test.txt";

void func(void)
{
 char c;
 pid_t pid;

 /* Get the state of file for further file tampering checking */

 /* create file descriptor in read and write mode */
 int fd = open(test_file, O_RDWR);
 if (fd == -1)
 {
 /* Handle error */
 abort();
 }

 /* Be sure the file was not tampered with while opening */

 /* fork process */

 pid = fork();
 if (pid == -1)
 {
 /* Handle error */
 (void)close(fd);
 abort();
 }
 else if (pid == 0)
 { /* Close file descriptor in child process and repoen
 it in read only mode */

 (void)close(fd);
 fd = open(test_file, O_RDONLY);
 if (fd == -1)

3 Defects

3-214

 {
 /* Handle error */
 abort();
 }

 (void)read(fd, &c, 1);
 (void)close(fd);
 }
 else
 { /* Parent acceses original file descriptor */
 (void)read(fd, &c, 1);
 (void)close(fd);
 }
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: FILE_EXPOSURE_TO_CHILD
Impact: Medium
CWE ID: 362
CERT C ID: POS38-C
CERT C++ ID: POS38-C

See Also

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2017b

 File descriptor exposure to child process

3-215

https://cwe.mitre.org/data/definitions/362.html
https://www.securecoding.cert.org/confluence/x/ZQG7AQ
https://wiki.sei.cmu.edu/confluence/x/y9YxBQ

File manipulation after chroot() without
chdir("/")
Path-related vulnerabilities for file manipulated after call to chroot

Description
File manipulation after chroot() without chdir("/") detects access to the file
system outside of the jail created by chroot. By calling chroot, you create a file system
jail that confines access to a specific file subsystem. However, this jail is ineffective if you
do not call chdir("/").

Risk
If you do not call chdir("/") after creating a chroot jail, file manipulation functions
that takes a path as an argument can access files outside of the jail. An attacker can still
manipulate files outside the subsystem that you specified, making the chroot jail
ineffective.

Fix
After calling chroot, call chdir("/") to make your chroot jail more secure.

Examples
Open File in chroot-jail
#include <unistd.h>
#include <stdio.h>

const char root_path[] = "/var/ftproot";
const char log_path[] = "file.log";
FILE* chrootmisuse() {
 FILE* res;
 chroot(root_path);

3 Defects

3-216

 chdir("base");
 res = fopen(log_path, "r");
 return res;
}

This example uses chroot to create a chroot-jail. However, to use the chroot jail
securely, you must call chdir("\") afterward. This example calls chdir("base"),
which is not equivalent. Bug Finder also flags fopen because fopen opens a file in the
vulnerable chroot-jail.

Before opening files, call chdir("/").

#include <unistd.h>
#include <stdio.h>

const char root_path[] = "/var/ftproot";
const char log_path[] = "file.log";
FILE* chrootmisuse() {
 FILE* res;
 chroot(root_path);
 chdir("/");
 res = fopen(log_path, "r");
 return res;
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: CHROOT_MISUSE
Impact: Medium
CWE ID: 243, 922
CERT C ID: POS05-C

See Also
Umask used with chmod-style arguments | Vulnerable path manipulation

Topics
“Interpret Polyspace Bug Finder Results”

 File manipulation after chroot() without chdir("/")

3-217

https://cwe.mitre.org/data/definitions/243.html
https://cwe.mitre.org/data/definitions/922.html
https://www.securecoding.cert.org/confluence/x/bAL7

“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2015b

3 Defects

3-218

Float conversion overflow
Overflow when converting between floating point data types

Description
Float conversion overflow occurs when converting a floating point number to a smaller
floating point data type. If the variable does not have enough memory to represent the
original number, the conversion overflows.

The exact storage allocation for different floating point types depends on your processor.
See Target processor type (-target).

Examples

Converting from double to float
float convert(void) {

 double diam = 1e100;
 return (float)diam;
}

In the return statement, the variable diam of type double (64 bits) is converted to a
variable of type float (32 bits). However, the value 1^100 requires more than 32 bits to be
precisely represented.

Check Information
Group: Numerical
Language: C | C++
Default: On
Command-Line Syntax: FLOAT_CONV_OVFL
Impact: High
CWE ID: 189, 197, 681

 Float conversion overflow

3-219

https://cwe.mitre.org/data/definitions/189.html
https://cwe.mitre.org/data/definitions/197.html
https://cwe.mitre.org/data/definitions/681.html

CERT C ID: FLP03-C, FLP34-C
CERT C++ ID: FLP34-C

See Also
Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Integer conversion overflow | Unsigned integer conversion overflow |
Sign change integer conversion overflow

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2013b

3 Defects

3-220

https://www.securecoding.cert.org/confluence/x/4YHp
https://www.securecoding.cert.org/confluence/x/kgAV
https://wiki.sei.cmu.edu/confluence/x/xNUxBQ

Float division by zero
Dividing floating point number by zero

Description
Float division by zero occurs when the denominator of a division operation can be a
zero-valued floating point number.

Examples

Dividing a Floating Point Number by Zero
float fraction(float num)
{
 float denom = 0.0;
 float result = 0.0;

 result = num/denom;

 return result;
}

A division by zero error occurs at num/denom because denom is zero.

float fraction(float num)
{
 float denom = 0.0;
 float result = 0.0;

 if(((int)denom) != 0)
 result = num/denom;

 return result;
}

 Float division by zero

3-221

Before dividing, add a test to see if the denominator is zero, checking before division
occurs. If denom is always zero, this correction can produce a dead code defect in your
Polyspace results.

One possible correction is to change the denominator value so that denom is not zero.

float fraction(float num)
{
 float denom = 2.0;
 float result = 0.0;

 result = num/denom;

 return result;
}

Check Information
Group: Numerical
Language: C | C++
Default: On
Command-Line Syntax: FLOAT_ZERO_DIV
Impact: High
CWE ID: 189, 369
CERT C ID: FLP03-C

See Also
Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Integer division by zero

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

3 Defects

3-222

https://cwe.mitre.org/data/definitions/189.html
https://cwe.mitre.org/data/definitions/369.html
https://www.securecoding.cert.org/confluence/x/4YHp

Introduced in R2013b

 Float division by zero

3-223

Float overflow
Overflow from operation between floating points

Description
Float overflow occurs when an operation on floating point variables can result in values
that cannot be represented by the result data type. The data type of a variable determines
the number of bytes allocated for the variable storage and constrains the range of allowed
values.

The exact storage allocation for different floating point types depends on your processor.
See Target processor type (-target).

Examples

Multiplication of Floats
#include <float.h>

float square(void) {

 float val = FLT_MAX;
 return val * val;
}

In the return statement, the variable val is multiplied by itself. The square of the
maximum float value cannot be represented by a float (the return type for this function)
because the value of val is the maximum float value.

One possible correction is to store the result of the operation in a larger data type. In this
example, by returning a double instead of a float, the overflow defect is fixed.

#include <float.h>

double square(void) {

3 Defects

3-224

 float val = FLT_MAX;

 return (double)val * (double)val;
}

Check Information
Group: Numerical
Language: C | C++
Default: Off
Command-Line Syntax: FLOAT_OVFL
Impact: Low
CWE ID: 189, 682, 873
CERT C ID: FLP03-C, FLP06-C

See Also
Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Integer overflow | Unsigned integer overflow

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2013b

 Float overflow

3-225

https://cwe.mitre.org/data/definitions/189.html
https://cwe.mitre.org/data/definitions/682.html
https://cwe.mitre.org/data/definitions/873.html
https://www.securecoding.cert.org/confluence/x/4YHp
https://www.securecoding.cert.org/confluence/x/YAAV

Format string specifiers and arguments
mismatch
String specifiers do not match corresponding arguments

Description
Format string specifiers and arguments mismatch occurs when the parameters in
the format specification do not match their corresponding arguments. For example, an
argument of type unsigned long must have a format specification of %lu.

Examples

Printing a Float
#include <stdio.h>

void string_format(void) {

 unsigned long fst = 1;

 printf("%d\n", fst);
}

In the printf statement, the format specifier, %d, does not match the data type of fst.

One possible correction is to use the %lu format specifier. This specifier matches the
unsigned integer type and long size of fst.

#include <stdio.h>

void string_format(void) {

 unsigned long fst = 1;

3 Defects

3-226

 printf("%lu\n", fst);
}

One possible correction is to change the argument to match the format specifier. Convert
fst to an integer to match the format specifier and print the value 1.

#include <stdio.h>

void string_format(void) {

 unsigned long fst = 1;

 printf("%d\n", (int)fst);
}

Check Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: STRING_FORMAT
Impact: Low
CWE ID: 683, 685, 686
CERT C ID: DCL10-C, DCL11-C, EXP37-C, FIO47-C, INT00-C, MSC15-C
CERT C++ ID: EXP37-C, FIO47-C
ISO/IEC TS 17961 ID: argcomp, invfmtstr

See Also
Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Invalid use of standard library string routine

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

 Format string specifiers and arguments mismatch

3-227

https://cwe.mitre.org/data/definitions/683.html
https://cwe.mitre.org/data/definitions/685.html
https://cwe.mitre.org/data/definitions/686.html
https://www.securecoding.cert.org/confluence/x/QwA1
https://www.securecoding.cert.org/confluence/x/IwA_
https://www.securecoding.cert.org/confluence/x/VQBc
https://www.securecoding.cert.org/confluence/x/wQA1
https://www.securecoding.cert.org/confluence/x/FhE
https://www.securecoding.cert.org/confluence/x/EoLu
https://wiki.sei.cmu.edu/confluence/x/49UxBQ
https://wiki.sei.cmu.edu/confluence/x/J9YxBQ

External Websites
Standard library output functions

Introduced in R2013b

3 Defects

3-228

http://en.cppreference.com/w/cpp/io/c/fprintf

Function called from signal handler not
asynchronous-safe
Call to interrupted function causes undefined program behavior

Description
Function called from signal handler not asynchronous-safe occurs when a signal
handler calls a function that is not asynchronous-safe according to the POSIX standard.
An asynchronous-safe function can be interrupted at any point in its execution, then
called again without causing an inconsistent state. It can also correctly handle global data
that might be in an inconsistent state.

If a signal handler calls another function that calls an asynchronous-unsafe function, the
defect appears on the function call in the signal handler. The defect traceback shows the
full path from the signal handler to the asynchronous-unsafe function.

Risk
When a signal handler is invoked, the execution of the program is interrupted. After the
handler is finished, program execution resumes at the point of interruption. If a function
is executing at the time of the interruption, calling it from within the signal handler is
undefined behavior, unless it is asynchronous-safe.

Fix
The POSIX standard defines these functions as asynchronous-safe. You can call these
functions from a signal handler.

_exit() getpgrp() setsockopt()
_Exit() getpid() setuid()
abort() getppid() shutdown()
accept() getsockname() sigaction()
access() getsockopt() sigaddset()

 Function called from signal handler not asynchronous-safe

3-229

aio_error() getuid() sigdelset()
aio_return() kill() sigemptyset()
aio_suspend() link() sigfillset()
alarm() linkat() sigismember()
bind() listen() signal()
cfgetispeed() lseek() sigpause()
cfgetospeed() lstat() sigpending()
cfsetispeed() mkdir() sigprocmask()
cfsetospeed() mkdirat() sigqueue()
chdir() mkfifo() sigset()
chmod() mkfifoat() sigsuspend()
chown() mknod() sleep()
clock_gettime() mknodat() sockatmark()
close() open() socket()
connect() openat() socketpair()
creat() pathconf() stat()
dup() pause() symlink()
dup2() pipe() symlinkat()
execl() poll() sysconf()
execle() posix_trace_event() tcdrain()
execv() pselect() tcflow()
execve() pthread_kill() tcflush()
faccessat() pthread_self() tcgetattr()
fchdir() pthread_sigmask() tcgetpgrp()
fchmod() quick_exit() tcsendbreak()
fchmodat() raise() tcsetattr()
fchown() read() tcsetpgrp()
fchownat() readlink() time()
fcntl() readlinkat() timer_getoverrun()

3 Defects

3-230

fdatasync() recv() timer_gettime()
fexecve() recvfrom() timer_settime()
fork() recvmsg() times()
fpathconf() rename() umask()
fstat() renameat() uname()
fstatat() rmdir() unlink()
fsync() select() unlinkat()
ftruncate() sem_post() utime()
futimens() send() utimensat()
getegid() sendmsg() utimes()
geteuid() sendto() wait()
getgid() setgid() waitpid()
getgroups() setpgid() write()
getpeername() setsid()

Functions not in the previous table are not asynchronous-safe, and should not be called
from a signal hander.

Examples
Call to printf() Inside Signal Handler
#include <signal.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <setjmp.h>
#include <syslog.h>
#include <unistd.h>

#define SIZE20 20

extern volatile sig_atomic_t e_flag;

void display_info(const char *info)

 Function called from signal handler not asynchronous-safe

3-231

{
 if (info)
 {
 (void)fputs(info, stderr);
 }
}

void sig_handler(int signum)
{
 /* Call function printf() that is not
 asynchronous-safe */
 printf("signal %d received.", signum);
 e_flag = 1;
}

int main(void)
{
 e_flag = 0;
 if (signal(SIGINT, sig_handler) == SIG_ERR)
 {
 /* Handle error */
 }
 char *info = (char *)calloc(SIZE20, sizeof(char));
 if (info == NULL)
 {
 /* Handle Error */
 }
 while (!e_flag)
 {
 /* Main loop program code */
 display_info(info);
 /* More program code */
 }
 free(info);
 info = NULL;
 return 0;
}

In this example, sig_handler calls printf() when catching a signal. If the handler
catches another signal while printf() is executing, the behavior of the program is
undefined.

3 Defects

3-232

Use your signal handler to set only the value of a flag. e_flag is of type volatile
sig_atomic_t. sig_handler can safely access it asynchronously.

#include <signal.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <setjmp.h>
#include <syslog.h>
#include <unistd.h>

#define SIZE20 20

extern volatile sig_atomic_t e_flag;

void display_info(const char *info)
{
 if (info)
 {
 (void)fputs(info, stderr);
 }
}

void sig_handler1(int signum)
{
 int s0 = signum;
 e_flag = 1;
}

int func(void)
{
 e_flag = 0;
 if (signal(SIGINT, sig_handler1) == SIG_ERR)
 {
 /* Handle error */
 }
 char *info = (char *)calloc(SIZE20, 1);
 if (info == NULL)
 {
 /* Handle error */
 }
 while (!e_flag)
 {
 /* Main loop program code */

 Function called from signal handler not asynchronous-safe

3-233

 display_info(info);
 /* More program code */
 }
 free(info);
 info = NULL;
 return 0;
}

Result Information
Group: Programming
Language: C | C++
Default: Off
Command-Line Syntax: SIG_HANDLER_ASYNC_UNSAFE
Impact: Medium
CWE ID: 364, 387, 413, 479, 663, 828
CERT C ID: SIG30-C
ISO/IEC TS 17961 ID: asyncsig

See Also
Function called from signal handler not asynchronous-safe (strict) |
Return from computational exception signal handler | Shared data
access within signal handler | Signal call from within signal handler

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2017b

3 Defects

3-234

https://cwe.mitre.org/data/definitions/364.html
https://cwe.mitre.org/data/definitions/387.html
https://cwe.mitre.org/data/definitions/413.html
https://cwe.mitre.org/data/definitions/479.html
https://cwe.mitre.org/data/definitions/663.html
https://cwe.mitre.org/data/definitions/828.html
https://www.securecoding.cert.org/confluence/x/34At

Function called from signal handler not
asynchronous-safe (strict)
Call to interrupted function causes undefined program behavior

Description
Function called from signal handler not asynchronous-safe (strict) occurs when a
signal handler calls a function that is not asynchronous-safe according to the C standard.
An asynchronous-safe function can be interrupted at any point in its execution, then
called again without causing an inconsistent state. It can also correctly handle global data
that might be in an inconsistent state.

When you select the checker Function called from signal handler not asynchronous-
safe, the checker detects calls to functions that are not asynchronous-safe according to
the POSIX standard. Function called from signal handler not asynchronous-safe
(strict) does not raise a defect for these cases. Function called from signal handler
not asynchronous-safe (strict) raises a defect for functions that are asynchronous-safe
according to the POSIX standard but not according to the C standard.

If a signal handler calls another function that calls an asynchronous-unsafe function, the
defect appears on the function call in the signal handler. The defect traceback shows the
full path from the signal handler to the asynchronous-unsafe function.

Risk
When a signal handler is invoked, the execution of the program is interrupted. After the
handler is finished, program execution resumes at the point of interruption. If a function
is executing at the time of the interruption, calling it from within the signal handler is
undefined behavior, unless it is asynchronous-safe.

Fix
The C standard defines the following functions as asynchronous-safe. You can call these
functions from a signal handler:

 Function called from signal handler not asynchronous-safe (strict)

3-235

• abort()
• _Exit()
• quick_exit()
• signal()

Examples
Call to raise() Inside Signal Handler
#include <signal.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <setjmp.h>
#include <syslog.h>
#include <unistd.h>

void SIG_ERR_handler(int signum)
{
 int s0 = signum;
 /* SIGTERM specific handling */
}

void sig_handler(int signum)
{
 int s0 = signum;
 /* Call raise() */
 if (raise(SIGTERM) != 0) {
 /* Handle error */
 }
}

int finc(void)
{
 if (signal(SIGTERM, SIG_ERR_handler) == SIG_ERR)
 {
 /* Handle error */
 }
 if (signal(SIGINT, sig_handler) == SIG_ERR)
 {
 /* Handle error */

3 Defects

3-236

 }
 /* Program code */
 if (raise(SIGINT) != 0)
 {
 /* Handle error */
 }
 /* More code */
 return 0;
}

In this example, sig_handler calls raise() when catching a signal. If the handler
catches another signal while raise() is executing, the behavior of the program is
undefined.

According to the C standard, the only functions that you can safely call from a signal
handler are abort(), _Exit(), quick_exit(), and signal().

#include <signal.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <setjmp.h>
#include <syslog.h>
#include <unistd.h>

void SIG_ERR_handler(int signum)
{
 int s0 = signum;
 /* SIGTERM specific handling */
}
void sig_handler(int signum)
{
 int s0 = signum;

}

int func(void)
{
 if (signal(SIGTERM, SIG_ERR_handler) == SIG_ERR)
 {
 /* Handle error */

 Function called from signal handler not asynchronous-safe (strict)

3-237

 }
 if (signal(SIGINT, sig_handler) == SIG_ERR)
 {
 /* Handle error */
 }
 /* Program code */
 if (raise(SIGINT) != 0)
 {
 /* Handle error */
 }
 /* More code */
 return 0;
}

Result Information
Group: Programming
Language: C | C++
Default: Off
Command-Line Syntax: SIG_HANDLER_ASYNC_UNSAFE_STRICT
Impact: Medium
CWE ID: 364, 387, 413, 479, 663, 828
CERT C ID: SIG30-C
ISO/IEC TS 17961 ID: asyncsig

See Also
Function called from signal handler not asynchronous-safe | Shared
data access within signal handler | Signal call from within signal
handler

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2017b

3 Defects

3-238

https://cwe.mitre.org/data/definitions/364.html
https://cwe.mitre.org/data/definitions/387.html
https://cwe.mitre.org/data/definitions/413.html
https://cwe.mitre.org/data/definitions/479.html
https://cwe.mitre.org/data/definitions/663.html
https://cwe.mitre.org/data/definitions/828.html
https://www.securecoding.cert.org/confluence/x/34At

Function pointer assigned with absolute
address
Constant expression is used as function address is vulnerable to code injection

Description
Function pointer assigned with absolute address looks for assignments to function
pointers. If the function pointer is assigned an absolute address, Bug Finder raises a
defect.

Bug Finder considers expressions with any combination of literal constants as an absolute
address. The one exception is when the value of the expression is zero.

Risk
Using a fixed address is not portable because it is possible the address is invalid on other
platforms.

An attacker can inject code at the absolute address, causing your program to execute
arbitrary, possibly malicious, code.

Fix
Do not use an absolute address with function pointers.

Examples

Function Pointer Address Assignment
extern int func0(int i, char c);
typedef int (*FuncPtr) (int, char);

FuncPtr funcptrabsoluteaddr() {

 Function pointer assigned with absolute address

3-239

 return (FuncPtr)0x08040000;
}

In this example, the function returns a function pointer to the address 0x08040000. If an
attacker knows this absolute address, an attacker can compromise your program.

One possible correction is to use the address of an existing function instead.

extern int func0(int i, char c);
typedef int (*FuncPtr) (int, char);

FuncPtr funcptrabsoluteaddr() {
 return &func0;
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: FUNC_PTR_ABSOLUTE_ADDR
Impact: Low
CWE ID: 587

See Also

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2015b

3 Defects

3-240

https://cwe.mitre.org/data/definitions/587.html

Hard-coded buffer size
Size of memory buffer is a numerical value instead of symbolic constant

Description
Hard-coded buffer size occurs when you use a numerical value instead of a symbolic
constant when declaring a memory buffer such as an array.

Risk
Hard-coded buffer size causes the following issues:

• Hard-coded buffer size increases the likelihood of mistakes and therefore maintenance
costs. If a policy change requires developers to change the buffer size, they must
change every occurrence of the buffer size in the code.

• Hard-constant constants can be exposed to attack if the code is disclosed.

Fix
Use a symbolic name instead of a hard-coded constant for buffer size. Symbolic names
include const-qualified variables, enum constants, or macros.

enum constants are recommended.

• Macros are replaced by their constant values after preprocessing. Therefore, they can
expose the loop boundary.

• enum constants are known at compilation time. Therefore, compilers can optimize the
loops more efficiently.

const-qualified variables are usually known at run time.

 Hard-coded buffer size

3-241

Examples

Hard-Coded Buffer Size
int table[100];

void read(int);

void func(void) {
 for (int i=0; i<100; i++)
 read(table[i]);
}

In this example, the size of the array table is hard-coded.

One possible correction is to replace the hard-coded size with a symbolic name.

const int MAX_1 = 100;
#define MAX_2 100
enum { MAX_3 = 100 };

int table_1[MAX_1];
int table_2[MAX_2];
int table_3[MAX_3];

void read(int);

void func(void) {
 for (int i=0; i < MAX_1; i++)
 read(table_1[i]);
 for (int i=0; i < MAX_2; i++)
 read(table_2[i]);
 for (int i=0; i < MAX_3; i++)
 read(table_3[i]);
}

Result Information
Group: Good practice
Language: C | C++
Default: Off

3 Defects

3-242

Command-Line Syntax: HARD_CODED_BUFFER_SIZE
Impact: Low
CWE ID: 547
CERT C ID: DCL06-C

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2015b

 Hard-coded buffer size

3-243

https://cwe.mitre.org/data/definitions/547.html
https://www.securecoding.cert.org/confluence/x/hYAg

Function that can spuriously fail not
wrapped in loop
Loop checks failure condition after possible spurious failure

Description
Function that can spuriously fail not wrapped in loop occurs when the following
atomic compare and exchange functions that can fail spuriously are called from outside a
loop.

• C atomic functions:

• atomic_compare_exchange_weak()
• atomic_compare_exchange_weak_explicit()

• C++ atomic functions:

• std::atomic<T>::compare_exchange_weak(T* expected, T desired)
• std::atomic<T>::compare_exchange_weak_explicit(T* expected, T

desired, std::memory_order succ, std::memory_order fail)
• std::atomic_compare_exchange_weak(std::atomic<T>* obj, T*

expected, T desired)
• std::atomic_compare_exchange_weak_explicit(volatile

std::atomic<T>* obj, T* expected, T desired, std::memory_order
succ, std::memory_order fail)

The functions compare the memory contents of the object representations pointed to by
obj and expected. The comparison can spuriously return false even if the memory
contents are equal. This spurious failure makes the functions faster on some platforms.

Risk
An atomic compare and exchange function that spuriously fails can cause unexpected
results and unexpected control flow.

3 Defects

3-244

Fix
Wrap atomic compare and exchange functions that can spuriously fail in a loop. The loop
checks the failure condition after a possible spurious failure.

Examples

atomic_compare_exchange_weak() Not Wrapped in Loop
#include <stdatomic.h>

extern void reset_count(void);
atomic_int count = ATOMIC_VAR_INIT(0);

void increment_count(void)
{
 int old_count = atomic_load(&count);
 int new_count;
 new_count = old_count + 1;
 if (!atomic_compare_exchange_weak(&count, &old_count, new_count))
 reset_count();

}

In this example, increment_count() uses atomic_compare_exchange_weak() to
compare count and old_count. If the counts are equal, count is incremented to
new_count. If they are not equal, the count is reset. When
atomic_compare_exchange_weak() fails spuriously, the count is reset unnecessarily.

One possible correction is to wrap the call to atomic_compare_exchange_weak() in a
while loop. The loop checks the failure condition after a possible spurious failure.

#include <stdatomic.h>

extern void reset_count(void);
atomic_int count = ATOMIC_VAR_INIT(0);

void increment_count(void)
{
 int old_count = atomic_load(&count);

 Function that can spuriously fail not wrapped in loop

3-245

 int new_count;
 new_count = old_count + 1;

 do {
 reset_count();

 } while (!atomic_compare_exchange_weak(&count, &old_count, new_count));

}

Result Information
Group: Concurrency
Language: C | C++
Default: Off
Command-Line Syntax: SPURIOUS_FAILURE_NOT_WRAPPED_IN_LOOP
Impact: Low
CERT C ID: CON41-C
CERT C++ ID: CON41-C

See Also
Function that can spuriously wake up not wrapped in loop | Returned
value of a sensitive function not checked

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2018b

3 Defects

3-246

https://wiki.sei.cmu.edu/confluence/x/QNUxBQ
https://wiki.sei.cmu.edu/confluence/x/QNUxBQ

Function that can spuriously wake up not
wrapped in loop
Loop checks wake-up condition after possible spurious wake-up

Description
Function that can spuriously wake up not wrapped in loop occurs when the
following wait on condition functions are called from outside a loop.

• C functions:

• cnd_wait()
• cnd_timedwait()

• POSIX functions:

• pthread_cond_wait()
• pthread_cond_timedwait()

• C++ std::condition_variable and std::condition_variable_any class
member functions:

• wait()
• wait_until()
• wait_for()

Wait on condition functions pause the execution of the calling thread when a specified
condition is met. The thread wakes up and resumes once another thread notifies it with
cnd_broadcast() or an equivalent function. The wake-up notification can be spurious
or malicious.

Risk
If a thread receives a spurious wake-up notification and the condition of the wait on
condition function is not checked, the thread can wake up prematurely. The wake-up can
cause unexpected control flow, indefinite blocking of other threads, or denial of service.

 Function that can spuriously wake up not wrapped in loop

3-247

Fix
Wrap wait on condition functions that can wake up spuriously in a loop. The loop checks
the wake-up condition after a possible spurious wake-up notification.

Examples
cnd_wait() Not Wrapped in Loop
#include <stdio.h>
#include <stddef.h>
#include <threads.h>

#define THRESHOLD 100

static mtx_t lock;
static cnd_t cond;

void func(int input)
{
 if (thrd_success != mtx_lock(&lock)) {
 /* Handle error */
 }
 /* test condition to pause thread */
 if (input > THRESHOLD) {
 if (thrd_success != cnd_wait(&cond, &lock)) {
 /* Handle error */
 }
 }
 /* Proceed if condition to pause does not hold */

 if (thrd_success != mtx_unlock(&lock)) {
 /* Handle error */
 }
}

In this example, the thread uses cnd_wait() to pause execution when input is greater
than THRESHOLD. The paused thread can resume if another thread uses
cnd_broadcast(), which notifies all the threads. This notification causes the thread to
wake up even if the pause condition is still true.

3 Defects

3-248

One possible correction is to wrap cnd_wait() in a while loop. The loop checks the
pause condition after the thread receives a possible spurious wake-up notification.

#include <stdio.h>
#include <stddef.h>
#include <threads.h>

#define THRESHOLD 100

static mtx_t lock;
static cnd_t cond;

void func(int input)
{
 if (thrd_success != mtx_lock(&lock)) {
 /* Handle error */
 }
 /* test condition to pause thread */
 while (input > THRESHOLD) {
 if (thrd_success != cnd_wait(&cond, &lock)) {
 /* Handle error */
 }
 }
 /* Proceed if condition to pause does not hold */

 if (thrd_success != mtx_unlock(&lock)) {
 /* Handle error */
 }
}

Result Information
Group: Concurrency
Language: C | C++
Default: Off
Command-Line Syntax: SPURIOUS_WAKEUP_NOT_WRAPPED_IN_LOOP
Impact: Low
CERT C ID: CON36-C
CERT C++ ID: CON54-CPP

 Function that can spuriously wake up not wrapped in loop

3-249

https://wiki.sei.cmu.edu/confluence/x/RNUxBQ
https://wiki.sei.cmu.edu/confluence/x/cns-BQ

See Also
Function that can spuriously fail not wrapped in loop | Returned value
of a sensitive function not checked

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2018b

3 Defects

3-250

Hard-coded loop boundary
Loop boundary is a numerical value instead of symbolic constant

Description
Hard-coded loop boundary occurs when you use a numerical value instead of symbolic
constant for the boundary of a for, while or do-while loop.

Risk
Hard-coded loop boundary causes the following issues:

• Hard-coded loop boundary makes the code vulnerable to denial of service attacks
when the loop involves time-consuming computation or resource allocation.

• Hard-coded loop boundary increases the likelihood of mistakes and maintenance costs.
If a policy change requires developers to change the loop boundary, they must change
every occurrence of the boundary in the code.

For instance, the loop boundary is 10000 and represents the maximum number of
client connections supported in a network server application. If the server supports
more clients, you must change all instances of the loop boundary in your code. Even if
the loop boundary occurs once, you have to search for a numerical value of 10000 in
your code. The numerical value can occur in places other than the loop boundary. You
must browse through those places before you find the loop boundary.

Fix
Use a symbolic name instead of a hard-coded constant for loop boundary. Symbolic names
include const-qualified variables, enum constants or macros.enum constants are
recommended because:

• Macros are replaced by their constant values after preprocessing. Therefore, they can
expose the buffer size.

• enum constants are known at compilation time. Therefore, compilers can allocate
storage for them more efficiently.

 Hard-coded loop boundary

3-251

const-qualified variables are usually known at run time.

Examples

Hard-Coded Loop Boundary
void performOperation(int);

void func(void) {
 for (int i=0; i<100; i++)
 performOperation(i);
}

In this example, the boundary of the for loop is hard-coded.

One possible correction is to replace the hard-coded loop boundary with a symbolic name.

const int MAX_1 = 100;
#define MAX_2 100
enum { MAX_3 = 100 };

void performOperation_1(int);
void performOperation_2(int);
void performOperation_3(int);

void func(void) {
 for (int i=0; i<MAX_1; i++)
 performOperation_1(i);
 for (int i=0; i<MAX_2; i++)
 performOperation_2(i);
 for (int i=0; i<MAX_3; i++)
 performOperation_3(i);
}

Result Information
Group: Good practice
Language: C | C++
Default: Off

3 Defects

3-252

Command-Line Syntax: HARD_CODED_LOOP_BOUNDARY
Impact: Low
CWE ID: 547
CERT C ID: DCL06-C

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2015b

 Hard-coded loop boundary

3-253

https://cwe.mitre.org/data/definitions/547.html
https://www.securecoding.cert.org/confluence/x/hYAg

Hard-coded object size used to manipulate
memory
Memory manipulation with hard-coded size instead of sizeof

Description
Hard-coded object size used to manipulate memory occurs on constants that are
memory size arguments for memory functions such as malloc or memset.

Risk
If you hard code object size, your code is not portable to architectures with different type
sizes. If the constant value is not the same as the object size, the buffer might or might
not overflow.

Fix
For the size argument of memory functions, use sizeof(object).

Examples

Assume 4-Byte Integer Pointers
#include <stddef.h>
#include <stdlib.h>
enum {
 SIZE3 = 3,
 SIZE20 = 20
};
extern void fill_ints(int **matrix, size_t nb, size_t s);

void bug_hardcodedmemsize()
{
 size_t i, s;

3 Defects

3-254

 s = 4;
 int **matrix = (int **)calloc(SIZE20, s);
 if (matrix == NULL) {
 return; /* Indicate calloc() failure */
 }
 fill_ints(matrix, SIZE20, s);
 free(matrix);
}

In this example, the memory allocation function calloc is called with a memory size of 4.
The memory is allocated for an integer pointer, which can be a more or less than 4 bytes
depending on your target. If the integer pointer is not 4 bytes, your program can fail.

When calling calloc, replace the hard-coded size with a call to sizeof. This change
makes your code more portable.

#include <stddef.h>
#include <stdlib.h>
enum {
 SIZE3 = 3,
 SIZE20 = 20
};
extern void fill_ints(int **matrix, size_t nb, size_t s);

void corrected_hardcodedmemsize()
{
 size_t i, s;

 s = sizeof(int *);
 int **matrix = (int **)calloc(SIZE20, s);
 if (matrix == NULL) {
 return; /* Indicate calloc() failure */
 }
 fill_ints(matrix, SIZE20, s);
 free(matrix);
}

Result Information
Group: Good Practice
Language: C | C++

 Hard-coded object size used to manipulate memory

3-255

Default: Off
Command-Line Syntax: HARD_CODED_MEM_SIZE
Impact: Low
CWE ID: 805
CERT C ID: EXP09-C

See Also

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2016b

3 Defects

3-256

https://cwe.mitre.org/data/definitions/805.html
https://www.securecoding.cert.org/confluence/x/eAAV

Host change using externally controlled
elements
Changing host ID from an unsecure source

Description
Host change using externally controlled elements detects uncontrolled arguments in
calls to routines that change the host ID, such as sethostid (Linux) or
SetComputerName (Windows).

Risk
The tainted host ID value can allow external control of system settings. This control can
disrupt services, cause unexpected application behavior, or cause other malicious
intrusions.

Fix
Use caution when changing or editing the host ID. Do not allow user-provided values to
control sensitive data.

Examples

Change Host ID from Function Argument
#include <unistd.h>

void bug_taintedhostid(long userhid) {
 sethostid(userhid);
}

This example sets a new host ID using the argument passed to the function. Before using
the host ID, check the value passed in.

 Host change using externally controlled elements

3-257

One possible correction is to change the host ID to a predefined ID. This example uses the
host argument as a switch variable to choose between the different, predefined host IDs.

#include <unistd.h>

extern long called_taintedhostid_sanitize(long);
enum { HI0 = 1, HI1, HI2, HI3 };

void taintedhostid(int host) {

 long hid = 0;
 switch(host) {
 case HI0:
 hid = 0x7f0100;
 break;
 case HI1:
 hid = 0x7f0101;
 break;
 case HI2:
 hid = 0x7f0102;
 break;
 case HI3:
 hid = 0x7f0103;
 break;
 default:
 /* do nothing */
 break;
 }
 if (hid > 0) {
 sethostid(hid);
 }
}

Result Information
Group: Tainted Data
Language: C | C++
Default: Off
Command-Line Syntax: TAINTED_HOSTID
Impact: Medium
CWE ID: 15
CERT C ID: API00-C

3 Defects

3-258

https://cwe.mitre.org/data/definitions/15.html
https://www.securecoding.cert.org/confluence/x/egAV

See Also
Execution of externally controlled command | Use of externally
controlled environment variable | Host change using externally
controlled elements | Command executed from externally controlled path
| Library loaded from externally controlled path

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2015b

 Host change using externally controlled elements

3-259

Improper array initialization
Incorrect array initialization when using initializers

Description
Improper array initialization occurs when Polyspace Bug Finder considers that an
array initialization using initializers is incorrect.

This defect applies to normal and designated initializers. In C99, with designated
initializers, you can place the elements of an array initializer in any order and implicitly
initialize some array elements. The designated initializers use the array index to establish
correspondence between an array element and an array initializer element. For instance,
the statement int arr[6] = { [4] = 29, [2] = 15 } is equivalent to int arr[6]
= { 0, 0, 15, 0, 29, 0 }.

You can use initializers incorrectly in one of the following ways.

Issue Risk Possible Fix
In your initializer for a one-
dimensional array, you have
more elements than the
array size.

Unused array initializer
elements indicate a possible
coding error.

Increase the array size or
remove excess elements.

You place the braces
enclosing initializer values
incorrectly.

Because of the incorrect
placement of braces, some
array initializer elements
are not used.

Unused array initializer
elements indicate a possible
coding error.

Place braces correctly.

3 Defects

3-260

Issue Risk Possible Fix
In your designated
initializer, you do not
initialize the first element of
the array explicitly.

The implicit initialization of
the first array element
indicates a possible coding
error. You possibly
overlooked the fact that
array indexing starts from 0.

Initialize all elements
explicitly.

In your designated
initializer, you initialize an
element twice.

The first initialization is
overridden.

The redundant first
initialization indicates a
possible coding error.

Remove the redundant
initialization.

You use designated and
nondesignated initializers in
the same initialization.

You or another reviewer of
your code cannot determine
the size of the array by
inspection.

Use either designated or
nondesignated initializers.

Examples
Incorrectly Placed Braces (C Only)

int arr[2][3]
= {{1, 2},
 {3, 4},
 {5, 6}
};

In this example, the array arr is initialized as {1,2,0,3,4,0}. Because the initializer
contains {5,6}, you might expect the array to be initialized {1,2,3,4,5,6}.

One possible correction is to place the braces correctly so that all elements are explicitly
initialized.

int a1[2][3]

 Improper array initialization

3-261

= {{1, 2, 3},
 {4, 5, 6}
};

First Element Not Explicitly Initialized
int arr[5]
= {
 [1] = 2,
 [2] = 3,
 [3] = 4,
 [4] = 5
};

In this example, arr[0] is not explicitly initialized. It is possible that the programmer did
not consider that the array indexing starts from 0.

One possible correction is to initialize all elements explicitly.

int arr[5]
= {
 [0] = 1,
 [1] = 2,
 [2] = 3,
 [3] = 4,
 [4] = 5
};

Element Initialized Twice
int arr[5]
= {
 [0] = 1,
 [1] = 2,
 [2] = 3,
 [2] = 4,
 [4] = 5
};

In this example, arr[2] is initialized twice. The first initialization is overridden. In this
case, because arr[3] was not explicitly initialized, it is possible that the programmer
intended to initialize arr[3] when arr[2] was initialized a second time.

3 Defects

3-262

One possible correction is to eliminate the redundant initialization.

int arr[5]
= {
 [0] = 1,
 [1] = 2,
 [2] = 3,
 [3] = 4,
 [4] = 5
};

Mix of Designated and Nondesignated Initializers
int arr[]
= {
 [0] = 1,
 [3] = 3,
 4,
 [5] = 5,
 6
 };

In this example, because a mix of designated and nondesignated initializers are used, it is
difficult to determine the size of arr by inspection.

One possible correction is to use only designated initializers for array initialization.

int arr[]
= {
 [0] = 1,
 [3] = 3,
 [4] = 4,
 [5] = 5,
 [6] = 6
};

Result Information
Group: Programming
Language: C | C++

 Improper array initialization

3-263

Default: On
Command-Line Syntax: IMPROPER_ARRAY_INIT
Impact: Medium
CWE ID: 665
CERT C ID: ARR00-C, ARR02-C

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2015b

3 Defects

3-264

https://cwe.mitre.org/data/definitions/665.html
https://www.securecoding.cert.org/confluence/x/FgH3
https://www.securecoding.cert.org/confluence/x/HQEOAQ

Incompatible padding for RSA algorithm
operation
Cryptography operation is not supported by the padding type set in context

Description
Incompatible padding for RSA algorithm operation occurs when you perform an RSA
algorithm operation on a context object that is not compatible with the padding
previously associated with the object.

For instance, you associate the OAEP padding scheme with a context object but later use
the context for signature verification, an operation that the padding scheme does not
support.

ret = EVP_PKEY_CTX_set_rsa_padding(ctx, RSA_PKCS1_OAEP_PADDING);
...
ret = EVP_PKEY_verify(ctx, out, out_len, in, in_len);

Risk
Padding schemes remove determinism from the RSA algorithm and protect RSA
operations from certain kinds of attack.

When you use an incorrect padding scheme, the RSA operation can fail or result in
unexpected ciphertext.

Fix
Before performing an RSA operation, associate the context object with a padding scheme
that is compatible with the operation.

• Encryption: Use the OAEP padding scheme.

For instance, use the EVP_PKEY_CTX_set_rsa_padding function with the argument
RSA_PKCS1_OAEP_PADDING or the RSA_padding_add_PKCS1_OAEP function.

ret = EVP_PKEY_CTX_set_rsa_padding(ctx, RSA_PKCS1_OAEP_PADDING);

 Incompatible padding for RSA algorithm operation

3-265

You can also use the PKCS#1v1.5 or SSLv23 schemes. Be aware that these schemes
are considered insecure.

You can then use functions such as EVP_PKEY_encrypt / EVP_PKEY_decrypt or
RSA_public_encrypt / RSA_private_decrypt on the context.

• Signature: Use the RSA-PSS padding scheme.

For instance, use the EVP_PKEY_CTX_set_rsa_padding function with the argument
RSA_PKCS1_PSS_PADDING.

ret = EVP_PKEY_CTX_set_rsa_padding(ctx, RSA_PKCS1_PSS_PADDING);

You can also use the ANSI X9.31, PKCS#1v1.5, or SSLv23 schemes. Be aware that
these schemes are considered insecure.

You can then use functions such as the EVP_PKEY_sign-EVP_PKEY_verify pair or
the RSA_private_encrypt-RSA_public_decrypt pair on the context.

If you perform two kinds of operation with the same context, after the first operation,
reset the padding scheme in the context before the second operation.

Examples

OAEP Padding for Signature Operation

#include <stddef.h>
#include <openssl/rsa.h>

#define fatal_error() exit(-1)

int ret;
unsigned char *out_buf;

int func(unsigned char *src, size_t len, RSA* rsa){
 if (rsa == NULL) fatal_error();
 return RSA_private_encrypt(len, src, out_buf, rsa, RSA_PKCS1_OAEP_PADDING);
}

In this example, the function RSA_private_encrypt performs a signature operation by
using the OAEP padding scheme, which supports encryption operations only.

3 Defects

3-266

One possible correction is to use the RSA-PSS padding scheme. The corrected example
uses the function RSA_padding_add_PKCS1_PSS to associate the padding scheme with
the context.

#include <stddef.h>
#include <openssl/evp.h>
#include <openssl/rsa.h>

#define fatal_error() exit(-1)

int ret;
unsigned char *msg_pad;
unsigned char *out_buf;

int func(unsigned char *src, size_t len, RSA* rsa){
 if (rsa == NULL) fatal_error();

 ret = RSA_padding_add_PKCS1_PSS(rsa, msg_pad, src, EVP_sha256(), -2);
 if (ret <= 0) fatal_error();

 return RSA_private_encrypt(len, msg_pad, out_buf, rsa, RSA_NO_PADDING);
}

Result Information
Group: Cryptography
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_RSA_BAD_PADDING
Impact: Medium
CWE ID: 310, 372, 573, 664

See Also
Missing blinding for RSA algorithm | Missing padding for RSA algorithm
| Nonsecure RSA public exponent | Weak padding for RSA algorithm

Topics
“Interpret Polyspace Bug Finder Results”

 Incompatible padding for RSA algorithm operation

3-267

https://cwe.mitre.org/data/definitions/310.html
https://cwe.mitre.org/data/definitions/372.html
https://cwe.mitre.org/data/definitions/573.html
https://cwe.mitre.org/data/definitions/664.html

“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2018a

3 Defects

3-268

Inappropriate I/O operation on device files
Operation can result in security vulnerabilities or a system failure

Description
Inappropriate I/O operation on device files occurs when you do not check whether a
file name parameter refers to a device file before you pass it to these functions:

• fopen()
• fopen_s()
• freopen()
• remove()
• rename()
• CreateFile()
• CreateFileA()
• CreateFileW()
• _wfopen()
• _wfopen_s()

Device files are files in a file system that provide an interface to device drivers. You can
use these files to interact with devices.

Inappropriate I/O operation on device files does not raise a defect when:

• You use stat or lstat-family functions to check the file name parameter before
calling the previously listed functions.

• You use a string comparison function to compare the file name against a list of device
file names.

Risk
Operations appropriate only for regular files but performed on device files can result in
denial-of-service attacks, other security vulnerabilities, or system failures.

 Inappropriate I/O operation on device files

3-269

Fix
Before you perform an I/O operation on a file:

• Use stat(), lstat(), or an equivalent function to check whether the file name
parameter refers to a regular file.

• Use a string comparison function to compare the file name against a list of device file
names.

Examples
Using fopen() Without Checking file_name
#include <stdio.h>
#include <string.h>

#define SIZE1024 1024

FILE* func()
{

 FILE* f;
 const char file_name[SIZE1024] = "./tmp/file";

 if ((f = fopen(file_name, "w")) == NULL) {
 /*handle error */
 };
 /*operate on file */
}

In this example, func() operates on the file file_name without checking whether it is a
regular file. If file_name is a device file, attempts to access it can result in a system
failure.

One possible correction is to use lstat() and the S_ISREG macro to check whether the
file is a regular file. This solution contains a TOCTOU race condition that can allow an
attacker to modify the file after you check it but before the call to fopen(). To prevent this
vulnerability, ensure that file_name refers to a file in a secure folder.

#include <stdlib.h>
#include <stdio.h>

3 Defects

3-270

#include <string.h>
#include <sys/stat.h>

#define SIZE1024 1024

FILE* func()
{

 FILE* f;
 const char file_name[SIZE1024] = "./tmp/file";
 struct stat orig_st;
 if ((lstat(file_name, &orig_st) != 0) ||
 (!S_ISREG(orig_st.st_mode))) {
 exit(0);
 }
 if ((f = fopen(file_name, "w")) == NULL) {
 /*handle error */
 };
 /*operate on file */
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: INAPPROPRIATE_IO_ON_DEVICE
Impact: Medium
CWE ID: 67
CERT C ID: FIO32-C
CERT C++ ID: FIO32-C

See Also
File access between time of check and use (TOCTOU) | Opening
previously opened resource | Resource leak | Returned value of a
sensitive function not checked | Vulnerable path manipulation

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

 Inappropriate I/O operation on device files

3-271

https://cwe.mitre.org/data/definitions/67.html
https://wiki.sei.cmu.edu/confluence/x/19YxBQ
https://wiki.sei.cmu.edu/confluence/x/19YxBQ

Introduced in R2018b

3 Defects

3-272

Incompatible types prevent overriding
Derived class method hides a virtual base class method instead of overriding it

Description
Incompatible types prevent overriding occurs when a derived class method has the
same name and number of parameters as a virtual base class method but:

• Differ in at least one parameter type.
• Differ in the presence or absence of qualifiers such as const.

The derived class method hides the virtual base class method instead of overriding it.

Risk
Risks include the following:

• If you intend that the derived class method must override the base class method, the
overriding does not occur.

• Because the base class method is hidden, you cannot use a derived class object to call
the method. If you use a derived class object to call the method with the base class
parameters, the derived class method is called instead. For the parameters whose
types do not match the arguments that you pass, a cast takes place if possible.
Otherwise, a compilation failure occurs.

Fix
Possible solutions include the following:

• If you want the derived class method to override the base class method, change the
interface of the derived class method.

For instance, change the parameter type or add a const qualifier if required.
• Otherwise, add the line using Base_class_name::method_name to the derived

class declaration. In this way, you can access the base class method using an object of
the derived class.

 Incompatible types prevent overriding

3-273

Examples

typedef Causing Virtual Function Hiding in Derived Class

class Base {
public:
 Base();
 virtual ~Base();
 virtual void func(float i);
 virtual void funcp(float* i);
 virtual void funcr(float& i);
};

typedef double Float;

class Derived: public Base {
public:
 Derived();
 ~Derived();
 void func(Float i);
 void funcp(Float* i);
 void funcr(Float& i);
};

In this example, because of the statement typedef double Float;, the Derived class
methods func, funcp and funcr have double arguments while the Base class methods
with the same name have float arguments.

Therefore, you cannot access the Base class methods using a Derived class object.

The defect appears on the method that hides a base class method. To find which base
class method is hidden:

1 Navigate to the base class definition. On the Source pane, right-click the base class
name and select Go To Definition.

2 In the base class definition, identify the virtual method that has the same name as
the derived class method name.

One possible correction is to use the same argument type for the base and derived class
methods to enable overriding. Otherwise, if you want to call the Base class methods with

3 Defects

3-274

the float arguments using a Derived class object, add the line using
Base::method_name to the Derived class declaration.

class Base {
public:
 Base();
 virtual ~Base();
 virtual void func(float i);
 virtual void funcp(float* i);
 virtual void funcr(float& i);
};

typedef double Float;

class Derived: public Base {
public:
 Derived();
 ~Derived();
 using Base::func;
 using Base::funcp;
 using Base::funcr;
 void func(Float i);
 void funcp(Float* i);
 void funcr(Float& i);
};

const Qualifier Missing in Derived Class Method
namespace Missing_Const {
class Base {
public:
 virtual void func(int) const ;
 virtual ~Base() ;
} ;

class Derived : public Base {
public:
 virtual void func(int) ;

} ;
}

In this example, Derived::func does not have a const qualifier but Base::func does.
Therefore, Derived::func does not override Base::func.

 Incompatible types prevent overriding

3-275

To enable overriding, add the const qualifier to the derived class method declaration.

namespace Missing_Const {
class Base {
public:
 virtual void func(int) const ;
 virtual ~Base() ;
} ;

class Derived : public Base {
public:
 virtual void func(int) const;

} ;
}

Value Instead of Reference in Derived Class Method
namespace Missing_Ref {

class Obj {
 int data;
};

class Base {
public:
 virtual void func(Obj& o);
 virtual ~Base() ;
} ;

class Derived : public Base {
public:
 virtual void func(Obj o) ;

} ;
}

In this example, Derived::func accepts an Obj parameter by value but Base::func
accepts an Obj parameter by reference. Therefore, Derived::func does not override
Base::func.

To enable overriding, pass the derived class method parameter by reference.

3 Defects

3-276

namespace Missing_Ref {

class Obj {
 int data;
};

class Base {
public:
 virtual void func(Obj& o);
 virtual ~Base() ;
} ;

class Derived : public Base {
public:
 virtual void func(Obj& o) ;

} ;
}

Result Information
Group: Object oriented
Language: C++
Default: On
Command-Line Syntax: VIRTUAL_FUNC_HIDING
Impact: Medium

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2015b

 Incompatible types prevent overriding

3-277

Conversion or deletion of incomplete class
pointer
You delete or cast to a pointer to an incomplete class

Description
Conversion or deletion of incomplete class pointer occurs when you delete or cast to
a pointer to an incomplete class. An incomplete class is one whose definition is not visible
at the point where the class is used.

For instance, the definition of class Body is not visible when the delete operator is
called on a pointer to Body:

class Handle {
 class Body *impl;
public:
 ~Handle() { delete impl; }
 // ...
};

Risk
When you delete a pointer to an incomplete class, it is not possible to call any nontrivial
destructor that the class might have. If the destructor performs cleanup activities such as
memory deallocation, these activities do not happen.

A similar problem happens, for instance, when you downcast to a pointer to an incomplete
class (downcasting is casting from a pointer to a base class to a pointer to a derived
class). At the point of downcasting, the relationship between the base and derived class is
not known. In particular, if the derived class inherits from multiple classes, at the point of
downcasting, this information is not available. The downcasting cannot make the
necessary adjustments for multiple inheritance and the resulting pointer cannot be
derefenced.

A similar statement can be made for upcasting (casting from a pointer to derived class to
a pointer to a base class).

3 Defects

3-278

Fix
When you delete or downcast to a pointer to a class, make sure that the class definition is
visible.

Alternatively, you can perform one of these actions:

• Instead of a regular pointer, use the std::shared_ptr type to point to the
incomplete class.

• When downcasting, make sure that the result is valid. Write error-handling code for
invalid results.

Examples

Deletion of Pointer to Incomplete Class
class Handle {
 class Body *impl;
public:
 ~Handle() { delete impl; }
 // ...
};

In this example, the definition of class Body is not visible when the pointer to Body is
deleted.

One possible correction is to make sure that the class definition is visible when a pointer
to the class is deleted.

class Handle {
 class Body *impl;
public:
 ~Handle();
 // ...
};

// Elsewhere
class Body { /* ... */ };

Handle::~Handle() {

 Conversion or deletion of incomplete class pointer

3-279

 delete impl;
}

Another possible correction is to use the std::shared_ptr type instead of a regular
pointer.

#include <memory>

class Handle {
 std::shared_ptr<class Body> impl;
 public:
 Handle();
 ~Handle() {}
 // ...
};

Downcasting to Pointer to Incomplete Class
File1.h:

class Base {
protected:
 double var;
public:
 Base() : var(1.0) {}
 virtual void do_something();
 virtual ~Base();
};

File2.h:

void funcprint(class Derived *);
class Base *get_derived();

File1.cpp:

#include "File1.h"
#include "File2.h"

void getandprint() {
 Base *v = get_derived();
 funcprint(reinterpret_cast<class Derived *>(v));
}

3 Defects

3-280

File2.cpp:

#include "File2.h"
#include "File1.h"
#include <iostream>

class Base2 {
protected:
 short var2;
public:
 Base2() : var2(12) {}
};

class Derived : public Base2, public Base {
 float var_derived;
public:
 Derived() : Base2(), Base(), var_derived(1.2f) {}
 void do_something()
 {
 std::cout << "var_derived: "
 << var_derived << ", var : " << var
 << ", var2: " << var2 << std::endl;
 }
 };

void funcprint(Derived *d) {
 d->do_something();
}

Base *get_derived() {
 return new Derived;
}

In this example, the definition of class Derived is not visible in File1.cpp when a
Base* pointer to downcast to a Derived* pointer.

In File2.cpp, class Derived derives from two classes, Base and Base2. This
information about multiple inheritance is not available at the point of downcasting in
File1.cpp. The result of downcasting is passed to the function funcprint and
dereferenced in the body of funcprint. Because the downcasting was done with
incomplete information, the dereference can be invalid.

 Conversion or deletion of incomplete class pointer

3-281

One possible correction is to define the class Derived before downcasting a Base*
pointer to a Derived* pointer.

In this corrected example, the downcasting is done in File2.cpp in the body of
funcprint at a point where the definition of class Derived is visible. The downcasting
is not done in File1.cpp where the definition of Derived is not visible. The changes
from the previous incorrect example are highlighted.

File1.h:

class Base {
protected:
 double var;
public:
 Base() : var(1.0) {}
 virtual void do_something();
 virtual ~Base();
};

File2.h:

void funcprint(class Base *);
class Base *get_derived();

File1.cpp:

#include "File1.h"
#include "File2.h"

void getandprint() {
 Base *v = get_derived();
 funcprint(v);
}

File2.cpp:

#include "File2_corr.h"
#include "File1_corr.h"
#include <iostream>

class Base2 {
protected:
 short var2;
public:

3 Defects

3-282

 Base2() : var2(12) {}
};

class Derived : public Base2, public Base {
 float var_derived;

public:
 Derived() : Base2(), Base(), var_derived(1.2f) {}
 void do_something()
 {
 std::cout << "var_derived: "
 << var_derived << ", var : " << var
 << ", var2: " << var2 << std::endl;
 }
};

void funcprint(Base *d) {
 Derived *temp = dynamic_cast<Derived*>(d);
 if(temp) {
 d->do_something();
 }
 else {
 //Handle error
 }
}

Base *get_derived() {
 return new Derived;
}

Result Information
Group: Object Oriented
Language: C++
Default: On
Command-Line Syntax: INCOMPLETE_CLASS_PTR
Impact: Medium
CERT C++ ID: EXP57-CPP

 Conversion or deletion of incomplete class pointer

3-283

https://wiki.sei.cmu.edu/confluence/x/83s-BQ

See Also
Delete of void* Pointer | MISRA C++:2008 Rule 5-2-4 | MISRA C++:2008
Rule 5-2-7 | MISRA C++:2008 Rule 5-2-8

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2018b

3 Defects

3-284

Inconsistent cipher operations
You perform encryption and decryption steps in succession with the same cipher context
without a reinitialization in between

Description
Inconsistent cipher operations occurs when you perform an encryption and decryption
step with the same cipher context. You do not reinitialize the context in between those
steps. The checker applies to symmetric encryption only.

For instance, you set up a cipher context for decryption using EVP_DecryptInit_ex.

EVP_DecryptInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv);

However, you use the context for encryption using EVP_EncryptUpdate.

EVP_EncryptUpdate(ctx, out_buf, &out_len, src, len);

Risk
Mixing up encryption and decryption steps can lead to obscure code. It is difficult to
determine at a glance whether the current cipher context is used for encryption or
decryption. The mixup can also lead to race conditions, failed encryption, and unexpected
ciphertext.

Fix
After you set up a cipher context for a certain family of operations, use the context for
only that family of operations.

For instance, if you set up a cipher context for decryption using EVP_DecryptInit_ex,
use the context afterward for decryption only.

 Inconsistent cipher operations

3-285

Examples

Encryption Step Following Decryption Step

#include <openssl/evp.h>
#include <stdlib.h>

/* Using the cryptographic routines */

unsigned char *out_buf;
int out_len;
unsigned char g_key[16];
unsigned char g_iv[16];
void func(unsigned char* src, int len) {

 EVP_CIPHER_CTX *ctx = EVP_CIPHER_CTX_new();
 EVP_CIPHER_CTX_init(ctx);

 /* Cipher context set up for decryption*/
 EVP_DecryptInit_ex(ctx, EVP_aes_128_cbc(), NULL, g_key, g_iv);

 /* Update step for encryption */
 EVP_EncryptUpdate(ctx, out_buf, &out_len, src, len);
}

In this example, the cipher context ctx is set up for decryption using
EVP_DecryptInit_ex. However, immediately afterward, the context is used for
encryption using EVP_EncryptUpdate.

One possible correction is to change the setup step. If you want to use the cipher context
for encryption, set it up using EVP_EncryptInit_ex.

#include <openssl/evp.h>
#include <stdlib.h>

unsigned char *out_buf;
int out_len;

3 Defects

3-286

unsigned char g_key[16];
unsigned char g_iv[16];

void func(unsigned char* src, int len) {
 EVP_CIPHER_CTX *ctx = EVP_CIPHER_CTX_new();
 EVP_CIPHER_CTX_init(ctx);

 /* Cipher context set up for encryption*/
 EVP_EncryptInit_ex(ctx, EVP_aes_128_cbc(), NULL, g_key, g_iv);

 /* Update step for encryption */
 EVP_EncryptUpdate(ctx, out_buf, &out_len, src, len);
}

Result Information
Group: Cryptography
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_CIPHER_BAD_FUNCTION
Impact: Medium
CWE ID: 372, 664

See Also

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2017a

 Inconsistent cipher operations

3-287

https://cwe.mitre.org/data/definitions/372.html
https://cwe.mitre.org/data/definitions/664.html

Incorrect data type passed to va_arg
Data type of variadic function argument does not match type in va_arg call

Description
Incorrect data type passed to va_arg when the data type in a va_arg call does not
match the data type of the variadic function argument that va_arg reads.

For instance, you pass an unsigned char argument to a variadic function func.
Because of default argument promotion, the argument is promoted to int. When you use
a va_arg call that reads an unsigned char argument, a type mismatch occurs.

void func (int n, ...) {
 ...
 va_list args;
 va_arg(args, unsigned char);
 ...
}

void main(void) {
 unsigned char c;
 func(1,c);
}

Risk
In a variadic function (function with variable number of arguments), you use va_arg to
read each argument from the variable argument list (va_list). The va_arg use does not
guarantee that there actually exists an argument to read or that the argument data type
matches the data type in the va_arg call. You have to make sure that both conditions are
true.

Reading an incorrect type with a va_arg call can result in undefined behavior. Because
function arguments reside on the stack, you might access an unwanted area of the stack.

3 Defects

3-288

Fix
Make sure that the data type of the argument passed to the variadic function matches the
data type in the va_arg call.

Arguments of a variadic function undergo default argument promotions. The argument
data types of a variadic function cannot be determined from a prototype. The arguments
of such functions undergo default argument promotions (see Sec. 6.5.2.2 and 7.15.1.1 in
the C99 Standard). Integer arguments undergo integer promotion and arguments of type
float are promoted to double. For integer arguments, if a data type can be represented
by an int, for instance, char or short, it is promoted to an int. Otherwise, it is
promoted to an unsigned int. All other arguments do not undergo promotion.

Examples

char Used as Function Argument Type and va_arg argument
#include <stdarg.h>
#include <stdio.h>

unsigned char func(size_t count, ...) {
 va_list ap;
 unsigned char result = 0;
 va_start(ap, count);
 if (count > 0) {
 result = va_arg(ap, unsigned char);
 }
 va_end(ap);
 return result;
}

void func_caller(void) {
 unsigned char c = 0x12;
 (void)func(1, c);
}

In this example, func takes an unsigned char argument, which undergoes default
argument promotion to int. The data type in the va_arg call is still unsigned char,
which does not match the int argument type.

 Incorrect data type passed to va_arg

3-289

One possible correction is to read an int argument with va_arg.

#include <stdarg.h>
#include <stdio.h>

unsigned char func(size_t count, ...) {
 va_list ap;
 unsigned char result = 0;
 va_start(ap, count);
 if (count > 0) {
 result = va_arg(ap, int);
 }
 va_end(ap);
 return result;
}

void func_caller(void) {
 unsigned char c = 0x12;
 (void)func(1, c);
}

Result Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: VA_ARG_INCORRECT_TYPE
Impact: Medium
CWE ID: 686
CERT C ID: EXP47-C
CERT C++ ID: EXP47-C

See Also
Invalid va_list argument | Too many va_arg calls for current argument
list

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

3 Defects

3-290

https://cwe.mitre.org/data/definitions/686.html
https://www.securecoding.cert.org/confluence/x/BYAQCw
https://wiki.sei.cmu.edu/confluence/x/d9UxBQ

Introduced in R2018a

 Incorrect data type passed to va_arg

3-291

Incorrect key for cryptographic algorithm
Public key cryptography operation is not supported by the algorithm used in context
initialization

Description
Incorrect key for cryptographic algorithm occurs when you initialize a context object
with a key for a specific algorithm but perform an operation that the algorithm does not
support.

For instance, you initialize the context with a key for the DSA algorithm.

ret = EVP_PKEY_set1_DSA(pkey,dsa);
ctx = EVP_PKEY_CTX_new(pkey, NULL);

However, you use the context for encrypting data, an operation that the DSA algorithm
does not support.

ret = EVP_PKEY_encrypt(ctx,out, &out_len, in, in_len);

Risk
If the algorithm does not support your cryptographic operation, you do not see the
expected results. For instance, if you use the DSA algorithm for encryption, you might get
unexpected ciphertext.

Fix
Use the algorithm that is appropriate for the cryptographic operation that you want to
perform:

• Diffie-Hellman (DH): For key derivation.
• Digital Signature Algorithm (DSA): For signature.
• RSA: For encryption and signature.
• Elliptic curve (EC): For key derivation and signature.

3 Defects

3-292

Examples

Encryption with DSA Algorithm

#include <openssl/evp.h>

#define fatal_error() exit(-1)

int ret;
unsigned char *out_buf;
size_t out_len;

int func(unsigned char *src, size_t len, DSA * dsa){
 EVP_PKEY_CTX *ctx;
 EVP_PKEY *pkey = NULL;

 pkey = EVP_PKEY_new();
 if(pkey == NULL) fatal_error();

 ret = EVP_PKEY_set1_DSA(pkey,dsa);
 if (ret <= 0) fatal_error();

 ctx = EVP_PKEY_CTX_new(pkey, NULL);
 if (ctx == NULL) fatal_error();

 ret = EVP_PKEY_encrypt_init(ctx);
 if (ret <= 0) fatal_error();
 return EVP_PKEY_encrypt(ctx, out_buf, &out_len, src, len);
}

In this example, the context object is initialized with a key associated with the DSA
algorithm. However, the object is used for encryption, an operation that the DSA
algorithm does not support.

One possible correction is to initialize the context object with a key associated with the
RSA algorithm.

#include <openssl/evp.h>
#include <openssl/rsa.h>

 Incorrect key for cryptographic algorithm

3-293

#define fatal_error() exit(-1)

int ret;
unsigned char *out_buf;
size_t out_len;

int func(unsigned char *src, size_t len, RSA * rsa){
 EVP_PKEY_CTX *ctx;
 EVP_PKEY *pkey = NULL;

 pkey = EVP_PKEY_new();
 if(pkey == NULL) fatal_error();

 ret = EVP_PKEY_set1_RSA(pkey,rsa);
 if (ret <= 0) fatal_error();

 ctx = EVP_PKEY_CTX_new(pkey, NULL); /* RSA key is set in the context */
 if (ctx == NULL) fatal_error();

 ret = EVP_PKEY_encrypt_init(ctx); /* Encryption operation is set in the context */
 if (ret <= 0) fatal_error();
 ret = EVP_PKEY_CTX_set_rsa_padding(ctx, RSA_PKCS1_OAEP_PADDING);
 if (ret <= 0) fatal_error();
 return EVP_PKEY_encrypt(ctx, out_buf, &out_len, src, len);
}

Result Information
Group: Cryptography
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_PKEY_INCORRECT_KEY
Impact: Medium
CWE ID: 310, 325, 573, 664

See Also
Context initialized incorrectly for cryptographic operation | Missing
parameters for key generation | Missing data for encryption,
decryption or signing operation | Missing peer key | Missing private
key | Missing public key | Nonsecure parameters for key generation

3 Defects

3-294

https://cwe.mitre.org/data/definitions/310.html
https://cwe.mitre.org/data/definitions/325.html
https://cwe.mitre.org/data/definitions/573.html
https://cwe.mitre.org/data/definitions/664.html

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2018a

 Incorrect key for cryptographic algorithm

3-295

Incorrect order of network connection
operations
Socket is not correctly established due to bad order of connection steps or missing steps

Description
Incorrect order of network connection operations occurs when you perform
operations on a network connection at the wrong point of the connection lifecycle.

Risk
Sending or receiving data to an incorrectly connected socket can cause unexpected
behavior or disclosure of sensitive information.

If you do not connect your socket correctly or change the connection by mistake, you can
send sensitive data to an unexpected port. You can also get unexpected data from an
incorrect socket.

Fix
During socket connection and communication, check the return of each call and the
length of the data.

Before reading, writing, sending, or receiving information, create sockets in this order:

• For a connection-oriented server socket (SOCK_STREAM or SOCK_SEQPACKET):

socket(...);
bind(...);
listen(...);
accept(...);

• For a connectionless server socket (SOCK_DGRAM):

socket(...);
bind(...);

3 Defects

3-296

• For a client socket (connection-oriented or connectionless):

socket(...);
connect(...);

Examples

Connecting a Connection-Oriented Server Socket
include <stdio.h>
include <string.h>
include <time.h>
include <arpa/inet.h>
include <unistd.h>

enum { BUF_SIZE=1025 };

volatile int rd;

int stream_socket_server(int argc, char *argv[])
{
 int listenfd = 0, connfd = 0;
 struct sockaddr_in serv_addr;

 char sendBuff[BUF_SIZE];
 time_t ticks;
 struct tm * timeinfo;

 listenfd = socket(AF_INET, SOCK_STREAM, 0);
 memset(&serv_addr, 48, sizeof(serv_addr));
 memset(sendBuff, 48, sizeof(sendBuff));

 serv_addr.sin_family = AF_INET;
 serv_addr.sin_addr.s_addr = htonl(INADDR_ANY);
 serv_addr.sin_port = htons(5000);

 bind(listenfd, (struct sockaddr*)&serv_addr, sizeof(serv_addr));

 listen(listenfd, 10);

 while(1)
 {

 Incorrect order of network connection operations

3-297

 connfd = accept(listenfd, (struct sockaddr*)NULL, NULL);

 ticks = time(NULL);
 timeinfo = localtime(&ticks);
 strftime (sendBuff,BUF_SIZE,"%I:%M%p.",timeinfo);

 write(listenfd, sendBuff, strlen(sendBuff));

 close(connfd);
 sleep(1);
 }
}

This example creates a connection-oriented network connection. The function calls the
correct functions in the correct order: socket, bind, listen, accept. However, the
program should write to the connfd socket instead of the listenfd socket.

One possible correction is to write to the connfd function instead of the listenfd
socket.

include <stdio.h>
include <string.h>
include <time.h>
include <arpa/inet.h>
include <unistd.h>

enum { BUF_SIZE=1025 };

volatile int rd;

int stream_socket_server_good(int argc, char *argv[])
{
 int listenfd = 0, connfd = 0;
 struct sockaddr_in serv_addr;

 char sendBuff[BUF_SIZE];
 time_t ticks;
 struct tm * timeinfo;

 listenfd = socket(AF_INET, SOCK_STREAM, 0);
 memset(&serv_addr, 48, sizeof(serv_addr));
 memset(sendBuff, 48, sizeof(sendBuff));

 serv_addr.sin_family = AF_INET;

3 Defects

3-298

 serv_addr.sin_addr.s_addr = htonl(INADDR_ANY);
 serv_addr.sin_port = htons(5000);

 bind(listenfd, (struct sockaddr*)&serv_addr, sizeof(serv_addr));
 listen(listenfd, 10);

 while(1)
 {
 connfd = accept(listenfd, (struct sockaddr*)NULL, NULL);
 ticks = time(NULL);
 timeinfo = localtime(&ticks);
 strftime (sendBuff,BUF_SIZE,"%I:%M%p.",timeinfo);
 write(connfd, sendBuff, strlen(sendBuff));
 close(connfd);
 sleep(1);
 }
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: BAD_NETWORK_CONNECT_ORDER
Impact: Medium
CWE ID: 666

See Also

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2015b

 Incorrect order of network connection operations

3-299

https://cwe.mitre.org/data/definitions/666.html

Incorrect pointer scaling
Implicit scaling in pointer arithmetic might be ignored

Description
Incorrect pointer scaling occurs when Polyspace Bug Finder considers that you are
ignoring the implicit scaling in pointer arithmetic.

For instance, the defect can occur in the following situations.

Situation Risk Possible Fix
You use the sizeof
operator in arithmetic
operations on a pointer.

The sizeof operator
returns the size of a data
type in number of bytes.

Pointer arithmetic is already
implicitly scaled by the size
of the data type of the
pointed variable. Therefore,
the use of sizeof in pointer
arithmetic produces
unintended results.

Do not use sizeof operator
in pointer arithmetic.

You perform arithmetic
operations on a pointer, and
then apply a cast.

Pointer arithmetic is
implicitly scaled. If you do
not consider this implicit
scaling, casting the result of
a pointer arithmetic
produces unintended
results.

Apply the cast before the
pointer arithmetic.

3 Defects

3-300

Examples

Use of sizeof Operator
void func(void) {
 int arr[5] = {1,2,3,4,5};
 int *ptr = arr;

 int value_in_position_2 = *(ptr + 2*(sizeof(int)));
}

In this example, the operation 2*(sizeof(int)) returns twice the size of an int
variable in bytes. However, because pointer arithmetic is implicitly scaled, the number of
bytes by which ptr is offset is 2*(sizeof(int))*(sizeof(int)).

In this example, the incorrect scaling shifts ptr outside the bounds of the array.
Therefore, a Pointer access out of bounds error appears on the * operation.

One possible correction is to remove the sizeof operator.

void func(void) {
 int arr[5] = {1,2,3,4,5};
 int *ptr = arr;

 int value_in_position_2 = *(ptr + 2);
}

Cast Following Pointer Arithmetic
int func(void) {
 int x = 0;
 char r = *(char *)(&x + 1);
 return r;
}

In this example, the operation &x + 1 offsets &x by sizeof(int). Following the
operation, the resulting pointer points outside the allowed buffer. When you dereference
the pointer, a Pointer access out of bounds error appears on the * operation.

 Incorrect pointer scaling

3-301

If you want to access the second byte of x, first cast &x to a char* pointer and then
perform the pointer arithmetic. The resulting pointer is offset by sizeof(char) bytes
and still points within the allowed buffer, whose size is sizeof(int) bytes.

int func(void) {
 int x = 0;
 char r = *((char *)(&x)+ 1);
 return r;
}

Result Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: BAD_PTR_SCALING
Impact: Medium
CWE ID: 468
CERT C ID: ARR39-C, EXP08-C
CERT C++ ID: ARR39-C
ISO/IEC TS 17961 ID: libptr

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2015b

3 Defects

3-302

https://cwe.mitre.org/data/definitions/468.html
https://www.securecoding.cert.org/confluence/x/HADXAQ
https://www.securecoding.cert.org/confluence/x/eYAg
https://wiki.sei.cmu.edu/confluence/x/ytYxBQ

Incorrect syntax of flexible array member
size
Flexible array member defined with size zero or one

Description
Incorrect syntax of flexible array member size occurs when you do not use the
standard C syntax to define a structure with a flexible array member.

Since C99, you can define a flexible array member with an unspecified size. For instance,
desc is a flexible array member in this example:

struct record {
 size_t len;
 double desc[];
};

Prior to C99, you might have used compiler-specific methods to define flexible arrays. For
instance, you used arrays of size one or zero:

struct record {
 size_t len;
 double desc[0];
};

This usage is not compliant with the C standards following C99.

Risk
If you define flexible array members by using size zero or one, your implementation is
compiler-dependent. For compilers that do not recognize the syntax, an int array of size
one has buffer for one int variable. If you try to write beyond this buffer, you can run into
issues stemming from array access out of bounds.

If you use the standard C syntax to define a flexible array member, your implementation is
portable across all compilers conforming with the standard.

 Incorrect syntax of flexible array member size

3-303

Fix
To implement a flexible array member in a structure, define an array of unspecified size.
The structure must have one member besides the array and the array must be the last
member of the structure.

Examples

Flexible Array Member Defined with Size One
#include <stdlib.h>

struct flexArrayStruct {
 int num;
 int data[1];
};

unsigned int max_size = 100;

void func(unsigned int array_size) {
 if(array_size<= 0 || array_size > max_size)
 exit(1);
 /* Space is allocated for the struct */
 struct flexArrayStruct *structP
 = (struct flexArrayStruct *)
 malloc(sizeof(struct flexArrayStruct)
 + sizeof(int) * (array_size - 1));
 if (structP == NULL) {
 /* Handle malloc failure */
 exit(2);
 }

 structP->num = array_size;

 /*
 * Access data[] as if it had been allocated
 * as data[array_size].
 */
 for (unsigned int i = 0; i < array_size; ++i) {
 structP->data[i] = 1;
 }

3 Defects

3-304

 free(structP);
}

In this example, the flexible array member data is defined with a size value of one.
Compilers that do not recognize this syntax treat data as a size-one array. The statement
structP->data[i] = 1; can write to data beyond the first array member and cause
out of bounds array issues.

Define flexible array members with unspecified size.

#include <stdlib.h>

struct flexArrayStruct{
 int num;
 int data[];
};

unsigned int max_size = 100;

void func(unsigned int array_size) {
 if(array_size<=0 || array_size > max_size)
 exit(1);

 /* Allocate space for structure */
 struct flexArrayStruct *structP
 = (struct flexArrayStruct *)
 malloc(sizeof(struct flexArrayStruct)
 + sizeof(int) * array_size);

 if (structP == NULL) {
 /* Handle malloc failure */
 exit(2);
 }

 structP->num = array_size;

 /*
 * Access data[] as if it had been allocated
 * as data[array_size].
 */
 for (unsigned int i = 0; i < array_size; ++i) {
 structP->data[i] = 1;
 }

 Incorrect syntax of flexible array member size

3-305

 free(structP);
}

Result Information
Group: Good Practice
Language:C
Default: Off
Command-Line Syntax: FLEXIBLE_ARRAY_MEMBER_INCORRECT_SIZE
Impact: Low
CERT C ID: DCL38-C

See Also
Hard-coded buffer size | Memory leak | Misuse of structure with
flexible array member | Pointer access out of bounds | Unprotected
dynamic memory allocation

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2018b

3 Defects

3-306

https://wiki.sei.cmu.edu/confluence/x/GtcxBQ

Information leak via structure padding
Padding bytes can contain sensitive information

Description
Information leak via structure padding occurs when you do not initialize the padding
data of a structure or union before passing it across a trust boundary. A compiler adds
padding bytes to the structure or union to ensure a proper memory alignment of its
members. The bit-fields of the storage units can also have padding bits.

Information leak via structure padding raises a defect when:

• You call an untrusted function with structure or union pointer type argument
containing uninitialized padding data.

All external functions are considered untrusted.
• You copy or assign a structure or union containing uninitialized padding data to an

untrusted object.

All external structure or union objects, the output parameters of all externally linked
functions, and the return pointer of all external functions are considered untrusted
objects.

Risk
The padding bytes of the passed structure or union might contain sensitive information
that an untrusted source can access.

Fix
• Prevent the addition of padding bytes for memory alignment by using the pack

pragma or attribute supported by your compiler.
• Explicitly declare and initialize padding bytes as fields within the structure or union.
• Explicitly declare and initialize bit-fields corresponding to padding bits, even if you use

the pack pragma or attribute supported by your compiler.

 Information leak via structure padding

3-307

Examples

Structure with Padding Bytes Passed to External Function
#include <stddef.h>
#include <stdlib.h>
#include <string.h>

typedef struct s_padding
{
 /* Padding bytes may be introduced between
 * 'char c' and 'int i'
 */
 char c;
 int i;

/*Padding bits may be introduced around the bit-fields
* even if you use "#pragma pack" (Windows) or
* __attribute__((__packed__)) (GNU)*/

 unsigned int bf1:1;
 unsigned int bf2:2;
 unsigned char buffer[20];
} S_Padding ;

/* External function */
extern void copy_object(void *out, void *in, size_t s);

void func(void *out_buffer)
{
/*Padding bytes not initialized*/

 S_Padding s = {'A', 10, 1, 3, {}};
/*Structure passed to external function*/

 copy_object((void *)out_buffer, (void *)&s, sizeof(s));
}

void main(void)
{
 S_Padding s1;

3 Defects

3-308

 func(&s1);
}

In this example, structure s1 can have padding bytes between the char c and int i
members. The bit-fields of the storage units of the structure can also contain padding bits.
The content of the padding bytes and bits is accessible to an untrusted source when s1 is
passed to func.

One possible correction in Microsoft Visual Studiois to use #pragma pack() to prevent
padding bytes between the structure members. To prevent padding bits in the bit-fields of
s1, explicitly declare and initialize the bit-fields even if you use #pragma pack().

 #include <stddef.h>
#include <stdlib.h>
#include <string.h>
#include <limits.h>

#define CHAR_BIT 8

#pragma pack(push, 1)

typedef struct s_padding
{
/*No Padding bytes when you use "#pragma pack" (Windows) or
* __attribute__((__packed__)) (GNU)*/
 char c;
 int i;
 unsigned int bf1:1;
 unsigned int bf2:2;
/* Padding bits explicitely declared */
 unsigned int bf_filler : sizeof(unsigned) * CHAR_BIT - 3;
 unsigned char buffer[20];
}

 S_Padding;

#pragma pack(pop)

/* External function */
extern void copy_object(void *out, void *in, size_t s);

 Information leak via structure padding

3-309

void func(void *out_buffer)
{
 S_Padding s = {'A', 10, 1, 3, 0 /* padding bits */, {}};
 copy_object((void *)out_buffer, (void *)&s, sizeof(s));
}

void main(void)
{
 S_Padding s1;
 func(&s1);
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: PADDING_INFO_LEAK
Impact: Low
CERT C ID: DCL39-C
CERT C++ ID: DCL39-C

See Also

Topics
Memory comparison of padding data
Large pass-by-value argument
Use of memset with size argument zero
Invalid assumptions about memory organization
Sensitive heap memory not cleared before release
Uncleared sensitive data in stack
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2018a

3 Defects

3-310

https://www.securecoding.cert.org/confluence/x/IABlAw
https://wiki.sei.cmu.edu/confluence/x/atUxBQ

Inline constraint not respected
Modifiable static variable is modified in nonstatic inline function

Description
Inline constraint not respected occurs when you refer to a file scope modifiable static
variable or define a local modifiable static variable in a nonstatic inlined function. The
checker considers a variable as modifiable if it is not const-qualified.

For instance, var is a modifiable static variable defined in an inline function func.
g_step is a file scope modifiable static variable referred to in the same inlined function.

static int g_step;
inline void func (void) {
 static int var = 0;
 var += g_step;
}

Risk
When you modify a static variable in multiple function calls, you expect to modify the
same variable in each call. For instance, each time you call func, the same instance of
var1 is incremented but a separate instance of var2 is incremented.

void func(void) {
 static var1 = 0;
 var2 = 0;
 var1++;
 var2++;
}

If a function has an inlined and non-inlined definition (in separate files), when you call the
function, the C standard allows compilers to use either the inlined or the non-inlined form
(see ISO/IEC 9899:2011, sec. 6.7.4). If your compiler uses an inlined definition in one call
and the non-inlined definition in another, you are no longer modifying the same variable
in both calls. This behavior defies the expectations from a static variable.

 Inline constraint not respected

3-311

Fix
Use one of these fixes:

• If you do not intend to modify the variable, declare it as const.

If you do not modify the variable, there is no question of unexpected modification.
• Make the variable non-static. Remove the static qualifier from the declaration.

If the variable is defined in the function, it becomes a regular local variable. If defined
at file scope, it becomes an extern variable. Make sure that this change in behavior is
what you intend.

• Make the function static. Add a static qualifier to the function definition.

If you make the function static, the file with the inlined definition always uses the
inlined definition when the function is called. Other files use another definition of the
function. The question of which function definition gets used is not left to the compiler.

Examples

Static Variable Use in Inlined and External Definition
/* file1. c : contains inline definition of get_random()*/

inline unsigned int get_random(void)
{

 static unsigned int m_z = 0xdeadbeef;
 static unsigned int m_w = 0xbaddecaf;

 /* Compute next pseudorandom value and update seeds */
 m_z = 36969 * (m_z & 65535) + (m_z >> 16);
 m_w = 18000 * (m_w & 65535) + (m_w >> 16);
 return (m_z << 16) + m_w;
}

int call_get_random(void)
{
 unsigned int rand_no;

3 Defects

3-312

 int ii;
 for (ii = 0; ii < 100; ii++) {
 rand_no = get_random();
 }
 rand_no = get_random();
 return 0;
}

/* file2. c : contains external definition of get_random()*/

extern unsigned int get_random(void)
{
 /* Initialize seeds */
 static unsigned int m_z = 0xdeadbeef;
 static unsigned int m_w = 0xbaddecaf;

 /* Compute next pseudorandom value and update seeds */
 m_z = 36969 * (m_z & 65535) + (m_z >> 16);
 m_w = 18000 * (m_w & 65535) + (m_w >> 16);
 return (m_z << 16) + m_w;
}

In this example, get_random() has an inline definition in file1.c and an external
definition in file2.c. When get_random is called in file1.c, compilers are free to
choose whether to use the inline or the external definition.

Depending on the definition used, you might or might not modify the version of m_z and
m_w in the inlined version of get_random(). This behavior contradicts the usual
expectations from a static variable. When you call get_random(), you expect to always
modify the same m_z and m_w.

One possible correction is to make the inlined get_random() static. Irrespective of your
compiler, calls to get_random() in file1.c then use the inlined definition. Calls to
get_random() in other files use the external definition. This fix removes the ambiguity
about which definition is used and whether the static variables in that definition are
modified.

/* file1. c : contains inline definition of get_random()*/

static inline unsigned int get_random(void)
{

 static unsigned int m_z = 0xdeadbeef;

 Inline constraint not respected

3-313

 static unsigned int m_w = 0xbaddecaf;

 /* Compute next pseudorandom value and update seeds */
 m_z = 36969 * (m_z & 65535) + (m_z >> 16);
 m_w = 18000 * (m_w & 65535) + (m_w >> 16);
 return (m_z << 16) + m_w;
}

int call_get_random(void)
{
 unsigned int rand_no;
 int ii;
 for (ii = 0; ii < 100; ii++) {
 rand_no = get_random();
 }
 rand_no = get_random();
 return 0;
}

/* file2. c : contains external definition of get_random()*/

extern unsigned int get_random(void)
{
 /* Initialize seeds */
 static unsigned int m_z = 0xdeadbeef;
 static unsigned int m_w = 0xbaddecaf;

 /* Compute next pseudorandom value and update seeds */
 m_z = 36969 * (m_z & 65535) + (m_z >> 16);
 m_w = 18000 * (m_w & 65535) + (m_w >> 16);
 return (m_z << 16) + m_w;
}

Result Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: INLINE_CONSTRAINT_NOT_RESPECTED
Impact: Medium
CERT C ID: MSC40-C
CERT C++ ID: DCL60-CPP, MSC40-C

3 Defects

3-314

https://www.securecoding.cert.org/confluence/x/h4F8Bw
https://wiki.sei.cmu.edu/confluence/x/IXs-BQ
https://wiki.sei.cmu.edu/confluence/x/TtUxBQ

See Also

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2018a

 Inline constraint not respected

3-315

Integer constant overflow
Constant value falls outside range of integer data type

Description
Integer constant overflow occurs when you assign a compile-time constant to a signed
integer variable whose data type cannot accommodate the value. An n-bit signed integer
holds values in the range [-2n-1, 2n-1-1].

For instance, c is an 8-bit signed char variable that cannot hold the value 255.

signed char c = 255;

To determine the sizes of fundamental types, Bug Finder uses your specification for
Target processor type (-target).

Risk
The default behavior for constant overflows can vary between compilers and platforms.
Retaining constant overflows can reduce the portability of your code.

Even if your compilers wraps around overflowing constants with a warning, the wrap-
around behavior can be unintended and cause unexpected results.

Fix
Check if the constant value is what you intended. If the value is correct, use a different,
possibly wider, data type for the variable.

Examples

Overflowing Constant from Macro Expansion
#define MAX_UNSIGNED_CHAR 255
#define MAX_SIGNED_CHAR 127

3 Defects

3-316

void main() {
 char c1 = MAX_UNSIGNED_CHAR;
 char c2 = MAX_SIGNED_CHAR+1;
}

In this example, the defect appears on the macros because at least one use of the macro
causes an overflow. To reproduce these defects, use a Target processor type (-
target) where char is signed by default.

One possible correction is to use a different data type for the variables that overflow.

#define MAX_UNSIGNED_CHAR 255
#define MAX_SIGNED_CHAR 127

void main() {
 unsigned char c1 = MAX_UNSIGNED_CHAR;
 unsigned char c2 = MAX_SIGNED_CHAR+1;
}

Result Information
Group: Numerical
Language: C | C++
Default: Off
Command-Line Syntax: INT_CONSTANT_OVFL
Impact: Medium
CWE ID: 128, 189, 190, 191
CERT C ID: INT00-C, INT08-C, INT18-C, INT32-C, MSC15-C
CERT C++ ID: INT32-C
ISO/IEC TS 17961 ID: intoflow

See Also
Integer conversion overflow | Integer overflow | Sign change integer
conversion overflow | Unsigned integer constant overflow | Unsigned
integer conversion overflow | Unsigned integer overflow

Topics
“Interpret Polyspace Bug Finder Results”

 Integer constant overflow

3-317

https://cwe.mitre.org/data/definitions/128.html
https://cwe.mitre.org/data/definitions/189.html
https://cwe.mitre.org/data/definitions/190.html
https://cwe.mitre.org/data/definitions/191.html
https://wiki.sei.cmu.edu/confluence/x/IdcxBQ
https://wiki.sei.cmu.edu/confluence/x/QtcxBQ
https://wiki.sei.cmu.edu/confluence/x/I9cxBQ
https://wiki.sei.cmu.edu/confluence/x/UtYxBQ
https://wiki.sei.cmu.edu/confluence/x/stUxBQ
https://wiki.sei.cmu.edu/confluence/x/UtYxBQ

“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2018b

3 Defects

3-318

Integer conversion overflow
Overflow when converting between integer types

Description
Integer conversion overflow occurs when converting an integer to a smaller integer
type. If the variable does not have enough bytes to represent the original constant, the
conversion overflows.

The exact storage allocation for different integer types depends on your processor. See
Target processor type (-target).

Examples
Converting from int to char
char convert(void) {

 int num = 1000000;

 return (char)num;
}

In the return statement, the integer variable num is converted to a char. However, an 8-
bit or 16-bit character cannot represent 1000000 because it requires at least 20 bits. So
the conversion operation overflows.

One possible correction is to convert to a different integer type that can represent the
entire number.

long convert(void) {

 int num = 1000000;

 return (long)num;
}

 Integer conversion overflow

3-319

Check Information
Group: Numerical
Language: C | C++
Default: On
Command-Line Syntax: INT_CONV_OVFL
Impact: High
CWE ID: 128, 189, 190, 191, 192, 197
CERT C ID: FIO37-C, FLP34-C, INT02-C, INT12-C, INT18-C, INT31-C
CERT C++ ID: FIO37-C, FLP34-C, INT31-C

See Also
Float conversion overflow | Unsigned integer conversion overflow | Sign
change integer conversion overflow | Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2013b

3 Defects

3-320

https://cwe.mitre.org/data/definitions/128.html
https://cwe.mitre.org/data/definitions/189.html
https://cwe.mitre.org/data/definitions/190.html
https://cwe.mitre.org/data/definitions/191.html
https://cwe.mitre.org/data/definitions/192.html
https://cwe.mitre.org/data/definitions/197.html
https://wiki.sei.cmu.edu/confluence/x/JtcxBQ
https://wiki.sei.cmu.edu/confluence/x/xNUxBQ
https://wiki.sei.cmu.edu/confluence/x/TtYxBQ
https://wiki.sei.cmu.edu/confluence/x/VNYxBQ
https://wiki.sei.cmu.edu/confluence/x/I9cxBQ
https://wiki.sei.cmu.edu/confluence/x/U9YxBQ
https://wiki.sei.cmu.edu/confluence/x/JtcxBQ
https://wiki.sei.cmu.edu/confluence/x/xNUxBQ
https://wiki.sei.cmu.edu/confluence/x/U9YxBQ

Integer division by zero
Dividing integer number by zero

Description
Integer division by zero occurs when the denominator of a division or modulo operation
can be a zero-valued integer.

Examples

Dividing an Integer by Zero
int fraction(int num)
{
 int denom = 0;
 int result = 0;

 result = num/denom;

 return result;
}

A division by zero error occurs at num/denom because denom is zero.

int fraction(int num)
{
 int denom = 0;
 int result = 0;

 if (denom != 0)
 result = num/denom;

 return result;
}

 Integer division by zero

3-321

Before dividing, add a test to see if the denominator is zero, checking before division
occurs. If denom is always zero, this correction can produce a dead code defect in your
Polyspace results.

One possible correction is to change the denominator value so that denom is not zero.

int fraction(int num)
{
 int denom = 2;
 int result = 0;

 result = num/denom;

 return result;
}

Modulo Operation with Zero
int mod_arr(int input)
{
 int arr[5];
 for(int i = 0; i < 5; i++)
 {
 arr[i] = input % i;
 }

 return arr[0]+arr[1]+arr[2]+arr[3]+arr[4];
}

In this example, Polyspace flags the modulo operation as a division by zero. Because
modulo is inherently a division operation, the divisor (right hand argument) cannot be
zero. The modulo operation uses the for loop index as the divisor. However, the for loop
starts at zero, which cannot be an iterator.

One possible correction is checking the divisor before the modulo operation. In this
example, see if the index i is zero before the modulo operation.

int mod_arr(int input)
{
 int arr[5];
 for(int i = 0; i < 5; i++)
 {

3 Defects

3-322

 if(i != 0)
 {
 arr[i] = input % i;
 }
 else
 {
 arr[i] = input;
 }
 }

 return arr[0]+arr[1]+arr[2]+arr[3]+arr[4];
}

Another possible correction is changing the divisor to a nonzero integer. In this example,
add one to the index before the % operation to avoid dividing by zero.

int mod_arr(int input)
{
 int arr[5];
 for(int i = 0; i < 5; i++)
 {
 arr[i] = input % (i+1);
 }

 return arr[0]+arr[1]+arr[2]+arr[3]+arr[4];
}

Check Information
Group: Numerical
Language: C | C++
Default: On
Command-Line Syntax: INT_ZERO_DIV
Impact: High
CWE ID: 189, 369
CERT C ID: INT33-C
CERT C++ ID: INT33-C
ISO/IEC TS 17961 ID: diverr

 Integer division by zero

3-323

https://cwe.mitre.org/data/definitions/189.html
https://cwe.mitre.org/data/definitions/369.html
https://www.securecoding.cert.org/confluence/x/cAI
https://wiki.sei.cmu.edu/confluence/x/ftYxBQ

See Also
Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Float division by zero on page 3-221

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2013b

3 Defects

3-324

Integer overflow
Overflow from operation between integers

Description
Integer overflow occurs when an operation on integer variables can result in values that
cannot be represented by the result data type. The data type of a variable determines the
number of bytes allocated for the variable storage and constrains the range of allowed
values.

The exact storage allocation for different integer types depends on your processor. See
Target processor type (-target).

Examples

Addition of Maximum Integer
#include <limits.h>

int plusplus(void) {

 int var = INT_MAX;
 var++;
 return var;
}

In the third statement of this function, the variable var is increased by one. But the value
of var is the maximum integer value, so an int cannot represent one plus the maximum
integer value.

One possible correction is to change data types. Store the result of the operation in a
larger data type (Note that on a 32-bit machine, int and long has the same size). In this
example, on a 32-bit machine, by returning a long long instead of an int, the overflow
error is fixed.

 Integer overflow

3-325

#include <limits.h>

long long plusplus(void) {

 long long lvar = INT_MAX;
 lvar++;
 return lvar;
}

Check Information
Group: Numerical
Language: C | C++
Default: Off
Command-Line Syntax: INT_OVFL
Impact: Medium
CWE ID: 128, 189, 190, 191, 192
CERT C ID: FIO37-C, INT00-C, INT08-C, INT18-C, INT32-C, MSC15-C
CERT C++ ID: FIO37-C, INT32-C
ISO/IEC TS 17961 ID: intoflow

See Also
Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Unsigned integer overflow | Float overflow

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2013b

3 Defects

3-326

https://cwe.mitre.org/data/definitions/128.html
https://cwe.mitre.org/data/definitions/189.html
https://cwe.mitre.org/data/definitions/190.html
https://cwe.mitre.org/data/definitions/191.html
https://cwe.mitre.org/data/definitions/192.html
https://wiki.sei.cmu.edu/confluence/x/JtcxBQ
https://wiki.sei.cmu.edu/confluence/x/IdcxBQ
https://wiki.sei.cmu.edu/confluence/x/QtcxBQ
https://wiki.sei.cmu.edu/confluence/x/I9cxBQ
https://wiki.sei.cmu.edu/confluence/x/UtYxBQ
https://wiki.sei.cmu.edu/confluence/x/stUxBQ
https://wiki.sei.cmu.edu/confluence/x/JtcxBQ
https://wiki.sei.cmu.edu/confluence/x/UtYxBQ

Invalid assumptions about memory
organization
Address is computed by adding or subtracting from address of a variable

Description
Invalid assumptions about memory organization occurs when you compute the
address of a variable in the stack by adding or subtracting from the address of another
non-array variable.

Risk
When you compute the address of a variable in the stack by adding or subtracting from
the address of another variable, you assume a certain memory organization. If your
assumption is incorrect, accessing the computed address can be invalid.

Fix
Do not perform an access that relies on assumptions about memory organization.

Examples

Reliance on Memory Organization
void func(void) {
 int var1 = 0x00000011, var2;
 *(&var1 + 1) = 0;
}

In this example, the programmer relies on the assumption that &var1 + 1 provides the
address of var2. Therefore, an Invalid assumptions about memory organization
appears on the + operation. In addition, a Pointer access out of bounds error also
appears on the dereference.

 Invalid assumptions about memory organization

3-327

One possible correction is not perform direct computation on addresses to access
separately declared variables.

Result Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: INVALID_MEMORY_ASSUMPTION
Impact: Medium
CWE ID: 188
CERT C ID: ARR37-C
CERT C++ ID: ARR37-C

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2015b

3 Defects

3-328

https://cwe.mitre.org/data/definitions/188.html
https://www.securecoding.cert.org/confluence/x/UgHm
https://wiki.sei.cmu.edu/confluence/x/1dUxBQ

Integer precision exceeded
Operation using integer size instead of precision can cause undefined behavior

Description
Integer precision exceeded occurs when an integer expression uses the integer size in
an operation that exceeds the integer precision. On some architectures, the size of an
integer in memory can include sign and padding bits. On these architectures, the integer
size is larger than the precision which is just the number of bits that represent the value
of the integer.

Risk
Using the size of an integer in an operation on the integer precision can result in integer
overflow, wrap around, or unexpected results. For instance, an unsigned integer can be
stored in memory in 64 bits, but uses only 48 bits to represent its value. A 56 bits left-
shift operation on this integer is undefined behavior.

Assuming that the size of an integer is equal to its precision can also result in program
portability issues between different architectures.

Fix
Do not use the size of an integer instead of its precision. To determine the integer
precision, implement a precision computation routine or use a builtin function such as
__builtin_popcount().

Examples

Using Size of unsigned int for Left Shift Operation
#include <limits.h>

unsigned int func(unsigned int exp)

 Integer precision exceeded

3-329

{
 if (exp >= sizeof(unsigned int) * CHAR_BIT) {
 /* Handle error */
 }
 return 1U << exp;
}

In this example, the function uses a left shift operation to return the value of 2 raised to
the power of exp. The operation shifts the bits of 1U by exp positions to the left. The if
statement ensures that the operation does not shift the bits by a number of positions exp
greater than the size of an unsigned int. However, if unsigned int contains padding
bits, the value returned by sizeof() is larger than the precision of unsigned int. As a
result, some values of exp might be too large, and the shift operation might be undefined
behavior.

One possible correction is to implement a function popcount() that computes the
precision of unsigned int by counting the number of set bits.

#include <stddef.h>
#include <stdint.h>
#include <limits.h>

size_t popcount(uintmax_t);
#define PRECISION(umax_value) popcount(umax_value)

unsigned int func(unsigned int exp)
{
 if (exp >= PRECISION(UINT_MAX)) {
 /* Handle error */
 }
 return 1 << exp;
}

size_t popcount(uintmax_t num)
{
 size_t precision = 0;
 while (num != 0) {
 if (num % 2 == 1) {
 precision++;

3 Defects

3-330

 }
 num >>= 1;
 }
 return precision;
}

Result Information
Group: Numerical
Language: C | C++
Default: Off
Command-Line Syntax: INT_PRECISION_EXCEEDED
Impact: Low
CWE ID: 190
CERT C ID: INT35-C
CERT C++ ID: INT35-C

See Also
Bitwise operation on negative value | Integer conversion overflow |
Integer overflow | MISRA C:2012 Rule 10.1 | MISRA C:2012 Rule 10.2 |
Possible invalid operation on boolean operand | Shift of a negative
value | Shift operation overflow | Unsigned integer conversion overflow
| Unsigned integer overflow

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2018b

 Integer precision exceeded

3-331

https://cwe.mitre.org/data/definitions/190.html
https://wiki.sei.cmu.edu/confluence/x/Q9UxBQ
https://wiki.sei.cmu.edu/confluence/x/Q9UxBQ

Invalid deletion of pointer
Pointer deallocation using delete without corresponding allocation using new

Description
Invalid deletion of pointer occurs when a block of memory released using the delete
operator was not previously allocated with the new operator.

This defect applies only to C++ source files.

Examples

Deleting Static Memory
void assign_ones(void)
{
 int ptr[10];

 for(int i=0;i<10;i++)
 *(ptr+i)=1;

 delete[] ptr;
}

The pointer ptr is released using the delete operator. However, ptr points to a memory
location that was not dynamically allocated.

If the number of elements of the array ptr is known at compile time, one possible
correction is to remove the deallocation of the pointer ptr.

void assign_ones(void)
{
 int ptr[10];

 for(int i=0;i<10;i++)

3 Defects

3-332

 *(ptr+i)=1;
}

If the number of array elements is not known at compile time, one possible correction is
to dynamically allocate memory to the array ptr using the new operator.

void assign_ones(int num)
{
 int *ptr = new int[num];

 for(int i=0; i < num; i++)
 *(ptr+i) = 1;

 delete[] ptr;
 }

Mismatched new and delete
int main (void)
{
 int *p_scale = new int[5];

 //more code using scal

 delete p_scale;
}

In this example, p_scale is initialized to an array of size 5 using new int[5]. However,
p_scale is deleted with delete instead of delete[]. The new-delete pair does not
match. Do not use delete without the brackets when deleting arrays.

One possible correction is to add brackets so the delete matches the new []
declaration.

int main (void)
{
 int *p_scale = new int[5];

 //more code using p_scale

 delete[] p_scale;
}

 Invalid deletion of pointer

3-333

Another possible correction is to change the declaration of p_scale. If you meant to
initialize p_scale as 5 itself instead of an array of size 5, you must use different syntax.
For this correction, change the square brackets in the initialization to parentheses. Leave
the delete statement as it is.

int main (void)
{
 int *p_scale = new int(5);

 //more code using p_scale

 delete p_scale;
}

Check Information
Group: Dynamic memory
Language: C++
Default: Off
Command-Line Syntax: BAD_DELETE
Impact: High
CWE ID: 404
CERT C++ ID: MEM51-CPP

See Also
Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Invalid free of pointer | Memory leak

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2013b

3 Defects

3-334

https://cwe.mitre.org/data/definitions/404.html
https://wiki.sei.cmu.edu/confluence/x/Gns-BQ

Invalid file position
fsetpos() is invoked with a file position argument not obtained from fgetpos()

Description
Invalid file position occurs when the file position argument of fsetpos() uses a value
that is not obtained from fgetpos().

Risk
The function fgetpos(FILE *stream, fpos_t *pos) gets the current file position of
the stream. When you use any other value as the file position argument of fsetpos(FILE
*stream, const fpos_t *pos), you might access an unintended location in the
stream.

Fix
Use the value returned from a successful call to fgetpos() as the file position argument
of fsetpos().

Examples

memset() Sets File Position Argument
#include <stdio.h>
#include <string.h>
#include <stdlib.h>

FILE *func(FILE *file)
{
 fpos_t offset;
 if (file == NULL)
 {
 /* Handle error */

 Invalid file position

3-335

 }
 /* Store initial position in variable 'offset' */
 (void)memset(&offset, 0, sizeof(offset));

 /* Read data from file */

 /* Return to the initial position. offset was not
 returned from a call to fgetpos() */
 if (fsetpos(file, &offset) != 0)
 {
 /* Handle error */
 }
 return file;
}

In this example, fsetpos() uses offset as its file position argument. However, the
value of offset is set by memset(). The preceding code might access the wrong location
in the stream.

Call fgetpos(), and if it returns successfully, use the position argument in your call to
fsetpos().

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

FILE *func(FILE *file)
{
 fpos_t offset;
 if (file == NULL)
 {
 /* Handle error */
 }
 /* Store initial position in variable 'offset'
 using fgetpos() */
 if (fgetpos(file, &offset) != 0)
 {
 /* Handle error */
 }

 /* Read data from file */

3 Defects

3-336

 /* Back to the initial position */
 if (fsetpos(file, &offset) != 0)
 {
 /* Handle error */
 }
 return file;
}

Result Information
Group: Programming
Language: C | C++
Default: Off
Command-Line Syntax: INVALID_FILE_POS
Impact: Medium
CERT C ID: FIO44-C
CERT C++ ID: FIO44-C
ISO/IEC TS 17961 ID: xfilepos

See Also

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2017b

 Invalid file position

3-337

https://www.securecoding.cert.org/confluence/x/igAV
https://wiki.sei.cmu.edu/confluence/x/x9UxBQ

Invalid free of pointer
Pointer deallocation without a corresponding dynamic allocation

Description
Invalid free of pointer occurs when a block of memory released using the free function
was not previously allocated using malloc, calloc, or realloc.

Examples

Invalid Free of Pointer Error
#include <stdlib.h>

void Assign_Ones(void)
{
 int p[10];
 for(int i=0;i<10;i++)
 *(p+i)=1;

 free(p);
 /* Defect: p does not point to dynamically allocated memory */
}

The pointer p is deallocated using the free function. However, p points to a memory
location that was not dynamically allocated.

If the number of elements of the array p is known at compile time, one possible correction
is to remove the deallocation of the pointer p.

#include <stdlib.h>

void Assign_Ones(void)
 {
 int p[10];
 for(int i=0;i<10;i++)

3 Defects

3-338

 *(p+i)=1;
 /* Fix: Remove deallocation of p */
 }

If the number of elements of the array p is not known at compile time, one possible
correction is to dynamically allocate memory to the array p.

#include <stdlib.h>

void Assign_Ones(int num)
{
 int *p;
 /* Fix: Allocate memory dynamically to p */
 p=(int*) calloc(10,sizeof(int));
 for(int i=0;i<10;i++)
 *(p+i)=1;
 free(p);
}

Check Information
Group: Dynamic Memory
Language: C | C++
Default: On
Command-Line Syntax: BAD_FREE
Impact: High
CWE ID: 404, 590, 762
CERT C ID: MEM00-C, MEM34-C
CERT C++ ID: MEM34-C, MEM51-CPP
ISO/IEC TS 17961 ID: xfree

See Also
Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Invalid deletion of pointer

 Invalid free of pointer

3-339

https://cwe.mitre.org/data/definitions/404.html
https://cwe.mitre.org/data/definitions/590.html
https://cwe.mitre.org/data/definitions/762.html
https://www.securecoding.cert.org/confluence/x/twE
https://www.securecoding.cert.org/confluence/x/wQE
https://wiki.sei.cmu.edu/confluence/x/HNYxBQ
https://wiki.sei.cmu.edu/confluence/x/Gns-BQ

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2013b

3 Defects

3-340

Invalid use of == operator
Equality operation in assignment statement

Description
Invalid use of == operator occurs when an equality operator instead of an assignment
operator is used in a simple statement. A common correction is removing one of the equal
signs (=).

Examples
Equality Evaluation in for-Loop
void populate_array(void)
{
 int i = 0;
 int j = 0;
 int array[4];

 for (j == 5; j < 9; j++) {
 array[i] = j;
 i++;
 }
}

Inside the for-loop, the statement j == 5 tests whether j is equal to 5 instead of setting
j to 5. The for-loop iterates from 0 to 8 because j starts with a value of 0, not 5. A by-
product of the invalid equality operator is an out-of-bounds array access in the next line.

One possible correction is to change the == operator to a single equal sign (=). Changing
the == sign resolves both defects because the for-loop iterates the intended number of
times.

void populate_array(void)
{
 int i = 0;

 Invalid use of == operator

3-341

 int j = 0;
 int array[4];

 for (j = 5; j < 9; j++) {
 array[i] = j;
 i++;
 }
}

Check Information
Group: Programming
Language: C | C++
Default: On for handwritten code, off for generated code
Command-Line Syntax: BAD_EQUAL_EQUAL_USE
Impact: High
CWE ID: 480, 482

See Also
Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Invalid use of = operator

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2013b

3 Defects

3-342

https://cwe.mitre.org/data/definitions/480.html
https://cwe.mitre.org/data/definitions/482.html

Invalid use of = operator
Assignment in conditional statement

Description
Invalid use of = operator occurs when an assignment is made inside the predicate of a
conditional, such as if or while.

In C and C++, a single equal sign is an assignment not a comparison. Using a single
equal sign in a conditional statement can indicate a typo or a mistake.

Risk
• Conditional statement tests the wrong values— The single equal sign operation

assigns the value of the right operand to the left operand. Then, because this
assignment is inside the predicate of a conditional, the program checks whether the
new value of the left operand is nonzero or not NULL.

• Maintenance and readability issues — Even if the assignment is intended, someone
reading or updating the code can misinterpret the assignment as an equality
comparison instead of an assignment.

Fix
• If the assignment is a bug, to check for equality, add a second equal sign (==).
• If the assignment inside the conditional statement was intentional, to improve

readability, separate the assignment and the test. Move the assignment outside the
control statement. In the control statement, simply test the result of the assignment.

Examples
Single Equal Sign Inside an if Condition
#include <stdio.h>

 Invalid use of = operator

3-343

void bad_equals_ex(int alpha, int beta)
{
 if(alpha = beta)
 {
 printf("Equal\n");
 }
}

The equal sign is flagged as a defect because the assignment operator is used within the
predicate of the if-statement. The predicate assigns the value beta to alpha, then
implicitly tests whether alpha is true or false.

One possible correction is adding an additional equal sign. This correction changes the
assignment to a comparison. The if condition compares whether alpha and beta are
equal.

#include <stdio.h>

void equality_test(int alpha, int beta)
{
 if(alpha == beta)
 {
 printf("Equal\n");
 }
}

If an assignment must be made inside the predicate, a possible correction is adding an
explicit comparison. This correction assigns the value of beta to alpha, then explicitly
checks whether alpha is nonzero. The code is clearer.

#include <stdio.h>

int assignment_not_zero(int alpha, int beta)
{
 if((alpha = beta) != 0)
 {
 return alpha;
 }
 else
 {
 return 0;
 }
}

3 Defects

3-344

If the assignment can be made outside the control statement, one possible correction is to
separate the assignment and comparison. This correction assigns the value of beta to
alpha before the if. Inside the if-condition, only alpha is given to test if alpha is
nonzero or not NULL.

#include <stdio.h>

void assign_and_print(int alpha, int beta)
{
 alpha = beta;
 if(alpha)
 {
 printf("%d", alpha);
 }
}

Check Information
Group: Programming
Language: C | C++
Default: On for handwritten code, off for generated code
Command-Line Syntax: BAD_EQUAL_USE
Impact: Medium
CWE ID: 480, 481
CERT C ID: EXP45-C
CERT C++ ID: EXP45-C
ISO/IEC TS 17961 ID: boolasgn

See Also
Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Invalid use of == operator

Topics
“Interpret Polyspace Bug Finder Results”

 Invalid use of = operator

3-345

https://cwe.mitre.org/data/definitions/480.html
https://cwe.mitre.org/data/definitions/481.html
https://www.securecoding.cert.org/confluence/x/nYFtAg
https://wiki.sei.cmu.edu/confluence/x/ZNYxBQ

“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2013b

3 Defects

3-346

Floating point comparison with equality
operators
Imprecise comparison of floating-point variables

Description
Floating point comparison with equality operators occurs when you use an equality
(==) or inequality (!=) operation with floating-point numbers. It is possible that the
equality or inequality of two floating-point values is not exact because floating-point
representation can be imprecise.

Polyspace does not raise a defect for an equality or inequality operation with floating-
point numbers when:

• The comparison is between two float constants.

 float flt = 1.0;
 if (flt == 1.1)

• The comparison is between a constant and a variable that can take a finite, reasonably
small number of values.

float x;

int rand = random();
switch(rand) {
case 1: x = 0.0; break;
case 2: x = 1.3; break;
case 3: x = 1.7; break;
case 4: x = 2.0; break;
default: x = 3.5; break; }
…
if (x==1.3)

• The comparison is between floating-point expressions that contain only integer values.

float x = 0.0;
for (x=0.0;x!=100.0;x+=1.0) {
…
if (random) break;

 Floating point comparison with equality operators

3-347

}

if (3*x+4==2*x-1)
…
if (3*x+4 == 1.3)

• One of the operands is 0.0, unless you use the option flag -detect-bad-float-op-
on-zero.

/* Defect detected when
you use the option flag */

if (x==0.0f)

If you are running an analysis through the user interface, you can enter this option in
the Other field, under the Advanced Settings node on the Configuration pane. See
Other.

At the command line, add the flag to your analysis command.

polyspace-bug-finder-nodesktop -sources filename ^
-checkers BAD_FLOAT_OP -detect-bad-float-op-on-zero

Examples

Floats Inequality in for-loop
#include <stdio.h>
#include <math.h>
#include <float.h>

void func(void)
{
 float f;
 for (f = 1.0; f != 2.0; f = f + 0.1)
 (void)printf("Value: %f\n", f);
}

In this function, the for-loop tests the inequality of f and the number 2.0 as a stopping
mechanism. The number of iterations is difficult to determine, or might be infinite,
because of the imprecision in floating-point representation.

3 Defects

3-348

One possible correction is to use a different operator that is not as strict. For example, an
inequality like >= or <=.

#include <stdio.h>
#include <math.h>
#include <float.h>

void func(void)
{
 float f;
 for (f = 1.0; f <= 2.0; f = f + 0.1)
 (void)printf("Value: %f\n", f);
}

Check Information
Group: Programming
Language: C | C++
Default: Off
Command-Line Syntax: BAD_FLOAT_OP
Impact: Medium
CWE ID: 873
CERT C ID: FLP02-C

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2013b

 Floating point comparison with equality operators

3-349

https://cwe.mitre.org/data/definitions/873.html
https://www.securecoding.cert.org/confluence/x/DgU

Invalid use of standard library floating point
routine
Wrong arguments to standard library function

Description
Invalid use of standard library floating point routine occurs when you use invalid
arguments with a floating point function from the standard library. This defect picks up:

• Rounding and absolute value routines

ceil, fabs, floor, fmod
• Fractions and division routines

fmod, modf
• Exponents and log routines

frexp, ldexp, sqrt, pow, exp, log, log10
• Trigonometry function routines

cos, sin, tan, acos, asin, atan, atan2, cosh, sinh, tanh, acosh,
asinh, atanh

Examples

Arc Cosine Operation
#include <math.h>

double arccosine(void) {
 double degree = 5.0;
 return acos(degree);
}

3 Defects

3-350

The input value to acos must be in the interval [-1,1]. This input argument, degree, is
outside this range.

One possible correction is to change the input value to fit the specified range. In this
example, change the input value from degrees to radians to fix this defect.

#include <math.h>

double arccosine(void) {
 double degree = 5.0;
 double radian = degree * 3.14159 / 180.;
 return acos(radian);
}

Check Information
Group: Numerical
Language: C | C++
Default: On
Command-Line Syntax: FLOAT_STD_LIB
Impact: High
CWE ID: 227, 369, 682, 873
CERT C ID: FLP03-C, FLP32-C
CERT C++ ID: FLP32-C

See Also
Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Invalid use of standard library integer routine | Invalid use of
standard library memory routine | Invalid use of standard library
string routine | Invalid use of standard library routine

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

 Invalid use of standard library floating point routine

3-351

https://cwe.mitre.org/data/definitions/227.html
https://cwe.mitre.org/data/definitions/369.html
https://cwe.mitre.org/data/definitions/682.html
https://cwe.mitre.org/data/definitions/873.html
https://www.securecoding.cert.org/confluence/x/4YHp
https://www.securecoding.cert.org/confluence/x/rgQ
https://wiki.sei.cmu.edu/confluence/x/DNcxBQ

Introduced in R2013b

3 Defects

3-352

Invalid use of standard library integer
routine
Wrong arguments to standard library function

Description
Invalid use of standard library integer routine occurs when you use invalid
arguments with an integer function from the standard library. This defect picks up:

• Character Conversion

toupper, tolower
• Character Checks

isalnum, isalpha, iscntrl, isdigit, isgraph, islower, isprint,
ispunct, isspace, isupper, isxdigit

• Integer Division

div, ldiv
• Absolute Values

abs, labs

Examples
Absolute Value of Large Negative
#include <limits.h>
#include <stdlib.h>

int absoluteValue(void) {

 int neg = INT_MIN;
 return abs(neg);
}

 Invalid use of standard library integer routine

3-353

The input value to abs is INT_MIN. The absolute value of INT_MIN is INT_MAX+1. This
number cannot be represented by the type int.

One possible correction is to change the input value to fit returned data type. In this
example, change the input value to INT_MIN+1.

#include <limits.h>
#include <stdlib.h>

int absoluteValue(void) {

 int neg = INT_MIN+1;
 return abs(neg);
}

Check Information
Group: Numerical
Language: C | C++
Default: On
Command-Line Syntax: INT_STD_LIB
Impact: High
CWE ID: 227, 369, 682, 872
CERT C ID: STR37-C
CERT C++ ID: STR37-C
ISO/IEC TS 17961 ID: chrsgnext

See Also
Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Invalid use of standard library floating point routine | Invalid use
of standard library memory routine | Invalid use of standard library
string routine | Invalid use of standard library routine

Topics
“Interpret Polyspace Bug Finder Results”

3 Defects

3-354

https://cwe.mitre.org/data/definitions/227.html
https://cwe.mitre.org/data/definitions/369.html
https://cwe.mitre.org/data/definitions/682.html
https://cwe.mitre.org/data/definitions/872.html
https://wiki.sei.cmu.edu/confluence/x/BNcxBQ
https://wiki.sei.cmu.edu/confluence/x/BNcxBQ

“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2013b

 Invalid use of standard library integer routine

3-355

Invalid use of standard library memory
routine
Standard library memory function called with invalid arguments

Description
Invalid use of standard library memory routine occurs when a memory library
function is called with invalid arguments.

Examples

Invalid Use of Standard Library Memory Routine Error
#include <string.h>
#include <stdio.h>

char* Copy_First_Six_Letters(void)
 {
 char str1[10],str2[5];

 printf("Enter string:\n");
 scanf("%s",str1);

 memcpy(str2,str1,6);
 /* Defect: Arguments of memcpy invalid: str2 has size < 6 */

 return str2;
 }

The size of string str2 is 5, but six characters of string str1 are copied into str2 using
the memcpy function.

One possible correction is to adjust the size of str2 so that it accommodates the
characters copied with the memcpy function.

3 Defects

3-356

#include <string.h>
#include <stdio.h>

char* Copy_First_Six_Letters(void)
 {
 /* Fix: Declare str2 with size 6 */
 char str1[10],str2[6];

 printf("Enter string:\n");
 scanf("%s",str1);

 memcpy(str2,str1,6);
 return str2;
 }

Check Information
Group: Static memory
Language: C | C++
Default: On
Command-Line Syntax: MEM_STD_LIB
Impact: High
CWE ID: 120, 227, 690
CERT C ID: API00-C, ARR38-C, ARR39-C, EXP08-C, EXP34-C, MSC15-C
CERT C++ ID: ARR38-C, ARR39-C, EXP34-C
ISO/IEC TS 17961 ID: nullref, libptr

See Also
Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Invalid use of standard library string routine

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

 Invalid use of standard library memory routine

3-357

https://cwe.mitre.org/data/definitions/120.html
https://cwe.mitre.org/data/definitions/227.html
https://cwe.mitre.org/data/definitions/690.html
https://www.securecoding.cert.org/confluence/x/egAV
https://www.securecoding.cert.org/confluence/x/EYCGB
https://www.securecoding.cert.org/confluence/x/HADXAQ
https://www.securecoding.cert.org/confluence/x/eYAg
https://www.securecoding.cert.org/confluence/x/PAw
https://www.securecoding.cert.org/confluence/x/EoLu
https://wiki.sei.cmu.edu/confluence/x/W9UxBQ
https://wiki.sei.cmu.edu/confluence/x/ytYxBQ
https://wiki.sei.cmu.edu/confluence/x/QdcxBQ

Introduced in R2013b

3 Defects

3-358

Invalid use of standard library routine
Wrong arguments to standard library function

Description
Invalid use of standard library routine occurs when you use invalid arguments with a
function from the standard library. This defect picks up errors related to other functions
not covered by float, integer, memory, or string standard library routines.

Examples

Calling printf Without a String
#include <stdio.h>
#include <stdlib.h>

void print_null(void) {

 printf(NULL);
}

The function printf takes only string input arguments or format specifiers. In this
function, the input value is NULL, which is not a valid string.

One possible correction is to change the input arguments to fit the requirements of the
standard library routine. In this example, the input argument was changed to a character.

#include <stdio.h>

void print_null(void) {
 char zero_val = '0';
 printf((const char*)zero_val);
}

 Invalid use of standard library routine

3-359

Check Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: OTHER_STD_LIB
Impact: High
CWE ID: 227, 690
CERT C ID: API00-C, ARR38-C, MSC15-C
CERT C++ ID: ARR38-C
ISO/IEC TS 17961 ID: strmod

See Also
Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Invalid use of standard library integer routine | Invalid use of
standard library floating point routine | Invalid use of standard
library memory routine | Invalid use of standard library string
routine

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2013b

3 Defects

3-360

https://cwe.mitre.org/data/definitions/227.html
https://cwe.mitre.org/data/definitions/690.html
https://wiki.sei.cmu.edu/confluence/x/ytUxBQ
https://wiki.sei.cmu.edu/confluence/x/W9UxBQ
https://wiki.sei.cmu.edu/confluence/x/stUxBQ
https://wiki.sei.cmu.edu/confluence/x/W9UxBQ

Invalid use of standard library string routine
Standard library string function called with invalid arguments

Description
Invalid use of standard library string routine occurs when a string library function is
called with invalid arguments.

Examples

Invalid Use of Standard Library String Routine Error
 #include <string.h>
 #include <stdio.h>

 char* Copy_String(void)
 {
 char *res;
 char gbuffer[5],text[20]="ABCDEFGHIJKL";

 res=strcpy(gbuffer,text);
 /* Error: Size of text is less than gbuffer */

 return(res);
 }

The string text is larger in size than gbuffer. Therefore, the function strcpy cannot
copy text into gbuffer.

One possible correction is to declare the destination string gbuffer with equal or larger
size than the source string text.

#include <string.h>
 #include <stdio.h>

 char* Copy_String(void)

 Invalid use of standard library string routine

3-361

 {
 char *res;
 /*Fix: gbuffer has equal or larger size than text */
 char gbuffer[20],text[20]="ABCDEFGHIJKL";

 res=strcpy(gbuffer,text);

 return(res);
 }

Check Information
Group: Static memory
Language: C | C++
Default: On
Command-Line Syntax: STR_STD_LIB
Impact: High
CWE ID: 120, 227, 690
CERT C ID: API00-C, ARR38-C, FIO37-C, MEM30-C, MSC15-C, STR31-C, STR32-C
CERT C++ ID: ARR38-C, FIO37-C, MEM30-C, MEM50-CPP, STR31-C, STR32-C, STR50-
CPP
ISO/IEC TS 17961 ID: accfree, nullref, libptr, nonnullcs, taintformatio

See Also
Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Invalid use of standard library memory routine

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2013b

3 Defects

3-362

https://cwe.mitre.org/data/definitions/120.html
https://cwe.mitre.org/data/definitions/227.html
https://cwe.mitre.org/data/definitions/690.html
https://wiki.sei.cmu.edu/confluence/x/ytUxBQ
https://wiki.sei.cmu.edu/confluence/x/W9UxBQ
https://wiki.sei.cmu.edu/confluence/x/JtcxBQ
https://wiki.sei.cmu.edu/confluence/x/GdYxBQ
https://wiki.sei.cmu.edu/confluence/x/stUxBQ
https://wiki.sei.cmu.edu/confluence/x/sNUxBQ
https://wiki.sei.cmu.edu/confluence/x/r9UxBQ
https://wiki.sei.cmu.edu/confluence/x/W9UxBQ
https://wiki.sei.cmu.edu/confluence/x/JtcxBQ
https://wiki.sei.cmu.edu/confluence/x/GdYxBQ
https://wiki.sei.cmu.edu/confluence/x/onw-BQ
https://wiki.sei.cmu.edu/confluence/x/sNUxBQ
https://wiki.sei.cmu.edu/confluence/x/r9UxBQ
https://wiki.sei.cmu.edu/confluence/x/i3w-BQ
https://wiki.sei.cmu.edu/confluence/x/i3w-BQ

Invalid va_list argument
Variable argument list used after invalidation with va_end or not initialized with
va_start or va_copy

Description
Invalid va_list argument occurs when you use a va_list variable as an argument to a
function in the vprintf group but:

• You do not initialize the variable previously using va_start or va_copy.
• You invalidate the variable previously using va_end and do not reinitialize it.

For instance, you call the function vsprintf as vsprintf (buffer,format, args).
However, before the function call, you do not initialize the va_list variable args using
either of the following:

• va_start(args, paramName). paramName is the last named argument of a
variable-argument function. For instance, for the function definition void func(int
n, char c, ...) {}, c is the last named argument.

• va_copy(args, anotherList). anotherList is another valid va_list variable.

Risk
The behavior of an uninitialized va_list argument is undefined. Calling a function with
an uninitialized va_list argument can cause stack overflows.

Fix
Before using a va_list variable as function argument, initialize it with va_start or
va_copy.

Clean up the variable using va_end only after all uses of the variable.

 Invalid va_list argument

3-363

Examples

va_list Variable Used Following Call to va_end
#include <stdarg.h>
#include <stdio.h>

int call_vfprintf(int line, const char *format, ...) {
 va_list ap;
 int r=0;

 va_start(ap, format);
 r = vfprintf(stderr, format, ap);
 va_end(ap);

 r += vfprintf(stderr, format, ap);
 return r;
}

In this example, the va_list variable ap is used in the vfprintf function, after the
va_end macro is called.

One possible correction is to call va_end only after all uses of the va_list variable.

#include <stdarg.h>
#include <stdio.h>

int call_vfprintf(int line, const char *format, ...) {
 va_list ap;
 int r=0;

 va_start(ap, format);
 r = vfprintf(stderr, format, ap);
 r += vfprintf(stderr, format, ap);
 va_end(ap);

 return r;
}

3 Defects

3-364

Result Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: INVALID_VA_LIST_ARG
Impact: High
CWE ID: 628
CERT C ID: MSC39-C
CERT C++ ID: MSC39-C

See Also
Find defects (-checkers) | Incorrect data type passed to va_arg

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2015b

 Invalid va_list argument

3-365

https://cwe.mitre.org/data/definitions/628.html
https://www.securecoding.cert.org/confluence/x/VwCMAg
https://wiki.sei.cmu.edu/confluence/x/ndYxBQ

Large pass-by-value argument
Large argument passed by value between functions

Description
Large pass-by-value argument occurs when a large input argument or return value is
passed between functions by its value. For variables larger than 64 bytes, pass the value
by pointer or by reference to save stack space and copy time.

In C code, when a function returns by value, the return value is copied to the caller.
Therefore, this defect appears on functions that have large return values. In C++ code, if
a function return value is of class type, under certain conditions, the standard allows
compilers to avoid copying the return value (C++98: Section 12.8, Item 15; C++11:
Section 12.8, Item 31). Most compilers do not perform a copy in such cases. This behavior
is called return value optimization. In such cases, Polyspace Bug Finder does not produce
this defect if a large object is returned by value.

Examples

Large Function Argument
typedef struct s_userid {
 char name[2];
 int idnumber[100];
} userid;

char username(userid first) {
 return first.name[0];
}

The large structure, userid, is passed to the function username. Because userid is
larger than 64 bytes, this function produces a large pass-by-value defect.

3 Defects

3-366

One possible correction is to pass the argument by reference instead of by value. In this
corrected example, the pointer to a userid structure is passed instead of the actual
structure.

typedef struct s_userid {
 char name[2];
 int idnumber[100];
} userid;

char username(userid *first) {
 return (*first).name[0];
}

Large Function Return Value
#include <stdlib.h>

#define initialSize 4
#define idSize 100

typedef struct {
 char initials[initialSize];
 int id[idSize];
} userId;

userId* getAddress(void);
assignValues(char*, int*);

userId username(void) {
 userId * newId = getAddress();
 assignValues((*newId).initials, (*newId).id);
 return *newId;
}

In this example, the function username returns a large structure *newId by value. When
a function calls username, the value in *newId is copied to the caller.

One possible correction is to return the large structure by reference. In this corrected
example, the pointer to structure newId is returned from the function username.

#include <stdlib.h>

 Large pass-by-value argument

3-367

#define initialSize 4
#define idSize 100

typedef struct {
 char initials[initialSize];
 int id[idSize];
} userId;

userId* getAddress(void);
assignValues(char*, int*);

userId * username(void) {
 userId * newId = getAddress();
 assignValues((*newId).initials, (*newId).id);
 return newId;
}

Check Information
Group: Good practice
Language: C | C++
Default: Off
Command-Line Syntax: PASS_BY_VALUE
Impact: Low

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2013b

3 Defects

3-368

Library loaded from externally controlled
path
Using a library argument from an externally controlled path

Description
Library loaded from externally controlled path looks for libraries loaded from fixed or
controlled paths. If unintended actors can control one or more locations on this fixed
path, Bug Finder raises a defect.

Risk
If an attacker knows or controls the path that you use to load a library, the attacker can
change:

• The library that the program loads, replacing the intended library and commands.
• The environment in which the library executes, giving unintended permissions and

capabilities to the attacker.

Fix
When possible, use hard-coded or fully qualified path names to load libraries. It is
possible the hard-coded paths do not work on other systems. Use a centralized location
for hard-coded paths, so that you can easily modify the path within the source code.

Another solution is to use functions that require explicit paths. For example, system()
does not require a full path because it can use the PATH environment variable. However,
execl() and execv() do require the full path.

 Library loaded from externally controlled path

3-369

Examples

Call Custom Library
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <dlfcn.h>
#include <limits.h>

enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};

void* taintedpathlib() {
 void* libhandle = NULL;
 char lib[SIZE128] = "";
 char* userpath = getenv("LD_LIBRARY_PATH");
 strncpy(lib, userpath, SIZE128);
 strcat(lib, "/libX.so");
 libhandle = dlopen(lib, 0x00001);
 return libhandle;
}

This example loads the library libX.so from an environment variable
LD_LIBRARY_PATH. An attacker can change the library path in this environment variable.
The actual library you load could be a different library from the one that you intend.

One possible correction is to change how you get the library path and check the path of
the library before opening the library. This example receives the path as an input
argument. Then the path is checked to make sure the library is not under /usr/.

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <dlfcn.h>
#include <limits.h>

3 Defects

3-370

enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};

/* Function to sanitize a string */
int sanitize_str(char* s, size_t n) {
 /* strlen is used here as a kind of firewall for tainted string errors */
 int res = (strlen(s) > 0 && strlen(s) < n);
 return res;
}
void* taintedpathlib(char* userpath) {
 void* libhandle = NULL;
 if (sanitize_str(userpath, SIZE128)) {
 char lib[SIZE128] = "";

 if (strncmp(userpath, "/usr", 4)!=0) {
 strncpy(lib, userpath, SIZE128);
 strcat(lib, "/libX.so");
 libhandle = dlopen(lib, RTLD_LAZY);
 }
 }
 return libhandle;
}

Result Information
Group: Tainted Data
Language: C | C++
Default: Off
Command-Line Syntax: TAINTED_PATH_LIB
Impact: Medium
CWE ID: 114, 426
CERT C ID: API00-C, STR02-C, WIN00-C

See Also
Execution of externally controlled command | Use of externally
controlled environment variable | Command executed from externally
controlled path

 Library loaded from externally controlled path

3-371

https://cwe.mitre.org/data/definitions/114.html
https://cwe.mitre.org/data/definitions/426.html
https://www.securecoding.cert.org/confluence/x/egAV
https://www.securecoding.cert.org/confluence/x/-AY
https://www.securecoding.cert.org/confluence/x/NYDiBg

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2015b

3 Defects

3-372

Line with more than one statement
Multiple statements on a line

Description
Before preprocessing starts, Line with more than one statement checks for additional
text after the semicolon (;) on a line. A defect is not raised for comments, for-loop
definitions, braces, or backslashes.

Examples
Single-Line Initialization
int multi_init(void){
_ int abc = 4; int efg = 0; //defect

 return abc*efg;
}

In this example, abc and efg are initialized on the second line of the function as separate
statements.

One possible correction is to use a comma instead of a semicolon to declare multiple
variables on the same line.

int multi_init(void){
 int a = 4, b = 0;

 return a*b;
}

One possible correction is to separate each initialization. By putting the initialization of b
on the next line, the code longer raises a defect.

int multi_init(void){
 int a = 4;

 Line with more than one statement

3-373

 int b = 0;

 return a*b;
}

Single-Line Loops
int multi_loop(void){
 int a, b = 0;
 int index = 1;
 int tab[9] = {1,1,2,3,5,8,13,21};

 for(a=0; a < 3; a++) {b+=a;} // no defect

_ for(b=0; b < 3; b++) {a+=b; index=b;} //defect

_ while (index < 7) {index++; tab[index] = index * index;} //defect
 return a*b;
}

In this example, there are three loops coded on single lines, each with multiple
semicolons.

• The first for loop has multiple semicolons. Polyspace does not raise a defect for
multiple statements within a for loop declaration.

• Polyspace does raise a defect on the second for loop because there are multiple
statements after the for loop declaration.

• The while loop also has multiple statements after the loop declaration. Polyspace
raises a defect on this line.

One possible correction is to use a new line for each statement after the loop declaration.

int multi_loop(void){
 int a, b = 0;
 int index = 1;
 int tab[9] = {1,1,2,3,5,8,13,21};

 for(a=0; a < 3; a++) {b+=a;}

 for(b=0; b < 3; b++){
 a+=b;
 index=b;

3 Defects

3-374

 }

 while (index < 7){
 index++;
 tab[index] = index * index;
 }
 return a*b;
}

Single-line Conditionals
int multi_if(void){

 int a, b = 1;
 if(a == 0) { a++;} // no defect
_ else if(b == 1) {b++; a *= b;} //defect
}

In this example, there are two conditional statements an: if and an else if. The if line
does not raise a defect because only one statement follows the condition. The else if
statement does raise a defect because two statements follow the condition.

One possible correction is to use a new line for conditions with multiple statements.

int multi_if(void){
 int a, b = 1;

 if(a == 0) a++;
 else if(b == 1){
 b++;
 a *= b;
 }
}

Check Information
Group: Good practice
Language: C | C++
Default: Off
Command-Line Syntax: MORE_THAN_ONE_STATEMENT
Impact: Low

 Line with more than one statement

3-375

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2013b

3 Defects

3-376

Load of library from a relative path can be
controlled by an external actor
Library loaded with relative path is vulnerable to malicious attacks

Description
Load of library from a relative path can be controlled by an external actor detects
library loading routines that load an external library. If you load the library using a
relative path or no path, Bug Finder flags the loading routine as a defect.

Risk
By using a relative path or no path to load an external library, your program uses an
unsafe search process to find the library. An attacker can control the search process and
replace the intended library with a library of their own.

Fix
When you load an external library, specify the full path.

Examples

Open Library with Library Name
#include <dlfcn.h>
#include <stdlib.h>
#include <string.h>
#include <malloc.h>
#include <stdio.h>

void relative_path()
{
 dlopen("liberty.dll",RTLD_LAZY);
}

 Load of library from a relative path can be controlled by an external actor

3-377

In this example, dlopen opens the liberty library by calling only the name of the
library. However, this call to the library uses a relative path to find the library, which is
unsafe.

One possible correction is to use the full path to the library when you load it into your
program.

#include <dlfcn.h>
#include <stdlib.h>
#include <string.h>
#include <malloc.h>
#include <stdio.h>

void relative_path()
{
 dlopen("/home/my_libs/library/liberty.dll",RTLD_LAZY);
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: RELATIVE_PATH_LIB
Impact: Medium
CWE ID: 114, 427
CERT C ID: WIN00-C

See Also
Execution of a binary from a relative path can be controlled by an
external actor | Vulnerable path manipulation | Library loaded from
externally controlled path

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

3 Defects

3-378

https://cwe.mitre.org/data/definitions/114.html
https://cwe.mitre.org/data/definitions/427.html
https://www.securecoding.cert.org/confluence/x/NYDiBg

Introduced in R2015b

 Load of library from a relative path can be controlled by an external actor

3-379

Loop bounded with tainted value
Loop controlled by a value from an unsecure source

Description
Loop bounded with tainted value detects loops that are bounded by values from an
unsecure source.

Risk
A tainted value can cause over looping or infinite loops. Attackers can use this
vulnerability to crash your program or cause other unintended behavior.

Fix
Before starting the loop, validate unknown boundary and iterator values.

Examples

Loop Boundary From Input Argument
enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};

int taintedloopboundary(int count) {
 int res = 0;
 for (int i=0 ; i < count; ++i) {
 res += i;
 }
 return res;
}

3 Defects

3-380

In this example, the function uses the input argument to loop count times. count could
be any number because the value is not checked before starting the for-loop.

One possible correction is to check the value of the variable controlling the loop before
starting the for-loop. This example checks if count is greater than zero and less than the
maximum size.

enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};

int taintedloopboundary(int count) {
 int res = 0;

 if (count>0 && count<SIZE128) {
 for (int i=0 ; i<count ; ++i) {
 res += i;
 }
 }
 return res;
}

Result Information
Group: Tainted Data
Language: C | C++
Default: Off
Command-Line Syntax: TAINTED_LOOP_BOUNDARY
Impact: Medium
CWE ID: 606
CERT C ID: API00-C, INT04-C, MSC21-C
ISO/IEC TS 17961 ID: taintsink

See Also
Array access with tainted index | Pointer dereference with tainted
offset

 Loop bounded with tainted value

3-381

https://cwe.mitre.org/data/definitions/606.html
https://www.securecoding.cert.org/confluence/x/egAV
https://www.securecoding.cert.org/confluence/x/kgI
https://www.securecoding.cert.org/confluence/x/EwDJAQ

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2015b

3 Defects

3-382

Member not initialized in constructor
Constructor does not initialize some members of a class

Description
Non-initialized member occurs when a class constructor has at least one execution
path on which it does not initialize some data members of the class.

The defect does not appear in the following cases:

• Empty constructors.
• The non-initialized member is not used in the code.

Risk
The members that the constructor does not initialize can have unintended values when
you read them later.

Initializing all members in the constructor makes it easier to use your class. If you call a
separate method to initialize your members and then read them, you can avoid
uninitialized values. However, someone else using your class can read a class member
before calling your initialization method. Because a constructor is called when you create
an object of the class, if you initialize all members in the constructor, they cannot have
uninitialized values later on.

Fix
The best practice is to initialize all members in your constructor, preferably in an
initialization list.

 Member not initialized in constructor

3-383

Examples

Non-Initialized Member
class MyClass {
public:
 explicit MyClass(int);
private:
 int _i;
 char _c;
};

MyClass::MyClass(int flag) {
 if(flag == 0) {
 _i = 0;
 _c = 'a';
 }
 else {
 _i = 1;
 }
}

In this example, if flag is not 0, the member _c is not initialized.

The defect appears on the closing brace of the constructor. Following are some tips for
navigating in the source code:

• On the Result Details pane, see which members are not initialized.
• To navigate to the class definition, right-click a member that is initialized in the

constructor. Select Go To Definition. In the class definition, you can see all the
members, including those members that are not initialized in the constructor.

One possible correction is to initialize all members of the class MyClass for all values of
flag.

class MyClass {
public:
 explicit MyClass(int);
private:
 int _i;
 char _c;

3 Defects

3-384

};

MyClass::MyClass(int flag) {
 if(flag == 0) {
 _i = 0;
 _c = 'a';
 }
 else {
 _i = 1;
 _c = 'b';
 }
}

Result Information
Group: Object oriented
Language: C++
Default: Off
Command-Line Syntax: NON_INIT_MEMBER
Impact: Medium
CWE ID: 456, 457, 908
ISO/IEC TS 17961 ID: uninitref

See Also
Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Copy constructor not called in initialization list

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2015b

 Member not initialized in constructor

3-385

https://cwe.mitre.org/data/definitions/456.html
https://cwe.mitre.org/data/definitions/457.html
https://cwe.mitre.org/data/definitions/908.html

Memory allocation with tainted size
Size argument to memory function is from an unsecure source

Description
Memory allocation with tainted size checks memory allocation functions, such as
calloc or malloc, for size arguments from unsecured sources.

Risk
Uncontrolled memory allocation can cause your program to request too much system
memory. This consequence can lead to a crash due to an out-of-memory condition, or
assigning too many resources.

Fix
Before allocating memory, check the value of your arguments to check that they do not
exceed the bounds.

Examples

Allocate Memory Using Input Argument

#include "stdlib.h"

int* bug_taintedmemoryallocsize(size_t size) {
 int* p = (int*)malloc(size);
 return p;
}

In this example, malloc allocates size amount of memory for the pointer p. size is an
outside variable, so could be any size value. If the size is larger than the amount of
memory you have available, your program could crash.

3 Defects

3-386

One possible correction is to check the size of the memory that you want to allocate
before performing the malloc operation. This example checks to see if the size is positive
and less than the maximum size.

#include "stdlib.h"

enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};

int* corrected_taintedmemoryallocsize(int size) {
 int* p = NULL;
 if (size>0 && size<SIZE128) { /* Fix: Check entry range before use */
 p = (int*)malloc((unsigned int)size);
 }
 return p;
}

Result Information
Group: Tainted Data
Language: C | C++
Default: Off
Command-Line Syntax: TAINTED_MEMORY_ALLOC_SIZE
Impact: Medium
CWE ID: 128, 131, 789
CERT C ID: API00-C, ARR32-C, INT04-C, MEM07-C, MEM10-C, MEM11-C, MEM35-C
CERT C++ ID: MEM35-C
ISO/IEC TS 17961 ID: taintsink

See Also
Unprotected dynamic memory allocation

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

 Memory allocation with tainted size

3-387

https://cwe.mitre.org/data/definitions/128.html
https://cwe.mitre.org/data/definitions/131.html
https://cwe.mitre.org/data/definitions/789.html
https://www.securecoding.cert.org/confluence/x/egAV
https://www.securecoding.cert.org/confluence/x/eQo
https://www.securecoding.cert.org/confluence/x/kgI
https://www.securecoding.cert.org/confluence/x/GwI
https://www.securecoding.cert.org/confluence/x/jgEOAQ
https://www.securecoding.cert.org/confluence/x/sQCuAQ
https://www.securecoding.cert.org/confluence/x/2wE
https://wiki.sei.cmu.edu/confluence/x/ANYxBQ

Introduced in R2015b

3 Defects

3-388

Memory comparison of float-point values
Object representation of floating-point values can be different (same) for equal (not equal)
floating-point values

Description
Memory comparison of float-point values occurs when you compare the object
representation of floating-point values or the object representation of structures
containing floating-point members. When you use the functions memcmp, bcmp, or
wmemcmp to perform the bit pattern comparison, the defect is raised.

Risk
The object representation of floating-point values uses specific bit patterns to encode
those values. Floating-point values that are equal, for instance -0.0 and 0.0 in the IEC
60559 standard, can have different bit patterns in their object representation. Similarly,
floating-point values that are not equal can have the same bit pattern in their object
representation.

Fix
When you compare structures containing floating-point members, compare the structure
members individually.

To compare two floating-point values, use the == or != operators. If you follow a standard
that discourages the use of these operators, such as MISRA, ensure that the difference
between the floating-point values is within an acceptable range.

Examples
Using memcmp to Compare Structures with Floating-Point
Members
#include <string.h>

 Memory comparison of float-point values

3-389

typedef struct {
 int i;
 float f;
} myStruct;

extern void initialize_Struct(myStruct *);

int func_cmp(myStruct *s1, myStruct *s2) {
/* Comparison between structures containing
* floating-point members */
 return memcmp
 ((const void *)s1, (const void *)s2, sizeof(myStruct));
}

void func(void) {
 myStruct s1, s2;
 initialize_Struct(&s1);
 initialize_Struct(&s2);
 (void)func_cmp(&s1, &s2);
}

In this example, func_cmp() calls memcmp() to compare the object representations of
structures s1 and s2. The comparison might be inaccurate because the structures
contain floating-point members.

One possible correction is to compare the structure members individually and to ensure
that the difference between the floating-point values is within an acceptable range
defined by ESP.

 #include <string.h>

typedef struct {
 int i;
 float f;
} myStruct;

extern void initialize_Struct(myStruct *);

#define ESP 0.00001

int func_cmp(myStruct *s1, myStruct *s2) {

/*Structure members are compared individually */

3 Defects

3-390

 return ((s1->i == s2->i) &&
 (fabsf(s1->f - s2->f) <= ESP));
}

void func(void) {
 myStruct s1, s2;
 initialize_Struct(&s1);
 initialize_Struct(&s2);
 (void)func_cmp(&s1, &s2);
}

Result Information
Group: Programming
Language: C | C++
Default: Off
Command-Line Syntax: MEMCMP_FLOAT
Impact: Low
CERT C ID: FLP37-C
CERT C++ ID: FLP37-C

See Also

Topics
Floating point comparison with equality operators
Memory comparison of padding data
Memory comparison of strings
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2018a

 Memory comparison of float-point values

3-391

https://www.securecoding.cert.org/confluence/x/J4DkC
https://wiki.sei.cmu.edu/confluence/x/kdUxBQ

Memory comparison of padding data
memcmp compares data stored in structure padding

Description
Memory comparison of padding data occurs when you use the memcmp function to
compare two structures as a whole. In the process, you compare meaningless data stored
in the structure padding.

For instance:

struct structType {
 char member1;
 int member2;
 .
 .
};

structType var1;
structType var2;
.
.
if(memcmp(&var1,&var2,sizeof(var1)))
{...}

Risk
If members of a structure have different data types, your compiler introduces additional
padding for data alignment in memory. For an example of padding, see Higher
Estimate of Local Variable Size.

The content of these extra padding bytes is meaningless. The C Standard allows the
content of these bytes to be indeterminate, giving different compilers latitude to
implement their own padding. If you perform a byte-by-byte comparison of structures
with memcmp, you compare even the meaningless data stored in the padding. You might
reach the false conclusion that two data structures are not equal, even if their
corresponding members have the same value.

3 Defects

3-392

Fix
Instead of comparing two structures in one attempt, compare the structures member by
member.

For efficient code, write a function that does the comparison member by member. Use this
function for comparing two structures.

You can use memcmp for byte-by-byte comparison of structures only if you know that the
structures do not contain padding. Typically, to prevent padding, you use specific
attributes or pragmas such as #pragma pack. However, these attributes or pragmas are
not supported by all compilers and make your code implementation-dependent. If your
structures contain bit-fields, using these attributes or pragmas cannot prevent padding.

Examples

Structures Compared with memcmp
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define fatal_error() abort()

typedef struct s_padding
{
 char c;
 int i;
 unsigned int bf1:1;
 unsigned int bf2:2;
 unsigned char buffer[20];
} S_Padding ;

/* Function that guarantees safe access to the input memory */
extern int trusted_memory_zone(void *ptr, size_t sz);

int func(const S_Padding *left, const S_Padding *right)
{

 if (!trusted_memory_zone((void *)left, sizeof(S_Padding)) ||
 !trusted_memory_zone((void *)right, sizeof(S_Padding))) {

 Memory comparison of padding data

3-393

 fatal_error();
 }

 if (0 == memcmp(left, right, sizeof(S_Padding)))
 {
 return 1;
 }
 else
 return 0;
}

In this example, memcmp compares byte-by-byte the two structures that left and right
point to. Even if the values stored in the structure members are the same, the comparison
can show an inequality if the meaningless values in the padding bytes are not the same.

One possible correction is to compare individual structure members.

Note You can compare entire arrays by using memcmp. All members of an array have the
same data type. Padding bytes are not required to store arrays.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define fatal_error() abort()

typedef struct s_padding
{
 char c;
 int i;
 unsigned int bf1:1;
 unsigned int bf2:2;
 unsigned char buffer[20];
} S_Padding ;

/* Function that guarantees safe access to the input memory */
extern int trusted_memory_zone(void *ptr, size_t sz);

int func(const S_Padding *left, const S_Padding *right)
{
 if (!trusted_memory_zone((void *)left, sizeof(S_Padding)) ||

3 Defects

3-394

 !trusted_memory_zone((void *)right, sizeof(S_Padding))) {
 fatal_error();
 }

 return ((left->c == right->c) &&
 (left->i == right->i) &&
 (left->bf1 == right->bf1) &&
 (left->bf2 == right->bf2) &&
 (memcmp(left->buffer, right->buffer, 20) == 0));
}

Result Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: MEMCMP_PADDING_DATA
Impact: Medium
CWE ID: 188
CERT C ID: EXP42-C
CERT C++ ID: EXP42-C
ISO/IEC TS 17961 ID: padcomp

See Also
Polyspace Results
Memory comparison of strings

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2017a

 Memory comparison of padding data

3-395

https://cwe.mitre.org/data/definitions/188.html
https://www.securecoding.cert.org/confluence/x/CoDYBg
https://wiki.sei.cmu.edu/confluence/x/PtUxBQ

Memory comparison of strings
memcmp compares data stored in strings after the null terminator

Description
Memory comparison of strings occurs when:

• You compare two strings byte-by-byte with the memcmp function.
• The number of bytes compared is such that you compare meaningless data stored

after the null terminator.

For instance:

memcmp(string1, string2, sizeof(string1))

can compare bytes in the string after the null terminator.

Risk
The null terminator signifies the end of a string. Comparison of bytes after the null
terminator is meaningless. You might reach the false conclusion that two strings are not
equal, even if the bytes before the null terminator store the same value.

Fix
Use strcmp for string comparison. The function compares strings only up to the null
terminator.

If you use memcmp for a byte-by-byte comparison of two strings, avoid comparison of bytes
after the null terminator. Determine the number of bytes to compare by using the strlen
function.

3 Defects

3-396

Examples

Strings Compared with memcmp
#include <stdio.h>
#include <string.h>

#define SIZE20 20

int func()
{
 char s1[SIZE20] = "abc";
 char s2[SIZE20] = "abc";

 return memcmp(s1, s2, sizeof(s1));
}

In this example, sizeof returns the length of the entire array s1, which is 20. However,
only the first three bytes of the string are relevant.

Even though s1 and s2 hold the same value, the comparison with memcmp can show a
false inequality.

One possible correction is to determine the number of bytes to compare using the
strlen function. strlen returns the number of bytes before the null terminator (and
excluding the null terminator itself).

#include <stdio.h>
#include <string.h>

#define SIZE20 20

int func()
{
 char s1[SIZE20] = "abc";
 char s2[SIZE20] = "abc";

 return memcmp(s1, s2, strlen(s1));
}

 Memory comparison of strings

3-397

Result Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: MEMCMP_STRINGS
Impact: Medium
CWE ID: 188

See Also
Polyspace Results
Memory comparison of padding data

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2017a

3 Defects

3-398

https://cwe.mitre.org/data/definitions/188.html

Memory leak
Memory allocated dynamically not freed

Description
Memory leak occurs when you do not free a block of memory allocated through malloc,
calloc, realloc, or new. If the memory is allocated in a function, the defect does not
occur if:

• Within the function, you free the memory using free or delete.
• The function returns the pointer assigned by malloc, calloc, realloc, or new.
• The function stores the pointer in a global variable or in a parameter.

Examples

Pointer with Dynamic Memory
#include<stdlib.h>
#include<stdio.h>

void assign_memory(void)
{
 int* pi = (int*)malloc(sizeof(int));
 if (pi == NULL)
 {
 printf("Memory allocation failed");
 return;
 }

 *pi = 42;
 /* Defect: pi is not freed */
}

In this example, pi is dynamically allocated by malloc. The function assign_memory
does not free the memory, nor does it return pi.

 Memory leak

3-399

One possible correction is to free the memory referenced by pi using the free function.
The free function must be called before the function assign_memory terminates

#include<stdlib.h>
#include<stdio.h>

void assign_memory(void)
{
 int* pi = (int*)malloc(sizeof(int));
 if (pi == NULL)
 {
 printf("Memory allocation failed");
 return;
 }
 *pi = 42;

 /* Fix: Free the pointer pi*/
 free(pi);
}

Another possible correction is to return the pointer pi. Returning pi allows the function
calling assign_memory to free the memory block using pi.

#include<stdlib.h>
#include<stdio.h>

int* assign_memory(void)
{
 int* pi = (int*)malloc(sizeof(int));
 if (pi == NULL)
 {
 printf("Memory allocation failed");
 return(pi);
 }
 *pi = 42;

 /* Fix: Return the pointer pi*/
 return(pi);
}

3 Defects

3-400

Memory Leak with New/Delete

#define NULL '\0'

void initialize_arr1(void)
{
 int *p_scalar = new int(5);
}

void initialize_arr2(void)
{
 int *p_array = new int[5];
}

In this example, the functions create two variables, p_scalar and p_array, using the
new keyword. However, the functions end without cleaning up the memory for these
pointers. Because the functions used new to create these variables, you must clean up
their memory by calling delete at the end of each function.

To correct this error, add a delete statement for every new initialization. If you used
brackets [] to instantiate a variable, you must call delete with brackets as well.

#define NULL '\0'

void initialize_arrs(void)
{
 int *p_scalar = new int(5);
 int *p_array = new int[5];

 delete p_scalar;
 p_scalar = NULL;

 delete[] p_array;
 p_scalar = NULL;
}

Check Information
Group: Dynamic memory
Language: C | C++

 Memory leak

3-401

Default: Off
Command-Line Syntax: MEM_LEAK
Impact: Medium
CWE ID: 401, 404
CERT C ID: MEM11-C, MEM12-C, MEM31-C
CERT C++ ID: MEM31-C, MEM52-CPP
ISO/IEC TS 17961 ID: fileclose

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2013b

3 Defects

3-402

https://cwe.mitre.org/data/definitions/401.html
https://cwe.mitre.org/data/definitions/404.html
https://www.securecoding.cert.org/confluence/x/sQCuAQ
https://www.securecoding.cert.org/confluence/x/8AG7AQ
https://www.securecoding.cert.org/confluence/x/vQE
https://wiki.sei.cmu.edu/confluence/x/GNYxBQ
https://wiki.sei.cmu.edu/confluence/x/u3w-BQ

Mismatched alloc/dealloc functions on
Windows
Improper deallocation function causes memory corruption issues

Description
Mismatched alloc/dealloc functions on Windows occurs when you use a Windows
deallocation function that is not properly paired to its corresponding allocation function.

Risk
Deallocating memory with a function that does not match the allocation function can
cause memory corruption or undefined behavior. If you are using an older version of
Windows, the improper function can also cause compatibility issues with newer versions.

Fix
Properly pair your allocation and deallocation functions according to the functions listed
in this table.

Allocation Function Deallocation Function
malloc() free()
realloc() free()
calloc() free()
_aligned_malloc() _aligned_free()
_aligned_offset_malloc() _aligned_free()
_aligned_realloc() _aligned_free()
_aligned_offset_realloc() _aligned_free()
_aligned_recalloc() _aligned_free()
_aligned_offset_recalloc() _aligned_free()

 Mismatched alloc/dealloc functions on Windows

3-403

Allocation Function Deallocation Function
_malloca() _freea()
LocalAlloc() LocalFree()
LocalReAlloc() LocalFree()
GlobalAlloc() GlobalFree()
GlobalReAlloc() GlobalFree()
VirtualAlloc() VirtualFree()
VirtualAllocEx() VirtualFreeEx()
VirtualAllocExNuma() VirtualFreeEx()
HeapAlloc() HeapFree()
HeapReAlloc() HeapFree()

Examples

Memory Deallocated with Incorrect Function
#ifdef _WIN32_
#include <windows.h>
#else
#define _WIN32_
typedef void *HANDLE;
typedef HANDLE HGLOBAL;
typedef HANDLE HLOCAL;
typedef unsigned int UINT;
extern HLOCAL LocalAlloc(UINT uFlags, UINT uBytes);
extern HLOCAL LocalFree(HLOCAL hMem);
extern HGLOBAL GlobalFree(HGLOBAL hMem);
#endif

#define SIZE9 9

void func(void)
{
 /* Memory allocation */
 HLOCAL p = LocalAlloc(0x0000, SIZE9);

3 Defects

3-404

 if (p) {
 /* Memory deallocation. */
 GlobalFree(p);

 }
}

In this example, memory is allocated with LocallAlloc(). The program then
erroneously uses GlobalFree() to deallocate the memory.

When you allocate memory with LocalAllocate(), use LocalFree() to deallocate the
memory.

#ifdef _WIN32_
#include <windows.h>
#else
#define _WIN32_
typedef void *HANDLE;
typedef HANDLE HGLOBAL;
typedef HANDLE HLOCAL;
typedef unsigned int UINT;
extern HLOCAL LocalAlloc(UINT uFlags, UINT uBytes);
extern HLOCAL LocalFree(HLOCAL hMem);
extern HGLOBAL GlobalFree(HGLOBAL hMem);
#endif

#define SIZE9 9
void func(void)
{
 /* Memory allocation */
 HLOCAL p = LocalAlloc(0x0000, SIZE9);
 if (p) {
 /* Memory deallocation. */
 LocalFree(p);
 }
}

 Mismatched alloc/dealloc functions on Windows

3-405

Result Information
Group: Dynamic memory
Language: C | C++
Default: Off
Command-Line Syntax: WIN_MISMATCH_DEALLOC
Impact: Low
CWE ID: 404, 762
CERT C ID: WIN30-C
CERT C++ ID: WIN30-C

See Also
Invalid deletion of pointer | Invalid free of pointer

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2017b

3 Defects

3-406

https://cwe.mitre.org/data/definitions/404.html
https://cwe.mitre.org/data/definitions/873.html
https://www.securecoding.cert.org/confluence/x/FwD_Bg
https://wiki.sei.cmu.edu/confluence/x/y9YxBQ

Mismatch between data length and size
Data size argument is not computed from actual data length

Description
Mismatch between data length and size looks for memory copying functions such as
memcpy, memset, or memmove. If you do not control the length argument and data buffer
argument properly, Bug Finder raises a defect.

Risk
If an attacker can manipulate the data buffer or length argument, the attacker can cause
buffer overflow by making the actual data size smaller than the length.

This mismatch in length allows the attacker to copy memory past the data buffer to a new
location. If the extra memory contains sensitive information, the attacker can now access
that data.

This defect is similar to the SSL Heartbleed bug.

Fix
When copying or manipulating memory, compute the length argument directly from the
data so that the sizes match.

Examples

Copy Buffer of Data
#include <stdlib.h>
#include <string.h>

typedef struct buf_mem_st {
 char *data;

 Mismatch between data length and size

3-407

 size_t max; /* size of buffer */
} BUF_MEM;

extern BUF_MEM beta;

int cpy_data(BUF_MEM *alpha)
{
 BUF_MEM *os = alpha;
 int num, length;

 if (alpha == 0x0) return 0;
 num = 0;

 length = *(unsigned short *)os->data;
 memcpy(&(beta.data[num]), os->data + 2, length);

 return(1);
}

This function copies the buffer alpha into a buffer beta. However, the length variable is
not related to data+2.

One possible correction is to check the length of your buffer against the maximum value
minus 2. This check ensures that you have enough space to copy the data to the beta
structure.

#include <stdlib.h>
#include <string.h>

typedef struct buf_mem_st {
 char *data;
 size_t max; /* size of buffer */
} BUF_MEM;

extern BUF_MEM beta;

int cpy_data(BUF_MEM *alpha)
{
 BUF_MEM *os = alpha;
 int num, length;

 if (alpha == 0x0) return 0;
 num = 0;

3 Defects

3-408

 length = *(unsigned short *)os->data;
 if (length<(os->max -2)) {
 memcpy(&(beta.data[num]), os->data + 2, length);
 }

 return(1);

}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: DATA_LENGTH_MISMATCH
Impact: Medium
CWE ID: 130, 240
CERT C ID: ARR38-C
CERT C++ ID: ARR38-C

See Also
Copy of overlapping memory

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2015b

 Mismatch between data length and size

3-409

https://cwe.mitre.org/data/definitions/130.html
https://cwe.mitre.org/data/definitions/240.html
https://www.securecoding.cert.org/confluence/x/EYCGB
https://wiki.sei.cmu.edu/confluence/x/W9UxBQ

Missing blinding for RSA algorithm
Context used in decryption or signature verification is not blinded against timing attacks

Description
Missing blinding for RSA algorithm occurs when you do not enable blinding for an
RSA context object before using the object for decryption or signature verification.

For instance, you do not turn on blinding in the context object rsa before this decryption
step:

 ret = RSA_public_decrypt(in_len, in, out, rsa, RSA_PKCS1_PADDING)

Risk
Without blinding, the time it takes for the cryptographic operation to be completed has a
correlation with the key value. An attacker can gather information about the RSA key by
measuring the time for completion. Blinding removes this correlation and protects the
decryption or verification operation against timing attacks.

Fix
Before performing RSA decryption or signature verification, enable blinding.

ret = RSA_blinding_on(rsa, NULL);

Examples

Blinding Disabled Before Decryption

#include <stddef.h>
#include <openssl/rsa.h>
#include <openssl/evp.h>

3 Defects

3-410

#define fatal_error() exit(-1)

int ret;
unsigned char *out_buf;
int func(unsigned char *src, size_t len, RSA* rsa){
 if (rsa == NULL) fatal_error();

 RSA_blinding_off(rsa);
 return RSA_private_decrypt(len, src, out_buf, rsa, RSA_PKCS1_OAEP_PADDING);
}

In this example, blinding is disabled for the context object rsa. Decryption with this
context object can be vulnerable to timing attacks.

One possible correction is to explicitly enable blinding before decryption. Even if blinding
might be enabled previously or by default, explicitly enabling blinding ensures that the
security of the current decryption step is not reliant on the caller of func.

#include <stddef.h>
#include <openssl/rsa.h>
#include <openssl/evp.h>

#define fatal_error() exit(-1)

int ret;
unsigned char *out_buf;
int func(unsigned char *src, size_t len, RSA* rsa){
 if (rsa == NULL) fatal_error();

 ret = RSA_blinding_on(rsa, NULL);
 if (ret <= 0) fatal_error();
 return RSA_private_decrypt(len, src, out_buf, rsa, RSA_PKCS1_OAEP_PADDING);
}

Result Information
Group: Cryptography
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_RSA_NO_BLINDING
Impact: Medium

 Missing blinding for RSA algorithm

3-411

CWE ID: 310, 326, 573

See Also
Incompatible padding for RSA algorithm operation | Missing padding for
RSA algorithm | Nonsecure RSA public exponent | Weak padding for RSA
algorithm

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2018a

3 Defects

3-412

https://cwe.mitre.org/data/definitions/310.html
https://cwe.mitre.org/data/definitions/326.html
https://cwe.mitre.org/data/definitions/573.html

Missing block cipher initialization vector
Context used for encryption or decryption is associated with NULL initialization vector or
not associated with an initialization vector

Description
Missing block cipher initialization vector occurs when you encrypt or decrypt data
using a NULL initialization vector (IV).

Note You can initialize your cipher context with a NULL initialization vector (IV).
However, if your algorithm requires an IV, before the encryption or decryption step, you
must associate the cipher context with a non-NULL IV.

Risk
Many block cipher modes use an initialization vector (IV) to prevent dictionary attacks. If
you use a NULL IV, your encrypted data is vulnerable to such attacks.

Block ciphers break your data into blocks of fixed size. Block cipher modes such as CBC
(Cipher Block Chaining) protect against dictionary attacks by XOR-ing each block with the
encrypted output from the previous block. To protect the first block, these modes use a
random initialization vector (IV). If you use a NULL IV, you get the same ciphertext when
encrypting the same plaintext. Your data becomes vulnerable to dictionary attacks.

Fix
Before your encryption or decryption steps

 ret = EVP_EncryptUpdate(&ctx, out_buf, &out_len, src, len)

associate your cipher context ctx with a non-NULL initialization vector.

ret = EVP_EncryptInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv)

 Missing block cipher initialization vector

3-413

Examples

NULL Initialization Vector Used for Encryption

#include <openssl/evp.h>
#include <stdlib.h>
#define fatal_error() abort()

unsigned char *out_buf;
int out_len;

int func(EVP_CIPHER_CTX *ctx, unsigned char *key, unsigned char *src, int len){
 if (key == NULL)
 fatal_error();

 /* Last argument is initialization vector */
 EVP_EncryptInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, NULL);

 /* Update step with NULL initialization vector */
 return EVP_EncryptUpdate(ctx, out_buf, &out_len, src, len);
}

In this example, the initialization vector associated with the cipher context ctx is NULL.
If you use this context to encrypt your data, your data is vulnerable to dictionary attacks.

Use a strong random number generator to produce the initialization vector. The corrected
code here uses the function RAND_bytes declared in openssl/rand.h.

#include <openssl/evp.h>
#include <openssl/rand.h>
#include <stdlib.h>
#define fatal_error() abort()
#define SIZE16 16

unsigned char *out_buf;
int out_len;

int func(EVP_CIPHER_CTX *ctx, unsigned char *key, unsigned char *src, int len){

3 Defects

3-414

 if (key == NULL)
 fatal_error();
 unsigned char iv[SIZE16];
 RAND_bytes(iv, 16);

 /* Last argument is initialization vector */
 EVP_EncryptInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv);

 /* Update step with non-NULL initialization vector */
 return EVP_EncryptUpdate(ctx, out_buf, &out_len, src, len);
}

Result Information
Group: Cryptography
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_CIPHER_NO_IV
Impact: Medium
CWE ID: 310, 326, 329

See Also

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2017a

 Missing block cipher initialization vector

3-415

https://cwe.mitre.org/data/definitions/310.html
https://cwe.mitre.org/data/definitions/326.html
https://cwe.mitre.org/data/definitions/329.html

Missing break of switch case
No comments at the end of switch case without a break statement

Description
Missing break of switch case looks for switch cases that do not end in a break
statement. If the case does not have a code comment after it, Polyspace assumes the
missing break is not intentional and raises a defect.

Risk
Switch cases without break statements fall through to the next switch case. If this fall-
through is not intended, the switch case can unintentionally execute code and end the
switch with unexpected results.

Fix
If you do not want a break for the highlighted switch case, add a comment to your code to
document why this case falls through to the next case. This comment removes the defect
from your results and makes your code more maintainable.

If you forgot the break, add it before the end of the switch case.

Examples
Switch Without Break Statements
enum WidgetEnum { WE_W, WE_X, WE_Y, WE_Z } widget_type;

extern void demo_do_something_for_WE_W(void);
extern void demo_do_something_for_WE_X(void);
extern void demo_report_error(void);

void bug_missingswitchbreak(enum WidgetEnum wt)
{

3 Defects

3-416

 /*
 In this non-compliant code example, the case where widget_type is WE_W lacks a
 break statement. Consequently, statements that should be executed only when
 widget_type is WE_X are executed even when widget_type is WE_W.
 */
 switch (wt)
 {
 case WE_W:
 demo_do_something_for_WE_W();
 case WE_X:
 demo_do_something_for_WE_X();
 default:
 /* Handle error condition */
 demo_report_error();
 }
}

In this example, there are two cases without break statements. When wt is WE_W, the
statements for WE_W, WE_X, and the default case execute because the program falls
through the two cases without a break. No defect is raised on the default case or last
case because it does not need a break statement.

To fix this example, either add a comment to mark and document the acceptable fall-
through or add a break statement to avoid fall-through. In this example, case WE_W is
supposed to fall through, so a comment is added to explicitly state this action. For the
second case, a break statement is added to avoid falling through to the default case.

enum WidgetEnum { WE_W, WE_X, WE_Y, WE_Z } widget_type;

extern void demo_do_something_for_WE_W(void);
extern void demo_do_something_for_WE_X(void);
extern void demo_report_error(void);

void corrected_missingswitchbreak(enum WidgetEnum wt)
{
 switch (wt)
 {
 case WE_W:
 demo_do_something_for_WE_W();
 /* fall through to WE_X*/
 case WE_X:
 demo_do_something_for_WE_X();
 break;

 Missing break of switch case

3-417

 default:
 /* Handle error condition */
 demo_report_error();
 }
}

Result Information
Group: Good Practice
Language: C | C++
Default: Off
Command-Line Syntax: MISSING_SWITCH_BREAK
Impact: Low
CWE ID: 484
CERT C ID: MSC17-C

See Also
Missing case for switch condition

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2016b

3 Defects

3-418

https://cwe.mitre.org/data/definitions/484.html
https://www.securecoding.cert.org/confluence/x/YIFLAQ

Missing byte reordering when transferring
data
Different endianness of host and network

Description
Missing byte reordering when transferring data occurs when you do not use a byte
ordering function:

• Before sending data to a network socket.
• After receiving data from a network socket.

Risk
Some system architectures implement little endian byte ordering (least significant byte
first), and other systems implement big endian (most significant byte first). If the
endianness of the sent data does not match the endianness of the receiving system, the
value returned when reading the data is incorrect.

Fix
After receiving data from a socket, use a byte ordering function such as ntohl(). Before
sending data to a socket, use a byte ordering function such as htonl() .

Examples

Data Transferred Without Byte Reordering
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <sys/types.h>
#include <sys/socket.h>

 Missing byte reordering when transferring data

3-419

#include <arpa/inet.h>
#include <byteswap.h>
#include <unistd.h>
#include <string.h>

unsigned int func(int sock, int server)
{
 unsigned int num; /* assume int is 32-bits */
 if (server)
 {
 /* Server side */
 num = 0x17;
 /* Endianness of server host may not match endianness of network. */
 if (send(sock, (void *)&num, sizeof(num), 0) < (int)sizeof(num))
 {
 /* Handle error */
 }
 return 0;
 }
 else {
 /* Endianness of client host may not match endianness of network. */
 if (recv (sock, (void *)&num, sizeof(num), 0) < (int) sizeof(num))
 {
 /* Handle error */
 }

 /* Comparison may be inaccurate */
 if (num> 255)
 {
 return 255;
 }
 else
 {
 return num;
 }
 }
}

In this example, variable num is assigned hexadecimal value 0x17 and is sent over a
network to the client from the server. If the server host is little endian and the network is

3 Defects

3-420

big endian, num is transferred as 0x17000000. The client then reads an incorrect value
for num and compares it to a local numeric value.

Before sending num from the server host, use htonl() to convert from host to network
byte ordering. Similarly, before reading num on the client host, use ntohl() to convert
from network to host byte ordering.

#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <byteswap.h>
#include <unistd.h>
#include <string.h>

unsigned int func(int sock, int server)
{
 unsigned int num; /* assume int is 32-bits */
 if (server)
 {
 /* Server side */
 num = 0x17;

 /* Convert to network byte order. */
 num = htonl(num);
 if (send(sock, (void *)&num, sizeof(num), 0) < (int)sizeof(num))
 {
 /* Handle error */
 }
 return 0;
 }
 else {
 if (recv (sock, (void *)&num, sizeof(num), 0) < (int) sizeof(num))
 {
 /* Handle error */
 }

 /* Convert to host byte order. */
 num = ntohl(num);
 if (num > 255)
 {

 Missing byte reordering when transferring data

3-421

 return 255;
 }
 else
 {
 return num;
 }
 }
}

Result Information
Group: Programming
Language: C | C++
Default: Off
Command-Line Syntax: MISSING_BYTESWAP
Impact: Medium
CWE ID: 188, 198
CERT C ID: POS39-C
CERT C++ ID: POS39-C

See Also

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2017b

3 Defects

3-422

https://cwe.mitre.org/data/definitions/188.html
https://cwe.mitre.org/data/definitions/198.html
https://www.securecoding.cert.org/confluence/x/IgDAAQ
https://wiki.sei.cmu.edu/confluence/x/y9YxBQ

Missing case for switch condition
switch variable not covered by cases and default case is missing

Description
Missing case for switch condition occurs when the switch variable can take values
that are not covered by a case statement.

Note Bug Finder only raises a defect if the switch variable is not full range.

Risk
If the switch variable takes a value that is not covered by a case statement, your
program can have unintended behavior.

A switch-statement that makes a security decision is particularly vulnerable when all
possible values are not explicitly handled. An attacker can use this situation to deviate the
normal execution flow.

Fix
It is good practice to use a default statement as a catch-all for values that are not
covered by a case statement. Even if the switch variable takes an unintended value, the
resulting behavior can be anticipated.

Examples

Missing Default Condition
#include <stdio.h>
#include <string.h>

typedef enum E

 Missing case for switch condition

3-423

{
 ADMIN=1,
 GUEST,
 UNKNOWN = 0
} LOGIN;

static LOGIN system_access(const char *username) {
 LOGIN user = UNKNOWN;

 if (strcmp(username, "root") == 0)
 user = ADMIN;

 if (strcmp(username, "friend") == 0)
 user = GUEST;

 return user;
}

int identify_bad_user(const char * username)
{
 int r=0;

 switch(system_access(username))
 {
 case ADMIN:
 r = 1;
 break;
 case GUEST:
 r = 2;
 }

 printf("Welcome!\n");
 return r;
}

In this example, the enum parameter User can take a value UNKNOWN that is not covered
by a case statement.

One possible correction is to add a default condition for possible values that are not
covered by a case statement.

#include <stdio.h>
#include <string.h>

3 Defects

3-424

typedef enum E
{
 ADMIN=1,
 GUEST,
 UNKNOWN = 0
} LOGIN;

static LOGIN system_access(const char *username) {
 LOGIN user = UNKNOWN;

 if (strcmp(username, "root") == 0)
 user = ADMIN;

 if (strcmp(username, "friend") == 0)
 user = GUEST;

 return user;
}

int identify_bad_user(const char * username)
{
 int r=0;

 switch(system_access(username))
 {
 case ADMIN:
 r = 1;
 break;
 case GUEST:
 r = 2;
 break;
 default:
 printf("Invalid login credentials!\n");
 }

 printf("Welcome!\n");
 return r;
}

Result Information
Group: Security
Language: C | C++

 Missing case for switch condition

3-425

Default: Off
Command-Line Syntax: MISSING_SWITCH_CASE
Impact: Low
CWE ID: 478
CERT C ID: MSC01-C, MSC07-C
ISO/IEC TS 17961 ID: swtchdflt

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2015b

3 Defects

3-426

https://cwe.mitre.org/data/definitions/478.html
https://www.securecoding.cert.org/confluence/x/YgE
https://www.securecoding.cert.org/confluence/x/JwAy

Missing cipher algorithm
An encryption or decryption algorithm is not associated with the cipher context

Description
Missing cipher algorithm occurs when you do not assign a cipher algorithm when
setting up your cipher context.

You can initialize your cipher context without an algorithm. However, before you encrypt
or decrypt your data, you must associate the cipher context with a cipher algorithm.

Risk
A missing cipher algorithm can lead to run-time errors or at least, non-secure ciphertext.

Before encryption or decryption, you set up a cipher context that has the information
required for encryption: the cipher algorithm and mode, an encryption or decryption key
and an initialization vector (for modes that require initialization vectors).

ret = EVP_EncryptInit(&ctx, EVP_aes_128_cbc(), key, iv)

The function EVP_aes_128_cbc() specifies that the Advanced Encryption Standard
(AES) algorithm must be used for encryption. The function also specifies a block size of
128 bits and the Cipher Bloch Chaining (CBC) mode.

Instead of specifying the algorithm, you can use NULL in the initialization step. However,
before using the cipher context for encryption or decryption, you must perform an
additional initialization that associates an algorithm with the context. Otherwise, the
update steps for encryption or decryption can lead to run-time errors.

Fix
Before your encryption or decryption steps

 ret = EVP_EncryptUpdate(&ctx, out_buf, &out_len, src, len)

associate your cipher context ctx with an algorithm.

 Missing cipher algorithm

3-427

ret = EVP_EncryptInit(ctx, EVP_aes_128_cbc(), key, iv)

Examples
Algorithm Missing During Context Initialization

#include <openssl/evp.h>
#include <stdlib.h>
#define SIZE16 16

unsigned char key[SIZE16];
unsigned char iv[SIZE16];
void func(void) {
 EVP_CIPHER_CTX *ctx = EVP_CIPHER_CTX_new();
 EVP_CIPHER_CTX_init(ctx);
 EVP_EncryptInit_ex(ctx, NULL, NULL, key, iv);
}

In this example, an algorithm is not provided when the cipher context ctx is initialized.

Before you encrypt or decrypt your data, you have to provide a cipher algorithm. If you
perform a second initialization to provide the algorithm, the cipher context is completely
re-initialized. Therefore, the current initialization statement using EVP_EncryptInit_ex
is redundant.

One possible correction is to provide an algorithm when you initialize the cipher context.
In the corrected code below, the routine EVP_aes_128_cbc invokes the Advanced
Encryption Standard (AES) algorithm. The routine also specifies a block size of 128 bits
and the Cipher Block Chaining (CBC) mode for encryption.

#include <openssl/evp.h>
#include <stdlib.h>
#define SIZE16 16

unsigned char key[SIZE16];
unsigned char iv[SIZE16];
void func(unsigned char *src, int len, unsigned char *out_buf, int out_len) {

3 Defects

3-428

 EVP_CIPHER_CTX *ctx = EVP_CIPHER_CTX_new();
 EVP_CIPHER_CTX_init(ctx);

 /* Initialization of cipher context */
 EVP_EncryptInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv);

 /* Update steps for encryption */
 EVP_EncryptUpdate(ctx, out_buf, &out_len, src, len);
}

Result Information
Group: Cryptography
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_CIPHER_NO_ALGORITHM
Impact: Medium
CWE ID: 310, 573

See Also

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2017a

 Missing cipher algorithm

3-429

https://cwe.mitre.org/data/definitions/310.html
https://cwe.mitre.org/data/definitions/573.html

Missing cipher data to process
Final encryption or decryption step is performed without previous update steps

Description
Missing cipher data to process occurs when you perform the final step of a block
cipher encryption or decryption incorrectly.

For instance, you do one of the following:

• You do not perform update steps for encrypting or decrypting the data before
performing a final step.

/* Initialization of cipher context */
ret = EVP_EncryptInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv);
...
/* Missing update step */
...
/* Final step */
ret = EVP_EncryptFinal_ex(ctx, out_buf, &out_len);

• You perform consecutive final steps without intermediate initialization and update
steps.

/* Initialization of cipher context */
ret = EVP_EncryptInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv);
...
/* Update step(s) */
ret = EVP_EncryptUpdate(ctx, out_buf, &out_len, src, len);
...
/* Final step */
ret = EVP_EncryptFinal_ex(ctx, out_buf, &out_len);
...
/* Missing initialization and update */
...
/* Second final step */
ret = EVP_EncryptFinal_ex(ctx, out_buf, &out_len);

• You perform a cleanup of the cipher context and then perform a final step.

/* Initialization of cipher context */
ret = EVP_EncryptInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv);

3 Defects

3-430

...
/* Update step(s) */
ret = EVP_EncryptUpdate(ctx, out_buf, &out_len, src, len);
...
/* Cleanup of cipher context */
EVP_CIPHER_CTX_cleanup(ctx);
...
/* Second final step */
ret = EVP_EncryptFinal_ex(ctx, out_buf, &out_len);

Risk
Block ciphers break your data into blocks of fixed size. During encryption or decryption,
the update step encrypts or decrypts your data in blocks. Any leftover data is encrypted
or decrypted by the final step. The final step adds padding to the leftover data so that it
occupies one block, and then encrypts or decrypts the padded data.

If you perform the final step before performing the update steps, or perform the final step
when there is no data to process, the behavior is undefined. You can also encounter run-
time errors.

Fix
Perform encryption or decryption in this sequence:

• Initialization of cipher context
• Update steps
• Final step
• Cleanup of context

Examples

Missing Update Steps for Encryption Before Final Step

#include <openssl/evp.h>
#include <stdlib.h>

 Missing cipher data to process

3-431

#define SIZE16 16

unsigned char *out_buf;
int out_len;
unsigned char key[SIZE16];
unsigned char iv[SIZE16];

void func(void) {
 EVP_CIPHER_CTX *ctx = EVP_CIPHER_CTX_new();
 EVP_CIPHER_CTX_init(ctx);

 /* Initialization of cipher context */
 EVP_EncryptInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv);

 /* Missing update steps for encryption */

 /* Final encryption step */
 EVP_EncryptFinal_ex(ctx, out_buf, &out_len);
}

In this example, after the cipher context is initialized, there are no update steps for
encrypting the data. The update steps are supposed to encrypt one or more blocks of
data, leaving the final step to encrypt data that is left over in a partial block. If you
perform the final step without previous update steps, the behavior is undefined.

Perform update steps for encryption before the final step. In the corrected code below, the
routine EVP_EncryptUpdate performs the update steps.

#include <openssl/evp.h>
#include <stdlib.h>
#define SIZE16 16

unsigned char *out_buf;
int out_len;
unsigned char key[SIZE16];
unsigned char iv[SIZE16];

void func(unsigned char *src, int len) {
 EVP_CIPHER_CTX *ctx = EVP_CIPHER_CTX_new();
 EVP_CIPHER_CTX_init(ctx);

3 Defects

3-432

 /* Initialization of cipher context */
 EVP_EncryptInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv);

 /* Update steps for encryption */
 EVP_EncryptUpdate(ctx, out_buf, &out_len, src, len);

 /* Final encryption step */
 EVP_EncryptFinal_ex(ctx, out_buf, &out_len);
}

Result Information
Group: Cryptography
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_CIPHER_NO_DATA
Impact: Medium
CWE ID: 311, 325, 372, 664

See Also

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2017a

 Missing cipher data to process

3-433

https://cwe.mitre.org/data/definitions/311.html
https://cwe.mitre.org/data/definitions/325.html
https://cwe.mitre.org/data/definitions/372.html
https://cwe.mitre.org/data/definitions/664.html

Missing cipher final step
You do not perform a final step after update steps for encrypting or decrypting data

Description
Missing cipher final step occurs when you do not perform a final step after your update
steps for encrypting or decrypting data.

For instance, you do the following:

/* Initialization of cipher context */
ret = EVP_EncryptInit_ex(&ctx, EVP_aes_128_cbc(), NULL, key, iv);
...
/* Update step */
ret = EVP_EncryptUpdate(&ctx, out_buf, &out_len, src, len);
...
/* Missing final step */
...
/* Cleanup of cipher context */
EVP_CIPHER_CTX_cleanup(ctx);

Risk
Block ciphers break your data into blocks of fixed size. During encryption or decryption,
the update step encrypts or decrypts your data in blocks. Any leftover data is encrypted
or decrypted by the final step. The final step adds padding to the leftover data so that it
occupies one block, and then encrypts or decrypts the padded data.

If you do not perform the final step, leftover data remaining in a partial block is not
encrypted or decrypted. You can face incomplete or unexpected output.

Fix
After your update steps for encryption or decryption, perform a final step to encrypt or
decrypt leftover data.

/* Initialization of cipher context */
ret = EVP_EncryptInit_ex(&ctx, EVP_aes_128_cbc(), NULL, key, iv);

3 Defects

3-434

...
/* Update step(s) */
ret = EVP_EncryptUpdate(&ctx, out_buf, &out_len, src, len);
...
/* Final step */
ret = EVP_EncryptFinal_ex(&ctx, out_buf, &out_len);
...
/* Cleanup of cipher context */
EVP_CIPHER_CTX_cleanup(ctx);

Examples

Cleanup of Cipher Context Before Final Step

#include <openssl/evp.h>
#include <stdlib.h>
#define SIZE16 16

unsigned char *out_buf;
int out_len;
unsigned char key[SIZE16];
unsigned char iv[SIZE16];

void func(unsigned char *src, int len) {
 EVP_CIPHER_CTX *ctx = EVP_CIPHER_CTX_new();
 EVP_CIPHER_CTX_init(ctx);

 /* Initialization of cipher context */
 EVP_EncryptInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv);

 /* Update steps for encryption */
 EVP_EncryptUpdate(ctx, out_buf, &out_len, src, len);

 /* Missing final encryption step */

 /* Cleanup of cipher context */
 EVP_CIPHER_CTX_cleanup(ctx);
}

 Missing cipher final step

3-435

In this example, the cipher context ctx is cleaned up before a final encryption step. The
final step is supposed to encrypt leftover data. Without the final step, the encryption is
incomplete.

After your update steps for encryption, perform a final encryption step to encrypt leftover
data. In the corrected code below, the routine EVP_EncryptFinal_ex is used to perform
this final step.

#include <openssl/evp.h>
#include <stdlib.h>
#define SIZE16 16

unsigned char *out_buf;
int out_len;
unsigned char key[SIZE16];
unsigned char iv[SIZE16];

void func(unsigned char *src, int len) {
 EVP_CIPHER_CTX *ctx = EVP_CIPHER_CTX_new();
 EVP_CIPHER_CTX_init(ctx);

 /* Initialization of cipher context */
 EVP_EncryptInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv);

 /* Update steps for encryption */
 EVP_EncryptUpdate(ctx, out_buf, &out_len, src, len);

 /* Final encryption step */
 EVP_EncryptFinal_ex(ctx, out_buf, &out_len);

 /* Cleanup of cipher context */
 EVP_CIPHER_CTX_cleanup(ctx);
}

Result Information
Group: Cryptography
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_CIPHER_NO_FINAL

3 Defects

3-436

Impact: Medium
CWE ID: 311, 325, 372, 664

See Also

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2017a

 Missing cipher final step

3-437

https://cwe.mitre.org/data/definitions/311.html
https://cwe.mitre.org/data/definitions/325.html
https://cwe.mitre.org/data/definitions/372.html
https://cwe.mitre.org/data/definitions/664.html

Missing cipher key
Context used for encryption or decryption is associated with NULL key or not associated
with a key

Description
Missing cipher key occurs when you encrypt or decrypt data using a NULL encryption
or decryption key.

Note You can initialize your cipher context with a NULL key. However, before you
encrypt or decrypt your data, you must associate the cipher context with a non-NULL key.

Risk
Encryption or decryption with a NULL key can lead to run-time errors or at least, non-
secure ciphertext.

Fix
Before your encryption or decryption steps

 ret = EVP_EncryptUpdate(&ctx, out_buf, &out_len, src, len)

associate your cipher context ctx with a non-NULL key.

ret = EVP_EncryptInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv)

Sometimes, you initialize your cipher context with a non-NULL key

ret = EVP_EncryptInit_ex(&ctx, cipher_algo_1, NULL, key, iv)

but change the cipher algorithm later. When you change the cipher algorithm, you use a
NULL key.

 ret = EVP_EncryptInit_ex(&ctx, cipher_algo_2, NULL, NULL, NULL)

3 Defects

3-438

The second statement reinitializes the cipher context completely but with a NULL key. To
avoid this issue, every time you initialize a cipher context with an algorithm, associate it
with a key.

Examples
NULL Key Used for Encryption

#include <openssl/evp.h>
#include <stdlib.h>
#define fatal_error() abort()

unsigned char *out_buf;
int out_len;

int func(EVP_CIPHER_CTX *ctx, unsigned char *iv, unsigned char *src, int len){
 if (iv == NULL)
 fatal_error();

 /* Fourth argument is cipher key */
 EVP_EncryptInit_ex(ctx, EVP_aes_128_cbc(), NULL, NULL, iv);

 /* Update step with NULL key */
 return EVP_EncryptUpdate(ctx, out_buf, &out_len, src, len);
}

In this example, the cipher key associated with the context ctx is NULL. When you use
this context to encrypt your data, you can encounter run-time errors.

Use a strong random number generator to produce the cipher key. The corrected code
here uses the function RAND_bytes declared in openssl/rand.h.

#include <openssl/evp.h>
#include <openssl/rand.h>
#include <stdlib.h>
#define fatal_error() abort()
#define SIZE16 16

 Missing cipher key

3-439

unsigned char *out_buf;
int out_len;

int func(EVP_CIPHER_CTX *ctx, unsigned char *iv, unsigned char *src, int len){
 if (iv == NULL)
 fatal_error();
 unsigned char key[SIZE16];
 RAND_bytes(key, 16);

 /* Fourth argument is cipher key */
 EVP_EncryptInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv);

 /* Update step with non-NULL cipher key */
 return EVP_EncryptUpdate(ctx, out_buf, &out_len, src, len);
}

Result Information
Group: Cryptography
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_CIPHER_NO_KEY
Impact: Medium
CWE ID: 310, 320, 573, 664

See Also

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2017a

3 Defects

3-440

https://cwe.mitre.org/data/definitions/310.html
https://cwe.mitre.org/data/definitions/320.html
https://cwe.mitre.org/data/definitions/573.html
https://cwe.mitre.org/data/definitions/664.html

Missing data for encryption, decryption or
signing operation
Data provided for public key cryptography operation is NULL or data length is zero

Description
Missing data for encryption, decryption or signing operation occurs when the data
provided for an encryption, decryption, signing, or authentication operation is NULL or
the data length is zero.

For instance, you unintentionally provide a NULL value for in or a zero value for in_len
in this decryption operation:

ret = EVP_PKEY_decrypt(ctx, out, &out_len, in, in_len);

Or, you provide a NULL value for md or sig, or a zero value for md_len or sig_len in
this verification operation:

ret = EVP_PKEY_verify(ctx, md, mdlen, sig, siglen);

Risk
With NULL data or zero length, the operation does not occur. The redundant operation
often indicates a coding error.

Fix
Check the placement of the encryption, decryption, or signing operation. If the operation
is intended to happen, make sure that the data provided is non-NULL. Set the data length
to a nonzero value.

 Missing data for encryption, decryption or signing operation

3-441

Examples

Zero Data Length for Signing Operation

#include <openssl/evp.h>

#define fatal_error() exit(-1)

int ret;
int func(EVP_PKEY_CTX * ctx){
 if (ctx == NULL) fatal_error();
 unsigned char* sig = (unsigned char*) "0123456789";
 unsigned char* md = (unsigned char*) "0123456789";

 ret = EVP_PKEY_verify_init(ctx);
 if (ret <= 0) fatal_error();
 ret = EVP_PKEY_CTX_set_signature_md(ctx, EVP_sha256());
 if (ret <= 0) fatal_error();
 return EVP_PKEY_verify(ctx, sig, 0, md, 0);
}

In this example, the data lengths (third and fifth arguments to EVP_PKEY_verify) are
zero. The operation fails.

One possible correction is to use a nonzero length for the signature and the data believed
to be signed.

#include <openssl/evp.h>

#define fatal_error() exit(-1)

int ret;
int func(EVP_PKEY_CTX * ctx){
 if (ctx == NULL) fatal_error();
 unsigned char* sig = (unsigned char*) "0123456789";
 unsigned char* md = (unsigned char*) "0123456789";

 ret = EVP_PKEY_verify_init(ctx);
 if (ret <= 0) fatal_error();
 ret = EVP_PKEY_CTX_set_signature_md(ctx, EVP_sha256());

3 Defects

3-442

 if (ret <= 0) fatal_error();
 return EVP_PKEY_verify(ctx, sig, 10, md, 10);
}

Result Information
Group: Cryptography
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_PKEY_NO_DATA
Impact: Medium
CWE ID: 310, 325, 372, 573

See Also
Context initialized incorrectly for cryptographic operation |
Incorrect key for cryptographic algorithm | Missing parameters for key
generation | Missing peer key | Missing private key | Missing public key |
Nonsecure parameters for key generation

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2018a

 Missing data for encryption, decryption or signing operation

3-443

https://cwe.mitre.org/data/definitions/310.html
https://cwe.mitre.org/data/definitions/325.html
https://cwe.mitre.org/data/definitions/372.html
https://cwe.mitre.org/data/definitions/573.html

Missing explicit keyword
Constructor missing the explicit specifier

Description
Missing explicit keyword occurs when the declaration of a constructor does not use
the explicit specifier. The explicit specifier prevents implicit conversion from a
variable of another type to the current class type.

The defect applies to:

• One-parameter constructors.
• Constructors where all but one parameters have default values.

For instance, MyClass::MyClass(float f, bool b=true){}.

Risk
If you do not declare a constructor explicit, compilers can perform unexpected and
often unintended type conversions to the class type using the constructor.

The implicit conversion can occur, for instance, when a function accepts a parameter of
the class type, but you call the function with an argument of a different type.

Fix
For better readability of your code and to prevent implicit conversions, in the constructor
declaration, place the explicit keyword before the constructor name.

If you want to convert from a variable of another type, explicitly call the class constructor
and pass the variable as argument.

3 Defects

3-444

Examples
Missing explicit Keyword
class MyClass {
public:
 MyClass(int val);
private:
 int val;
};

void func(MyClass);

void main() {
 MyClass MyClassObject(0);

 func(MyClassObject); // No conversion
 func(MyClass(0)); // Explicit conversion
 func(0); // Implicit conversion
}

In this example, the constructor of MyClass is not declared explicit. Therefore, the
call func(0) can perform an implicit conversion from int to MyClass.

One possible correction is to declare the constructor of MyClass as explicit. If an
operation in your code performs an implicit conversion, the compiler generates an error.
Therefore, using the explicit keyword, you detect unintended type conversions in the
compilation stage.

For instance, in function main below, if you add the statement func(0); that performs
implicit conversion, the code does not compile.

class MyClass {
public:
 explicit MyClass(int val);
private:
 int val;
};

void func(MyClass);

void main() {

 Missing explicit keyword

3-445

 MyClass MyClassObject(0);

 func(MyClassObject); // No conversion
 func(MyClass(0)); // Explicit conversion
}

Incorrect Argument Order Preventable Through explicit
Keyword
class Month {
 int val;
public:
 Month(int m): val(m) {}
 ~Month() {}
};

class Day {
 int val;
public:
 Day(int d): val(d) {}
 ~Day() {}
};

class Year {
 int val;
public:
 Year(int y): val(y) {}
 ~Year() {}
};

class Date {
 Month mm;
 Day dd;
 Year yyyy;
public:
 Date(const Month & m, const Day & d, const Year & y):mm(m), dd(d), yyyy(y) {}
};

void main() {
 Date(20,1,2000); //Implicit conversion, wrong argument order undetected
}

3 Defects

3-446

In this example, the constructors for classes Month, Day and Year do not have an
explicit keyword. They allow implicit conversion from int variables to Month, Day and
Year variables.

When you create a Date variable and use an incorrect argument order for the Date
constructor, because of the implicit conversion, your code compiles. You might not detect
that you have switched the month value and the day value.

If you use the explicit keyword for the constructors of classes Month, Day and Year,
you cannot call the Date constructor with an incorrect argument order.

• If you call the Date constructor with int variables, your code does not compile
because the explicit keyword prevents implicit conversion from int variables.

• If you call the Date constructor with the arguments explicitly converted to Month,
Day and Year, and have the wrong argument order, your code does not compile
because of the argument type mismatch.

class Month {
 int val;
public:
 explicit Month(int m): val(m) {}
 ~Month() {}
};

class Day {
 int val;
public:
 explicit Day(int d): val(d) {}
 ~Day() {}
};

class Year {
 int val;
public:
 explicit Year(int y): val(y) {}
 ~Year() {}
};

class Date {
 Month mm;
 Day dd;
 Year yyyy;

 Missing explicit keyword

3-447

public:
 Date(const Month & m, const Day & d, const Year & y):mm(m), dd(d), yyyy(y) {}
};

void main() {
 Date(Month(1),Day(20),Year(2000));
 // Date(20,1,2000); - Does not compile
 // Date(Day(20), Month(1), Year(2000)); - Does not compile
}

Result Information
Group: Object oriented
Language: C++
Default: Off
Command-Line Syntax: MISSING_EXPLICIT_KEYWORD
Impact: Low

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2015b

3 Defects

3-448

Missing lock
Unlock function without lock function

Description
Missing lock occurs when a task calls an unlock function before calling the
corresponding lock function.

In multitasking code, a lock function begins a critical section of code and an unlock
function ends it. When a task my_task calls a lock function my_lock, other tasks calling
my_lock must wait till my_task calls the corresponding unlock function. Polyspace
requires that both lock and unlock functions must have the form void func(void).

To find this defect, you must specify the multitasking options before analysis. To specify
these options, on the Configuration pane, select Multitasking.

Examples

Missing lock

void begin_critical_section(void);
void end_critical_section(void);

int global_var;

void reset(void)
{
 begin_critical_section();
 global_var = 0;
 end_critical_section();
}

void my_task(void)

 Missing lock

3-449

{
 global_var += 1;
 end_critical_section();
}

In this example, to emulate multitasking behavior, you must specify the following options:

Option Specification
Configure multitasking
manually on page 1-114
Tasks on page 1-119 my_task, reset
Critical section details on
page 1-131

Starting routine Ending routine
begin_critical_sectio
n

end_critical_section

On the command-line, you can use the following:

polyspace-bug-finder-nodesktop
 -entry-points my_task,reset
 -critical-section-begin begin_critical_section:cs1
 -critical-section-end end_critical_section:cs1

The example has two entry points, my_task and reset. my_task calls
end_critical_section before calling begin_critical_section.

One possible correction is to call the lock function begin_critical_section before
the instructions in the critical section.

void begin_critical_section(void);
void end_critical_section(void);

int global_var;

void reset(void)
{
 begin_critical_section();
 global_var = 0;

3 Defects

3-450

 end_critical_section();
}

void my_task(void)
{
 begin_critical_section();
 global_var += 1;
 end_critical_section();
}

Lock in Condition

void begin_critical_section(void);
void end_critical_section(void);

int global_var;

void reset() {
 begin_critical_section();
 global_var=0;
 end_critical_section();
}

void my_task(void) {
 int index=0;
 volatile int numCycles;

 while(numCycles) {
 if(index%10==0) {
 begin_critical_section();
 global_var ++;
 }
 end_critical_section();
 index++;
 }
}

In this example, to emulate multitasking behavior, you must specify the following options:

 Missing lock

3-451

Option Specification
Configure multitasking
manually on page 1-114
Tasks on page 1-119 my_task, reset
Critical section details on
page 1-131

Starting routine Ending routine
begin_critical_sectio
n

end_critical_section

On the command-line, you can use the following:

polyspace-bug-finder-nodesktop
 -entry-points my_task,reset
 -critical-section-begin begin_critical_section:cs1
 -critical-section-end end_critical_section:cs1

The example has two entry points, my_task and reset.

In the while loop, my_task leaves a critical section through the call
end_critical_section();. In an iteration of the while loop:

• If my_task enters the if condition branch, the critical section begins through a call to
begin_critical_section.

• If my_task does not enter the if condition branch and leaves the while loop, the
critical section does not begin. Therefore, a Missing lock defect occurs.

• If my_task does not enter the if condition branch and continues to the next iteration
of the while loop, the unlock function end_critical_section is called again. A
Double unlock defect occurs.

Because numCycles is a volatile variable, it can take any value. Any of the cases
above are possible. Therefore, a Missing lock defect and a Double unlock defect
appear on the call end_critical_section.

Check Information
Group: Concurrency
Language: C | C++
Default: On
Command-Line Syntax: BAD_UNLOCK

3 Defects

3-452

Impact: Medium
CWE ID: 832
CERT C ID: CON01-C

See Also
Polyspace Analysis Options
Find defects (-checkers) | Configure multitasking manually | Tasks (-
entry-points) | Critical section details (-critical-section-begin -
critical-section-end) | Temporally exclusive tasks (-temporal-
exclusions-file)

Polyspace Results
Data race including atomic operations | Data race | Data race through
standard library function call | Deadlock | Destruction of locked mutex
| Double lock | Double unlock | Missing unlock

Topics
“Configuring Polyspace Multitasking Analysis Manually”
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2014b

 Missing lock

3-453

https://cwe.mitre.org/data/definitions/832.html
https://www.securecoding.cert.org/confluence/x/SADQAg

Missing null in string array
String does not terminate with null character

Description
Missing null in string array occurs when a string does not have enough space to
terminate with a null character '\0'. This defect can cause various memory errors in
your code, so is important to fix it.

This defect applies only for projects in C.

Examples

Array size is too small
void countdown(int i)
{
 static char one[5] = "ONE";
 static char two[5] = "TWO";
 static char three[5] = "THREE";
}

The character array three has a size of 5 and 5 characters 'T', 'H', 'R', 'E', and 'E'.
There is no room for the null character at the end because three is only five bytes large.

One possible correction is to change the array size to allow for the five characters plus a
null character.

void countdown(int i)
{
 static char one[5] = "ONE";
 static char two[5] = "TWO";
 static char three[6] = "THREE";
}

3 Defects

3-454

One possible correction is to initialize the string by leaving the array size blank. This
initialization method allocates enough memory for the five characters and a terminating-
null character.

void countdown(int i)
{
 static char one[5] = "ONE";
 static char two[5] = "TWO";
 static char three[] = "THREE";
}

Check Information
Group: Programming
Language: C
Default: On for handwritten code, off for generated code
Command-Line Syntax: MISSING_NULL_CHAR
Impact: Low
CWE ID: 170
CERT C ID: STR11-C, STR31-C
CERT C++ ID: STR31-C, STR50-CPP
ISO/IEC TS 17961 ID: NONNULLCS, TAINTFORMATIO

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2013b

 Missing null in string array

3-455

https://cwe.mitre.org/data/definitions/170.html
https://www.securecoding.cert.org/confluence/x/GoEAAQ
https://www.securecoding.cert.org/confluence/x/KAE
https://wiki.sei.cmu.edu/confluence/x/sNUxBQ
https://wiki.sei.cmu.edu/confluence/x/i3w-BQ

Missing padding for RSA algorithm
Context used in encryption or signing operation is not associated with any padding

Description
Missing padding for RSA algorithm occurs when you perform RSA encryption or
signature by using a context object without associating the object with a padding scheme.

For instance, you perform encryption by using a context object that was initially not
associated with a specific padding.

ret = EVP_PKEY_CTX_set_rsa_padding(ctx, RSA_NO_PADDING);
...
ret = EVP_PKEY_encrypt(ctx, out, &out_len, in, in_len)

Risk
Padding schemes remove determinism from the RSA algorithm and protect RSA
operations from certain kinds of attack. Padding ensures that a given message does not
lead to the same ciphertext each time it is encrypted. Without padding, an attacker can
launch chosen-plaintext attacks against the cryptosystem.

Fix
Before performing an RSA operation, associate the context object with a padding scheme
that is compatible with the operation.

• Encryption: Use the OAEP padding scheme.

For instance, use the EVP_PKEY_CTX_set_rsa_padding function with the argument
RSA_PKCS1_OAEP_PADDING or the RSA_padding_add_PKCS1_OAEP function.

ret = EVP_PKEY_CTX_set_rsa_padding(ctx, RSA_PKCS1_OAEP_PADDING);

You can also use the PKCS#1v1.5 or SSLv23 schemes. Be aware that these schemes
are considered insecure.

3 Defects

3-456

You can then use functions such as EVP_PKEY_encrypt / EVP_PKEY_decrypt or
RSA_public_encrypt / RSA_private_decrypt on the context.

• Signature: Use the RSA-PSS padding scheme.

For instance, use the EVP_PKEY_CTX_set_rsa_padding function with the argument
RSA_PKCS1_PSS_PADDING.

ret = EVP_PKEY_CTX_set_rsa_padding(ctx, RSA_PKCS1_PSS_PADDING);

You can also use the ANSI X9.31, PKCS#1v1.5, or SSLv23 schemes. Be aware that
these schemes are considered insecure.

You can then use functions such as the EVP_PKEY_sign-EVP_PKEY_verify pair or
the RSA_private_encrypt-RSA_public_decrypt pair on the context.

If you perform two kinds of operation with the same context, after the first operation,
reset the padding scheme in the context before the second operation.

Examples

Encryption Without Padding

#include <stddef.h>
#include <openssl/rsa.h>
#include <openssl/evp.h>

#define fatal_error() exit(-1)

int ret;
unsigned char *out_buf;
size_t out_len;

int func(unsigned char *src, size_t len){
 EVP_PKEY_CTX *ctx;
 EVP_PKEY* pkey;

 /* Key generation */
 ctx = EVP_PKEY_CTX_new_id(EVP_PKEY_RSA,NULL);
 if (ctx == NULL) fatal_error();

 Missing padding for RSA algorithm

3-457

 ret = EVP_PKEY_keygen_init(ctx);
 if (ret <= 0) fatal_error();
 ret = EVP_PKEY_CTX_set_rsa_keygen_bits(ctx, 2048);
 if (ret <= 0) fatal_error();
 ret = EVP_PKEY_keygen(ctx, &pkey);
 if (ret <= 0) fatal_error();

 /* Encryption */
 EVP_PKEY_CTX_free(ctx);
 ctx = EVP_PKEY_CTX_new(pkey,NULL);
 if (ctx == NULL) fatal_error();

 ret = EVP_PKEY_encrypt_init(ctx);
 if (ret <= 0) fatal_error();
 return EVP_PKEY_encrypt(ctx, out_buf, &out_len, src, len);
}

In this example, before encryption with EVP_PKEY_encrypt, a specific padding is not
associated with the context object ctx.

One possible correction is to set the OAEP padding scheme in the context.

#include <stddef.h>
#include <openssl/rsa.h>
#include <openssl/evp.h>

#define fatal_error() exit(-1)

int ret;
unsigned char *out_buf;
size_t out_len;

int func(unsigned char *src, size_t len){
 EVP_PKEY_CTX *ctx;
 EVP_PKEY* pkey;

 /* Key generation */
 ctx = EVP_PKEY_CTX_new_id(EVP_PKEY_RSA,NULL);
 if (ctx == NULL) fatal_error();

 ret = EVP_PKEY_keygen_init(ctx);

3 Defects

3-458

 if (ret <= 0) fatal_error();
 ret = EVP_PKEY_CTX_set_rsa_keygen_bits(ctx, 2048);
 if (ret <= 0) fatal_error();
 ret = EVP_PKEY_keygen(ctx, &pkey);
 if (ret <= 0) fatal_error();

 /* Encryption */
 EVP_PKEY_CTX_free(ctx);
 ctx = EVP_PKEY_CTX_new(pkey,NULL);
 if (ctx == NULL) fatal_error();

 ret = EVP_PKEY_encrypt_init(ctx);
 ret = EVP_PKEY_CTX_set_rsa_padding(ctx, RSA_PKCS1_OAEP_PADDING);
 if (ret <= 0) fatal_error();
 if (ret <= 0) fatal_error();
 return EVP_PKEY_encrypt(ctx, out_buf, &out_len, src, len);
}

Result Information
Group: Cryptography
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_RSA_NO_PADDING
Impact: Medium
CWE ID: 310, 326, 327, 780

See Also
Incompatible padding for RSA algorithm operation | Missing blinding
for RSA algorithm | Nonsecure RSA public exponent | Weak padding for
RSA algorithm

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2018a

 Missing padding for RSA algorithm

3-459

https://cwe.mitre.org/data/definitions/310.html
https://cwe.mitre.org/data/definitions/326.html
https://cwe.mitre.org/data/definitions/327.html
https://cwe.mitre.org/data/definitions/780.html

Missing parameters for key generation
Context used for key generation is associated with NULL parameters

Description
Missing parameters for key generation occurs when you perform a key generation
step with a context object without first associating the object with required parameters.

For instance, you associate a EVP_PKEY_CTX context object with an empty EVP_PKEY
object params before key generation :

EVP_PKEY * params = EVP_PKEY_new();
...
EVP_PKEY_CTX * ctx = EVP_PKEY_CTX_new(params, NULL);
...
EVP_PKEY_keygen(ctx, &pkey);

Risk
Without appropriate parameters, the key generation step does not occur. The redundant
operation often indicates a coding error.

Fix
Check the placement of the key generation step. If the operation is intended, make sure
that the parameters are set before key generation.

Certain algorithms use default parameters. For instance, if you specify the DSA algorithm
when creating the EVP_PKEY_CTX object, a default key length of 1024 bits is used:

kctx = EVP_PKEY_CTX_new_id(EVP_PKEY_DSA, NULL);

Specifying the algorithm during context creation is sufficient to avoid this defect. Only if
you use the Elliptic Curve (EC) algorithm, you must also specify the curve explicitly
before key generation.

3 Defects

3-460

However, the default parameters can generate keys that are too weak for encryption.
Weak parameters can trigger another defect. To change default parameters, use functions
specific to the algorithm. For instance, to set parameters, you can use these functions:

• Diffie-Hellman (DH): Use EVP_PKEY_CTX_set_dh_paramgen_prime_len and
EVP_PKEY_CTX_set_dh_paramgen_generator.

• Digital Signature Algorithm (DSA): Use EVP_PKEY_CTX_set_dsa_paramgen_bits.
• RSA: Use EVP_PKEY_CTX_set_rsa_padding,

EVP_PKEY_CTX_set_rsa_pss_saltlen,
EVP_PKEY_CTX_set_rsa_rsa_keygen_bits, and
EVP_PKEY_CTX_set_rsa_keygen_pubexp.

• Elliptic curve (EC): Use EVP_PKEY_CTX_set_ec_paramgen_curve_nid and
EVP_PKEY_CTX_set_ec_param_enc.

Examples

Empty Parameters During Key Generation

#include <openssl/evp.h>

#define fatal_error() exit(-1)

int ret;
int func(EVP_PKEY *pkey){
 EVP_PKEY * params = EVP_PKEY_new();
 if (params == NULL) fatal_error();

 EVP_PKEY_CTX * ctx = EVP_PKEY_CTX_new(params, NULL);
 if (ctx == NULL) fatal_error();

 ret = EVP_PKEY_keygen_init(ctx);
 if (ret <= 0) fatal_error();
 return EVP_PKEY_keygen(ctx, &pkey);
}

In this example, the context object ctx is associated with an empty parameter object
params. The context object does not have the required parameters for key generation.

 Missing parameters for key generation

3-461

One possible correction is to specify an algorithm, such as RSA, during context creation.
For stronger encryption, use 2048 bits for key length instead of the default 1024 bits.

#include <openssl/evp.h>
#include <openssl/rsa.h>

#define fatal_error() exit(-1)

int ret;
int func(EVP_PKEY *pkey){
 EVP_PKEY_CTX * ctx = EVP_PKEY_CTX_new_id(EVP_PKEY_RSA, NULL);
 if (ctx == NULL) fatal_error();

 ret = EVP_PKEY_keygen_init(ctx);
 if (ret <= 0) fatal_error();

 ret = EVP_PKEY_CTX_set_rsa_keygen_bits(ctx, 2048);
 if (ret <= 0) fatal_error();

 return EVP_PKEY_keygen(ctx, &pkey);
}

Result Information
Group: Cryptography
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_PKEY_NO_PARAMS
Impact: Medium
CWE ID: 310, 325, 372, 573

See Also
Context initialized incorrectly for cryptographic operation |
Incorrect key for cryptographic algorithm | Missing data for
encryption, decryption or signing | Missing peer key | Missing private
key | Missing public key | Nonsecure parameters for key generation

3 Defects

3-462

https://cwe.mitre.org/data/definitions/310.html
https://cwe.mitre.org/data/definitions/325.html
https://cwe.mitre.org/data/definitions/372.html
https://cwe.mitre.org/data/definitions/573.html

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2018a

 Missing parameters for key generation

3-463

Missing peer key
Context used for shared secret derivation is associated with NULL peer key or not
associated with a peer key at all

Description
Missing peer key occurs when you use a context object for shared secret derivation but
you have not previously associated the object with a non-NULL peer key.

For instance, you initialize the context object, and then use the object for shared secret
derivation without an intermediate step where the object is associated with a peer key:

EVP_PKEY_derive_init(ctx);
/* Missing step for associating peer key with context */
ret = EVP_PKEY_derive(ctx, out_buf, &out_len);

The counterpart checker Missing private key checks for a private key in shared
secret derivation.

Risk
Without a peer key, the shared secret derivation step does not occur. The redundant
operation often indicates a coding error.

Fix
Check the placement of the shared secret derivation step. If the operation is intended,
make sure that you have completed these steps prior to the operation:

• Generate a non-NULL peer key.

For instance:

EVP_PKEY* peerkey = NULL;
EVP_PKEY_keygen(EVP_PKEY_CTX_new_id(EVP_PKEY_RSA, NULL), &peerkey);

• Associate a non-NULL context object with the peer key.

3 Defects

3-464

For instance:

EVP_PKEY_derive_set_peer(ctx,peerkey);

Examples

Missing Step for Associating Peer Key with Context

#include <stddef.h>
#include <openssl/evp.h>

#define fatal_error() exit(-1)

int ret;
unsigned char *out_buf;
size_t out_len;

int func(EVP_PKEY *pkey){
 if (pkey == NULL) fatal_error();

 EVP_PKEY_CTX *ctx = EVP_PKEY_CTX_new(pkey, NULL);
 if (ctx == NULL) fatal_error();
 ret = EVP_PKEY_derive_init(ctx);
 if (ret <= 0) fatal_error();
 return EVP_PKEY_derive(ctx, out_buf, &out_len);
}

In this example, the context object ctx is associated with a private key but not a peer key.
The EVP_PKEY_derive function uses this context object for shared secret derivation.

One possible correction is to use the function EVP_PKEY_derive_set_peer and
associate a peer key with the context object. Make sure that the peer key is non-NULL.

#include <stddef.h>
#include <openssl/evp.h>

#define fatal_error() exit(-1)

int ret;

 Missing peer key

3-465

unsigned char *out_buf;
size_t out_len;

int func(EVP_PKEY *pkey, EVP_PKEY* peerkey){
 if (pkey == NULL) fatal_error();
 if (peerkey == NULL) fatal_error();

 EVP_PKEY_CTX *ctx = EVP_PKEY_CTX_new(pkey, NULL);
 if (ctx == NULL) fatal_error();
 ret = EVP_PKEY_derive_init(ctx);
 if (ret <= 0) fatal_error();
 ret = EVP_PKEY_derive_set_peer(ctx,peerkey);
 if (ret <= 0) fatal_error();
 return EVP_PKEY_derive(ctx, out_buf, &out_len);
}

Result Information
Group: Cryptography
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_PKEY_NO_PEER
Impact: Medium
CWE ID: 310, 320, 573, 664

See Also
Context initialized incorrectly for cryptographic operation |
Incorrect key for cryptographic algorithm | Missing parameters for key
generation | Missing data for encryption, decryption or signing |
Missing private key | Missing public key | Nonsecure parameters for key
generation

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2018a

3 Defects

3-466

https://cwe.mitre.org/data/definitions/310.html
https://cwe.mitre.org/data/definitions/320.html
https://cwe.mitre.org/data/definitions/573.html
https://cwe.mitre.org/data/definitions/664.html

Missing private key
Context used for cryptography operation is associated with NULL private key or not
associated with a private key at all

Description
Missing private key occurs when you use a context object for decryption, signature, or
shared secret derivation but you have not previously associated the object with a non-
NULL private key.

For instance, you initialize the context object with a NULL private key and use the object
for decryption later.

ctx = EVP_PKEY_CTX_new(pkey, NULL);
...
ret = EVP_PKEY_decrypt_init(ctx);
...
ret = EVP_PKEY_decrypt(ctx, out, &out_len, in, in_len);

The counterpart checker Missing public key checks for a public key in encryption
and authentication operations. The checker Missing peer key checks for a peer key in
shared secret derivation.

Risk
Without a private key, the decryption, signature, or shared secret derivation step does not
occur. The redundant operation often indicates a coding error.

Fix
Check the placement of the operation (decryption, signature, or shared secret derivation).
If the operation is intended, make sure you have completed these steps prior to the
operation:

• Generate a non-NULL private key.

For instance:

 Missing private key

3-467

EVP_PKEY *pkey = NULL;
kctx = EVP_PKEY_CTX_new_id(EVP_PKEY_RSA, NULL);

EVP_PKEY_keygen_init(kctx);
EVP_PKEY_CTX_set_rsa_keygen_bits(kctx, RSA_2048BITS);
EVP_PKEY_keygen(kctx, &pkey);

• Associate a non-NULL context object with the private key.

For instance:

ctx = EVP_PKEY_CTX_new(pkey, NULL);

Note: If you use EVP_PKEY_CTX_new_id instead of EVP_PKEY_CTX_new, you are not
associating the context object with a private key.

Examples
Missing Step for Associating Private Key with Context

#include <stddef.h>
#include <openssl/evp.h>

#define fatal_error() exit(-1)

int ret;
unsigned char *out_buf;
size_t out_len;

int func(unsigned char *src, size_t len){
 EVP_PKEY_CTX *ctx = EVP_PKEY_CTX_new_id(EVP_PKEY_RSA, NULL);
 if (ctx == NULL) fatal_error();

 ret = EVP_PKEY_decrypt_init(ctx);
 if (ret <= 0) fatal_error();
 return EVP_PKEY_decrypt(ctx, out_buf, &out_len, src, len);
}

In this example, the context object ctx is initialized with EVP_PKEY_CTX_new_id instead
of EVP_PKEY_CTX_new. The function EVP_PKEY_CTX_new_id does not associate the
context object with a key. However, the EVP_PKEY_decrypt function uses this object for
decryption.

3 Defects

3-468

One possible correction is to use the EVP_PKEY_CTX_new function for context
initialization and associate a private key with the context object. In the following
correction, the private key pkey is obtained from an external source and checked for
NULL before use.

#include <stddef.h>
#include <openssl/evp.h>

#define fatal_error() exit(-1)

int ret;
unsigned char *out_buf;
size_t out_len;

int func(unsigned char *src, size_t len, EVP_PKEY *pkey){
 if (pkey == NULL) fatal_error();

 EVP_PKEY_CTX *ctx = EVP_PKEY_CTX_new(pkey, NULL);
 if (ctx == NULL) fatal_error();

 ret = EVP_PKEY_decrypt_init(ctx);
 if (ret <= 0) fatal_error();
 return EVP_PKEY_decrypt(ctx, out_buf, &out_len, src, len);
}

Result Information
Group: Cryptography
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_PKEY_NO_PRIVATE_KEY
Impact: Medium
CWE ID: 310, 320, 573, 664

See Also
Context initialized incorrectly for cryptographic operation |
Incorrect key for cryptographic algorithm | Missing parameters for key
generation | Missing data for encryption, decryption or signing |

 Missing private key

3-469

https://cwe.mitre.org/data/definitions/310.html
https://cwe.mitre.org/data/definitions/320.html
https://cwe.mitre.org/data/definitions/573.html
https://cwe.mitre.org/data/definitions/664.html

Missing peer key | Missing public key | Nonsecure parameters for key
generation

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2018a

3 Defects

3-470

Missing public key
Context used for cryptography operation is associated with NULL public key or not
associated with a public key at all

Description
Missing public key occurs when you use a context object for encryption or signature
authentication but you have not previously associated the object with a non-NULL public
key.

For instance, you initialize the context object with a NULL public key and use the object
for encryption later.

ctx = EVP_PKEY_CTX_new(pkey, NULL);
...
ret = EVP_PKEY_encrypt_init(ctx);
...
ret = EVP_PKEY_encrypt(ctx, out, &out_len, in, in_len);

The counterpart checker Missing private key checks for a private key in decryption
and signature operations.

Risk
Without a public key, the encryption or signature authentication step does not happen.
The redundant operation often indicates a coding error.

Fix
Check the placement of the operation (encryption or signature authentication). If the
operation is intended to happen, make sure you have done these steps prior to the
operation:

• You generated a non-NULL public key.

For instance:

 Missing public key

3-471

EVP_PKEY *pkey = NULL;
kctx = EVP_PKEY_CTX_new_id(EVP_PKEY_RSA, NULL);

EVP_PKEY_keygen_init(kctx);
EVP_PKEY_CTX_set_rsa_keygen_bits(kctx, RSA_2048BITS);
EVP_PKEY_keygen(kctx, &pkey);

• You associated a non-NULL context object with the public key.

For instance:

ctx = EVP_PKEY_CTX_new(pkey, NULL);

Note: If you use EVP_PKEY_CTX_new_id instead of EVP_PKEY_CTX_new, you are not
associating the context object with a public key.

Examples
Missing Step for Associating Private Key with Context

#include <stddef.h>
#include <openssl/evp.h>

#define fatal_error() exit(-1)

int ret;
unsigned char *out_buf;
size_t out_len;

int func(unsigned char *src, size_t len){
 EVP_PKEY_CTX *ctx = EVP_PKEY_CTX_new_id(EVP_PKEY_RSA, NULL);
 if (ctx == NULL) fatal_error();

 ret = EVP_PKEY_encrypt_init(ctx);
 if (ret <= 0) fatal_error();
 return EVP_PKEY_encrypt(ctx, out_buf, &out_len, src, len);
}

In this example, the context object ctx is initialized with EVP_PKEY_CTX_new_id instead
of EVP_PKEY_CTX_new. The function EVP_PKEY_CTX_new_id does not associate the
context object with a key. However, the EVP_PKEY_encrypt function uses this object for
decryption.

3 Defects

3-472

One possible correction is to use the EVP_PKEY_CTX_new function for context
initialization and associate a public key with the context object. In the following
correction, the public key pkey is obtained from an external source and checked for
NULL before use.

#include <stddef.h>
#include <openssl/evp.h>

#define fatal_error() exit(-1)

int ret;
unsigned char *out_buf;
size_t out_len;

int func(unsigned char *src, size_t len, EVP_PKEY *pkey){
 if (pkey == NULL) fatal_error();

 EVP_PKEY_CTX *ctx = EVP_PKEY_CTX_new(pkey, NULL);
 if (ctx == NULL) fatal_error();

 ret = EVP_PKEY_encrypt_init(ctx);
 if (ret <= 0) fatal_error();
 return EVP_PKEY_encrypt(ctx, out_buf, &out_len, src, len);
}

Result Information
Group: Cryptography
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_PKEY_NO_PUBLIC_KEY
Impact: Medium
CWE ID: 310, 320, 573, 664

See Also
Context initialized incorrectly for cryptographic operation |
Incorrect key for cryptographic algorithm | Missing parameters for key
generation | Missing data for encryption, decryption or signing |

 Missing public key

3-473

https://cwe.mitre.org/data/definitions/310.html
https://cwe.mitre.org/data/definitions/320.html
https://cwe.mitre.org/data/definitions/573.html
https://cwe.mitre.org/data/definitions/664.html

Missing peer key | Missing private key | Nonsecure parameters for key
generation

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2018a

3 Defects

3-474

Missing reset of a freed pointer
Pointer free not followed by a reset statement to clear leftover data

Description
Missing reset of a freed pointer detects pointers that have been freed and not
reassigned another value. After freeing a pointer, the memory data is still accessible. To
clear this data, the pointer must also be set to NULL or another value.

Risk
Not resetting pointers can cause dangling pointers. Dangling pointers can cause:

• Freeing already freed memory.
• Reading from or writing to already freed memory.
• Hackers executing code stored in freed pointers or with vulnerable permissions.

Fix
After freeing a pointer, if it is not immediately assigned to another valid address, set the
pointer to NULL.

Examples

Free Without Reset
#include <stdlib.h>
enum {
 SIZE3 = 3,
 SIZE20 = 20
};

void missingfreedptrreset()
{

 Missing reset of a freed pointer

3-475

 static char *str = NULL;

 if (str == NULL)
 str = (char *)malloc(SIZE20);

 if (str != NULL)
 free(str);
}

In this example, the pointer str is freed at the end of the program. The next call to
bug_missingfreedptrrese can fail because str is not NULL and the initialization to
NULL can be invalid.

One possible correction is to customize free so that when you free a pointer, it is
automatically reset.

#include <stdlib.h>
enum {
 SIZE3 = 3,
 SIZE20 = 20
};

static void sanitize_free(void **p)
{
 if ((p != NULL) && (*p != NULL))
 {
 free(*p);
 *p = NULL;
 }
}

#define free(X) sanitize_free((void **)&X)

void missingfreedptrreset()
{
 static char *str = NULL;

 if (str == NULL)
 str = (char *)malloc(SIZE20);

 if (str != ((void *)0))
 {
 free(str);

3 Defects

3-476

 }
}

Result Information
Group: Good Practice
Language: C | C++
Default: Off
Command-Line Syntax: MISSING_FREED_PTR_RESET
Impact: Low
CWE ID: 415, 416, 825
CERT C ID: MEM01-C

See Also
Use of previously freed pointer | Invalid free of pointer

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2016b

 Missing reset of a freed pointer

3-477

https://cwe.mitre.org/data/definitions/415.html
https://cwe.mitre.org/data/definitions/416.html
https://cwe.mitre.org/data/definitions/825.html
https://www.securecoding.cert.org/confluence/x/uAE

Missing return statement
Function does not return value though return type is not void

Description
Missing return statement occurs when a function does not return a value along at least
one execution path. If the return type of the function is void, this error does not occur.

Examples

Missing or invalid return statement error
int AddSquares(int n)
 {
 int i=0;
 int sum=0;

 if(n!=0)
 {
 for(i=1;i<=n;i++)
 {
 sum+=i^2;
 }
 return(sum);
 }
 }
/* Defect: No return value if n is not 0*/

If n is equal to 0, the code does not enter the if statement. Therefore, the function
AddSquares does not return a value if n is 0.

One possible correction is to return a value in every branch of the if...else statement.

 int AddSquares(int n)
 {
 int i=0;

3 Defects

3-478

 int sum=0;

 if(n!=0)
 {
 for(i=1;i<=n;i++)
 {
 sum+=i^2;
 }
 return(sum);
 }

 /*Fix: Place a return statement on branches of if-else */
 else
 return 0;
 }

Check Information
Group: Data flow
Language: C | C++
Default: On
Command-Line Syntax: MISSING_RETURN
Impact: Low
CERT C ID: MSC37-C
CERT C++ ID: MSC37-C, MSC52-CPP

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2013b

 Missing return statement

3-479

https://www.securecoding.cert.org/confluence/x/goCGAg
https://wiki.sei.cmu.edu/confluence/x/m9YxBQ
https://wiki.sei.cmu.edu/confluence/x/EXs-BQ

Missing unlock
Lock function without unlock function

Description
Missing unlock occurs when:

• A task calls a lock function.
• The task ends without a call to an unlock function.

In multitasking code, a lock function begins a critical section of code and an unlock
function ends it. When a task, my_task, calls a lock function, my_lock, other tasks
calling my_lock must wait until my_task calls the corresponding unlock function.
Polyspace requires that both lock and unlock functions must have the form void
func(void).

To find this defect, before analysis, you must specify the multitasking options. On the
Configuration pane, select Multitasking.

Examples

Missing Unlock

void begin_critical_section(void);
void end_critical_section(void);

int global_var;

void reset()
{
 begin_critical_section();
 global_var = 0;
 end_critical_section();

3 Defects

3-480

}

void my_task(void)
{
 begin_critical_section();
 global_var += 1;
}

In this example, to emulate multitasking behavior, specify the following options:

Option Value
Configure multitasking
manually on page 1-114
Tasks on page 1-119 my_task, reset
Critical section details on
page 1-131

Starting routine Ending routine
begin_critical_sectio
n

end_critical_section

On the command-line, you can use the following:

polyspace-bug-finder-nodesktop
 -entry-points my_task,reset
 -critical-section-begin begin_critical_section:cs1
 -critical-section-end end_critical_section:cs1

The example has two entry points, my_task and reset. my_task enters a critical section
through the call begin_critical_section();. my_task ends without calling
end_critical_section.

One possible correction is to call the unlock function end_critical_section after the
instructions in the critical section.

void begin_critical_section(void);
void end_critical_section(void);

int global_var;

 Missing unlock

3-481

void reset(void)
{
 begin_critical_section();
 global_var = 0;
 end_critical_section();
}

void my_task(void)
{
 begin_critical_section();
 global_var += 1;
 end_critical_section();
}

Unlock in Condition

void begin_critical_section(void);
void end_critical_section(void);

int global_var;

void reset() {
 begin_critical_section();
 global_var=0;
 end_critical_section();
}

void my_task(void) {
 int index=0;
 volatile int numCycles;

 while(numCycles) {
 begin_critical_section();
 global_var ++;
 if(index%10==0) {
 global_var = 0;
 end_critical_section();
 }
 index++;
 }
}

3 Defects

3-482

In this example, to emulate multitasking behavior, specify the following options.

Option Specification
Configure multitasking
manually on page 1-114
Tasks on page 1-119 my_task, reset
Critical section details on
page 1-131

Starting routine Ending routine
begin_critical_sectio
n

end_critical_section

On the command-line, you can use the following:

polyspace-bug-finder-nodesktop
 -entry-points my_task,reset
 -critical-section-begin begin_critical_section:cs1
 -critical-section-end end_critical_section:cs1

The example has two entry points, my_task and reset.

In the while loop, my_task enters a critical section through the call
begin_critical_section();. In an iteration of the while loop:

• If my_task enters the if condition branch, the critical section ends through a call to
end_critical_section.

• If my_task does not enter the if condition branch and leaves the while loop, the
critical section does not end. Therefore, a Missing unlock defect occurs.

• If my_task does not enter the if condition branch and continues to the next iteration
of the while loop, the lock function begin_critical_section is called again. A
Double lock defect occurs.

Because numCycles is a volatile variable, it can take any value. Any of the cases
above is possible. Therefore, a Missing unlock defect and a Double lock defect appear
on the call begin_critical_section.

One possible correction is to call the unlock function end_critical_section outside
the if condition.

 Missing unlock

3-483

void begin_critical_section(void);
void end_critical_section(void);

int global_var;

void reset() {
 begin_critical_section();
 global_var=0;
 end_critical_section();
}

void my_task(void) {
 int index=0;
 volatile int numCycles;

 while(numCycles) {
 begin_critical_section();
 global_var ++;
 if(index%10==0) {
 global_var=0;
 }
 end_critical_section();
 index++;
 }
}

Another possible correction is to call the unlock function end_critical_section in
every branches of the if condition.

void begin_critical_section(void);
void end_critical_section(void);

int global_var;

void reset() {
 begin_critical_section();
 global_var=0;
 end_critical_section();
}

3 Defects

3-484

void my_task(void) {
 int index=0;
 volatile int numCycles;

 while(numCycles) {
 begin_critical_section();
 global_var ++;
 if(index%10==0) {
 global_var=0;
 end_critical_section();
 }
 else
 end_critical_section();
 index++;
 }
}

Check Information
Group: Concurrency
Language: C | C++
Default: On
Command-Line Syntax: BAD_LOCK
Impact: High
CWE ID: 667
CERT C ID: CON01-C, MEM12-C

See Also
Polyspace Analysis Options
Find defects (-checkers) | Configure multitasking manually | Tasks (-
entry-points) | Critical section details (-critical-section-begin -
critical-section-end) | Temporally exclusive tasks (-temporal-
exclusions-file)

Polyspace Results
Data race including atomic operations | Data race | Data race through
standard library function call | Deadlock | Destruction of locked mutex
| Double lock | Double unlock | Missing lock

 Missing unlock

3-485

https://cwe.mitre.org/data/definitions/667.html
https://www.securecoding.cert.org/confluence/x/SADQAg
https://www.securecoding.cert.org/confluence/x/8AG7AQ

Topics
“Configuring Polyspace Multitasking Analysis Manually”
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2014b

3 Defects

3-486

Missing virtual inheritance
A base class is inherited virtually and nonvirtually in the same hierarchy

Description
Missing virtual inheritance occurs when:

• A class is derived from multiple base classes, and some of those base classes are
themselves derived from a common base class.

For instance, a class Final is derived from two classes, Intermediate_left and
Intermediate_right. Both Intermediate_left and Intermediate_right are
derived from a common class, Base.

• At least one of the inheritances from the common base class is virtual and at least
one is not virtual.

For instance, the inheritance of Intermediate_right from Base is virtual. The
inheritance of Intermediate_left from Base is not virtual.

Risk
If this defect appears, multiple copies of the base class data members appear in the final
derived class object. To access the correct copy of the base class data member, you have
to qualify the member and method name appropriately in the final derived class. The
development is error-prone.

For instance, when the defect occurs, two copies of the base class data members appear
in an object of class Final. If you do not qualify method names appropriately in the class
Final, you can assign a value to a Base data member but not retrieve the same value.

• You assign the value using a Base method accessed through Intermediate_left.
Therefore, you assign the value to one copy of the Base member.

• You retrieve the value using a Base method accessed through Intermediate_right.
Therefore, you retrieve a different copy of the Base member.

 Missing virtual inheritance

3-487

Fix
Declare all the intermediate inheritances as virtual when a class is derived from
multiple base classes that are themselves derived from a common base class.

If you indeed want multiple copies of the Base data members as represented in the
intermediate derived classes, use aggregation instead of inheritance. For instance,
declare two objects of class Intermediate_left and Intermediate_right in the
Final class.

Examples

Missing Virtual Inheritance
#include <stdio.h>
class Base {
public:
 explicit Base(int i): m_b(i) {};
 virtual ~Base() {};
 virtual int get() const {
 return m_b;
 }
 virtual void set(int b) {
 m_b = b;
 }
private:
 int m_b;
};

class Intermediate_left: virtual public Base {
public:
 Intermediate_left():Base(0), m_d1(0) {};
private:
 int m_d1;
};

class Intermediate_right: public Base {
public:
 Intermediate_right():Base(0), m_d2(0) {};
private:
 int m_d2;

3 Defects

3-488

};

class Final: public Intermediate_left, Intermediate_right {
public:
 Final(): Base(0), Intermediate_left(), Intermediate_right() {};
 int get() const {
 return Intermediate_left::get();
 }
 void set(int b) {
 Intermediate_right::set(b);
 }
 int get2() const {
 return Intermediate_right::get();
 }
};

int main(int argc, char* argv[]) {
 Final d;
 int val = 12;
 d.set(val);
 int res = d.get();
 printf("d.get=%d\n",res); // Result: d.get=0
 printf("d.get2=%d\n",d.get2()); // Result: d.get2=12
 return res;
}

In this example, Final is derived from both Intermediate_left and
Intermediate_right. Intermediate_left is derived from Base in a non-virtual
manner and Intermediate_right is derived from Base in a virtual manner.
Therefore, two copies of the base class and the data member m_b are present in the final
derived class,

Both derived classes Intermediate_left and Intermediate_right do not override
the Base class methods get and set. However, Final overrides both methods. In the
overridden get method, it calls Base::get through Intermediate_left. In the
overridden set method, it calls Base::set through Intermediate_right.

Following the statement d.set(val), Intermediate_right’s copy of m_b is set to 12.
However, Intermediate_left’s copy of m_b is still zero. Therefore, when you call
d.get(), you obtain a value zero.

Using the printf statements, you can see that you retrieve a value that is different from
the value that you set.

 Missing virtual inheritance

3-489

The defect appears in the final derived class definition and on the name of the class that
are derived virtually from the common base class. Following are some tips for navigating
in the source code:

• To find the definition of a class, on the Source pane, right-click the class name and
select Go To Definition.

• To navigate up the class hierarchy, first navigate to the intermediate class definition.
In the intermediate class definition, right-click a base class name and select Go To
Definition.

One possible correction is to declare both the inheritances from Base as virtual.

Even though the overridden get and set methods in Final still call Base::get and
Base::set through different classes, only one copy of m_b exists in Final.

#include <stdio.h>
class Base {
public:
 explicit Base(int i): m_b(i) {};
 virtual ~Base() {};
 virtual int get() const {
 return m_b;
 }
 virtual void set(int b) {
 m_b = b;
 }
private:
 int m_b;
};

class Intermediate_left: virtual public Base {
public:
 Intermediate_left():Base(0), m_d1(0) {};
private:
 int m_d1;
};

class Intermediate_right: virtual public Base {
public:
 Intermediate_right():Base(0), m_d2(0) {};
private:
 int m_d2;
};

3 Defects

3-490

class Final: public Intermediate_left, Intermediate_right {
public:
 Final(): Base(0), Intermediate_left(), Intermediate_right() {};
 int get() const {
 return Intermediate_left::get();
 }
 void set(int b) {
 Intermediate_right::set(b);
 }
 int get2() const {
 return Intermediate_right::get();
 }
};

int main(int argc, char* argv[]) {
 Final d;
 int val = 12;
 d.set(val);
 int res = d.get();
 printf("d.get=%d\n",res); // Result: d.get=12
 printf("d.get2=%d\n",d.get2()); // Result: d.get2=12
 return res;
}

Result Information
Group: Object oriented
Language: C++
Default: Off
Command-Line Syntax: MISSING_VIRTUAL_INHERITANCE
Impact: Medium

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

 Missing virtual inheritance

3-491

Introduced in R2015b

3 Defects

3-492

Misuse of a FILE object
Use of copy of FILE object

Description
Misuse of a FILE object occurs when:

• You dereference a pointer to a FILE object, including indirect dereference by using
memcmp().

• You modify an entire FILE object or one of its components through its pointer.
• You take the address of FILE object that was not returned from a call to an fopen-

family function. No defect is raised if a macro defines the pointer as the address of a
built-in FILE object, such as #define ptr (&__stdout).

Risk
In some implementations, the address of the pointer to a FILE object used to control a
stream is significant. A pointer to a copy of a FILE object is interpreted differently than a
pointer to the original object, and can potentially result in operations on the wrong
stream. Therefore, the use of a copy of a FILE object can cause the software to stop
responding, which an attacker might exploit in denial-of-service attacks.

Fix
Do not make a copy of a FILE object. Do not use the address of a FILE object that was not
returned from a successful call to an fopen-family function.

Examples

Copy of FILE Object Used in fputs()
#include <stdio.h>
#include <unistd.h>

 Misuse of a FILE object

3-493

#include <stdlib.h>
#include <string.h>
#include <strings.h>

void fatal_error(void);

int func(void)
{
 /*'stdout' dereferenced and contents
 copied to 'my_stdout'. */
 FILE my_stdout = *stdout;

 /* Address of 'my_stdout' may not point to correct stream. */
 if (fputs("Hello, World!\n", &my_stdout) == EOF)
 {
 /* Handler error */
 fatal_error();
 }
 return 0;
}

In this example, FILE object stdout is dereferenced and its contents are copied to
my_stdout. The contents of stdout might not be significant. fputs() is then called
with the address of my_stdout as an argument. Because no call to fopen() or a similar
function was made, the address of my_stdout might not point to the correct stream.

Declare my_stdout to point to the same address as stdout to ensure that you write to
the correct stream when you call fputs().

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <strings.h>

void fatal_error(void);

int func(void)
{
 /* 'my_stdout' and 'stdout' point to the same object. */
 FILE *my_stdout = stdout;

3 Defects

3-494

 if (fputs("Hello, World!\n", my_stdout) == EOF)
 {
 /* Handler error */
 fatal_error();
 }
 return 0;
}

Result Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: FILE_OBJECT_MISUSE
Impact: Low
CERT C ID: FIO38-C
CERT C++ ID: FIO38-C
ISO/IEC TS 17961 ID: filecpy

See Also

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2017b

 Misuse of a FILE object

3-495

https://www.securecoding.cert.org/confluence/x/wAw
https://wiki.sei.cmu.edu/confluence/x/OtcxBQ

Misuse of structure with flexible array
member
Memory allocation ignores flexible array member

Description
Misuse of structure with flexible array member occurs when:

• You define an object with a flexible array member of unknown size at compilation time.
• You make an assignment between structures with a flexible array member without

using memcpy() or a similar function.
• You use a structure with a flexible array member as an argument to a function and

pass the argument by value.
• Your function returns a structure with a flexible array member.

A flexible array member has no array size specified and is the last element of a structure
with at least two named members.

Risk
If the size of the flexible array member is not defined, it is ignored when allocating
memory for the containing structure. Accessing such a structure has undefined behavior.

Fix
• Use malloc() or a similar function to allocate memory for a structure with a flexible

array member.
• Use memcpy() or a similar function to copy a structure with a flexible array member.
• Pass a structure with a flexible array member as a function argument by pointer.

3 Defects

3-496

Examples

Structure Passed By Value to Function
#include <stddef.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <unistd.h>

struct example_struct
{
 size_t num;
 int data[];
};

extern void arg_by_value(struct example_struct s);

void func(void)
{
 struct example_struct *flex_struct;
 size_t i;
 size_t array_size = 4;
 /* Dynamically allocate memory for the struct */
 flex_struct = (struct example_struct *)
 malloc(sizeof(struct example_struct) + sizeof(int) * array_size);
 if (flex_struct == NULL)
 {
 /* Handle error */
 }
 /* Initialize structure */
 flex_struct->num = array_size;
 for (i = 0; i < array_size; ++i)
 {
 flex_struct->data[i] = 0;
 }
 /* Handle structure */

 /* Argument passed by value. 'data' not
 copied to passed value. */
 arg_by_value(*flex_struct);

 Misuse of structure with flexible array member

3-497

 /* Free dynamically allocated memory */
 free(flex_struct);
}

In this example, flex_struct is passed by value as an argument to arg_by_value. As a
result, the flexible array member data is not copied to the passed argument.

To ensure that all the members of the structure are copied to the passed argument, pass
flex_struct to arg_by_pointer by pointer.

#include <stddef.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <unistd.h>

struct example_struct
{
 size_t num;
 int data[];
};

extern void arg_by_pointer(struct example_struct *s);

void func(void)
{
 struct example_struct *flex_struct;
 size_t i;
 size_t array_size = 4;
 /* Dynamically allocate memory for the struct */
 flex_struct = (struct example_struct *)
 malloc(sizeof(struct example_struct) + sizeof(int) * array_size);
 if (flex_struct == NULL)
 {
 /* Handler error */
 }
 /* Initialize structure */
 flex_struct->num = array_size;
 for (i = 0; i < array_size; ++i)
 {
 flex_struct->data[i] = 0;

3 Defects

3-498

 }
 /* Handle structure */

 /* Structure passed by pointer */
 arg_by_pointer(flex_struct);

 /* Free dynamically allocated memory */
 free(flex_struct);
}

Result Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: FLEXIBLE_ARRAY_MEMBER_STRUCT_MISUSE
Impact: Low
CERT C ID: MEM33-C

See Also

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2017b

 Misuse of structure with flexible array member

3-499

https://www.securecoding.cert.org/confluence/x/6AAl

Misuse of errno
errno incorrectly checked for error conditions

Description
Misuse of errno occurs when you check errno for error conditions in situations where
checking errno does not guarantee the absence of errors. In some cases, checking
errno can lead to false positives.

For instance, you check errno following calls to the functions:

• fopen: If you follow the ISO Standard, the function might not set errno on errors.
• atof: If you follow the ISO Standard, the function does not set errno.
• signal: The errno value indicates an error only if the function returns the SIG_ERR

error indicator.

Risk
The ISO C Standard does not enforce that these functions set errno on errors. Whether
the functions set errno or not is implementation-dependent.

To detect errors, if you check errno alone, the validity of this check also becomes
implementation-dependent.

In some cases, the errno value indicates an error only if the function returns a specific
error indicator. If you check errno before checking the function return value, you can see
false positives.

Fix
For information on how to detect errors, see the documentation for that specific function.

Typically, the functions return an out-of-band error indicator to indicate errors. For
instance:

3 Defects

3-500

• fopen returns a null pointer if an error occurs.
• signal returns the SIG_ERR error indicator and sets errno to a positive value.

Check errno only after you have checked the function return value.

Examples
Incorrectly Checking for errno After fopen Call
#include <stdio.h>
#include <stdlib.h>
#include <errno.h>

#define fatal_error() abort()

const char *temp_filename = "/tmp/demo.txt";

FILE *func()
{
 FILE *fileptr;
 errno = 0;
 fileptr = fopen(temp_filename, "w+b");
 if (errno != 0) {
 if (fileptr != NULL) {
 (void)fclose(fileptr);
 }
 /* Handle error */
 fatal_error();
 }
 return fileptr;
}

In this example, errno is the first variable that is checked after a call to fopen. You
might expect that fopen changes errno to a nonzero value if an error occurs. If you run
this code with an implementation of fopen that does not set errno on errors, you might
miss an error condition. In this situation, fopen can return a null pointer that escapes
detection.

One possible correction is to only check the return value of fopen for a null pointer.

#include <stdio.h>
#include <stdlib.h>

 Misuse of errno

3-501

#include <errno.h>

#define fatal_error() abort()

const char *temp_filename = "/tmp/demo.txt";

FILE *func()
{
 FILE *fileptr;
 fileptr = fopen(temp_filename, "w+b");
 if (fileptr == NULL) {
 fatal_error();
 }
 return fileptr;
}

Result Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: ERRNO_MISUSE
Impact: High
CWE ID: 703
CERT C ID: ERR30-C
CERT C++ ID: ERR30-C
ISO/IEC TS 17961 ID: inverrno

See Also
Polyspace Results
Errno not reset | Errno not checked | Returned value of a sensitive
function not checked | Unsafe conversion from string to numerical
value

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

3 Defects

3-502

https://cwe.mitre.org/data/definitions/703.html
https://www.securecoding.cert.org/confluence/x/KwBl
https://wiki.sei.cmu.edu/confluence/x/39YxBQ

Introduced in R2017a

 Misuse of errno

3-503

Misuse of narrow or wide character string
Narrow (wide) character string passed to wide (narrow) string function

Description
Misuse of narrow or wide character string occurs when you pass a narrow character
string to a wide string function, or a wide character string to a narrow string function.

Misuse of narrow or wide character string raises no defect on operating systems
where narrow and wide character strings have the same size.

Risk
Using a narrow character string with a wide string function, or vice versa, can result in
unexpected or undefined behavior.

If you pass a wide character string to a narrow string function, you can encounter these
issues:

• Data truncation. If the string contains null bytes, a copy operation using strncpy()
can terminate early.

• Incorrect string length. strlen() returns the number of characters of a string up to
the first null byte. A wide string can have additional characters after its first null byte.

If you pass a narrow character string to a wide string function, you can encounter this
issue:

• Buffer overflow. In a copy operation using wcsncpy(), the destination string might
have insufficient memory to store the result of the copy.

Fix
Use the narrow string functions with narrow character strings. Use the wide string
functions with wide character strings.

3 Defects

3-504

Examples

Passing Wide Character Strings to strncpy()
#include <string.h>
#include <wchar.h>

void func(void)
{
 wchar_t wide_str1[] = L"0123456789";
 wchar_t wide_str2[] = L"0000000000";
 strncpy(wide_str2, wide_str1, 10);
}

In this example, strncpy() copies 10 wide characters from wide_strt1 to wide_str2.
If wide_str1 contains null bytes, the copy operation can end prematurely and truncate
the wide character string.

One possible correction is to use wcsncpy() to copy wide_str1 to wide_str2.

#include <string.h>
#include <wchar.h>

void func(void)
{
 wchar_t wide_str1[] = L"0123456789";
 wchar_t wide_str2[] = L"0000000000";
 wcsncpy(wide_str2, wide_str1, 10);
}

Result Information
Group: Programming
Language: C | C++
Default: Off
Command-Line Syntax: NARROW_WIDE_STR_MISUSE
Impact: High
CWE ID: 135
CERT C ID: STR38-C
CERT C++ ID: STR38-C

 Misuse of narrow or wide character string

3-505

https://cwe.mitre.org/data/definitions/135.html
https://wiki.sei.cmu.edu/confluence/x/xtYxBQ
https://wiki.sei.cmu.edu/confluence/x/xtYxBQ

See Also
Array access out of bounds | Destination buffer overflow in string
manipulation | Invalid use of standard library routine | Invalid use of
standard library string routine | Pointer access out of bounds |
Unreliable cast of function pointer | Wrong allocated object size for
cast

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2018b

3 Defects

3-506

Misuse of errno in a signal handler
You read errno after calling an errno-setting function in a signal handler

Description
Misuse of errno in a signal handler occurs when you call one of these functions in a
signal handler:

• signal: You call the signal function in a signal handler and then read the value of
errno.

For instance, the signal handler function handler calls signal and then calls
perror, which reads errno.

void handler(int signum) {
 pfv old_handler = signal(signum, SIG_DFL);
 if (old_handler == SIG_ERR) {
 perror("SIGINT handler");
 }
}

• errno-setting POSIX function: You call an errno-setting POSIX function in a signal
handler but do not restore errno when returning from the signal handler.

For instance, the signal handler function handler calls waitpid, which changes
errno, but does not restore errno before returning.

void handler(int signum) {
 int rc = waitpid(-1, NULL, WNOHANG);
 if (ECHILD != errno) {
 }
}

Risk
In each case that the checker flags, you risk relying on an indeterminate value of errno.

 Misuse of errno in a signal handler

3-507

• signal: If the call to signal in a signal handler fails, the value of errno is
indeterminate (see C11 Standard, Sec. 7.14.1.1). If you rely on a specific value of
errno, you can see unexpected results.

• errno-setting POSIX function: An errno-setting function sets errno on failure. If you
read errno after a signal handler is called and the signal handler itself calls an
errno-setting function, you can see unexpected results.

Fix
Avoid situations where you risk relying on an indeterminate value of errno.

• signal: After calling the signal function in a signal handler, do not read errno or
use a function that reads errno.

• errno-setting POSIX function: Before calling an errno-setting function in a signal
handler, save errno to a temporary variable. Restore errno from this variable before
returning from the signal handler.

Examples

Reading errno After signal Call in Signal Handler
#include <signal.h>
#include <stdlib.h>
#include <stdio.h>

#define fatal_error() abort()

void handler(int signum) {
 if (signal(signum, SIG_DFL) == SIG_ERR) {
 perror("SIGINT handler");
 }
}

int func(void) {
 if (signal(SIGINT, handler) == SIG_ERR) {
 /* Handle error */
 fatal_error();
 }
 /* Program code */

3 Defects

3-508

 if (raise(SIGINT) != 0) {
 /* Handle error */
 fatal_error();
 }
 return 0;
}

In this example, the function handler is called to handle the SIGINT signal. In the body
of handler, the signal function is called. Following this call, the value of errno is
indeterminate. The checker raises a defect when the perror function is called because
perror relies on the value of errno.

One possible correction is to not read errno after calling the signal function in a signal
handler. The corrected code here calls the abort function via the fatal_error macro
instead of the perror function.

#include <signal.h>
#include <stdlib.h>
#include <stdio.h>

#define fatal_error() abort()

void handler(int signum) {
 if (signal(signum, SIG_DFL) == SIG_ERR) {
 fatal_error();
 }
}

int func(void) {
 if (signal(SIGINT, handler) == SIG_ERR) {
 /* Handle error */
 fatal_error();
 }
 /* Program code */
 if (raise(SIGINT) != 0) {
 /* Handle error */
 fatal_error();
 }
 return 0;
}

 Misuse of errno in a signal handler

3-509

Result Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: SIG_HANDLER_ERRNO_MISUSE
Impact: Medium
CERT C ID: ERR32-C
CERT C++ ID: ERR32-C

See Also
Errno not checked | Errno not reset | Function called from signal
handler not asynchronous-safe

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2018a

3 Defects

3-510

https://www.securecoding.cert.org/confluence/x/NABl
https://wiki.sei.cmu.edu/confluence/x/-dUxBQ

Misuse of readlink()
Third argument of readlink does not leave space for null terminator in buffer

Description
Misuse of readlink() occurs when you pass a buffer size argument to readlink() that
does not leave space for a null terminator in the buffer.

For instance:

ssize_t len = readlink("/usr/bin/perl", buf, sizeof(buf));

The third argument is exactly equal to the size of the second argument. For large enough
symbolic links, this use of readlink() does not leave space to enter a null terminator.

Risk
The readlink() function copies the content of a symbolic link (first argument) to a
buffer (second argument). However, the function does not append a null terminator to the
copied content. After using readlink(), you must explicitly add a null terminator to the
buffer.

If you fill the entire buffer when using readlink, you do not leave space for this null
terminator.

Fix
When using the readlink() function, make sure that the third argument is one less than
the buffer size.

Then, append a null terminator to the buffer. To determine where to add the null
terminator, check the return value of readlink(). If the return value is -1, an error has
occurred. Otherwise, the return value is the number of characters (bytes) copied.

 Misuse of readlink()

3-511

Examples

Incorrect Size Argument of readlink
#include <unistd.h>

#define SIZE1024 1024

extern void display_path(const char *);

void func() {
 char buf[SIZE1024];
 ssize_t len = readlink("/usr/bin/perl", buf, sizeof(buf));
 if (len > 0) {
 buf[len - 1] = '\0';
 }
 display_path(buf);
}

In this example, the third argument of readlink is exactly the size of the buffer (second
argument). If the first argument is long enough, this use of readlink does not leave
space for the null terminator.

Also, if no characters are copied, the return value of readlink is 0. The following
statement leads to a buffer underflow when len is 0.

buf[len - 1] = '\0';

One possible correction is to make sure that the third argument of readlink is one less
than size of the second argument.

The following corrected code also accounts for readlink returning 0.

#include <stdlib.h>
#include <unistd.h>

#define fatal_error() abort()
#define SIZE1024 1024

extern void display_path(const char *);

void func() {

3 Defects

3-512

 char buf[SIZE1024];
 ssize_t len = readlink("/usr/bin/perl", buf, sizeof(buf) - 1);
 if (len != -1) {
 buf[len] = '\0';
 display_path(buf);
 }
 else {
 /* Handle error */
 fatal_error();
 }
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: READLINK_MISUSE
Impact: Medium
CWE ID: 170
CERT C ID: POS30-C
CERT C++ ID: POS30-C

See Also
Polyspace Results
Array access out of bounds | File access between time of check and use
(TOCTOU) | Invalid use of standard library string routine | Pointer
access out of bounds | Returned value of a sensitive function not
checked

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2017a

 Misuse of readlink()

3-513

https://cwe.mitre.org/data/definitions/170.html
https://www.securecoding.cert.org/confluence/display/c/POS30-C.+Use+the+readlink()+function+properly
https://wiki.sei.cmu.edu/confluence/x/y9YxBQ

Misuse of return value from nonreentrant
standard function
Pointer to static buffer from previous call is used despite a subsequent call that modifies
the buffer

Description
Misuse of return value from nonreentrant standard function occurs when these
events happen in this sequence:

1 You point to the buffer returned from a nonreentrant standard function such as
getenv or setlocale.

user = getenv("USER");
2 You call that nonreentrant standard function again.

user2 = getenv("USER2");
3 You use or dereference the pointer from the first step expecting the buffer to remain

unmodified since that step. In the meantime, the call in the second step has modified
the buffer.

For instance:

var=*user;

In some cases, the defect might appear even if you do not call the getenv function a
second time but simply return the pointer. For instance:

char* func() {
 user=getenv("USER");
 .
 .
 return user;
}

For information on which functions are covered by this defect, see documentation on
nonreentrant standard functions.

3 Defects

3-514

https://www.securecoding.cert.org/confluence/display/c/ENV34-C.+Do+not+store+pointers+returned+by+certain+functions
https://www.securecoding.cert.org/confluence/display/c/ENV34-C.+Do+not+store+pointers+returned+by+certain+functions

Risk
The C Standard allows nonreentrant functions such as getenv to return a pointer to a
static buffer. Because the buffer is static, a second call to getenv modifies the buffer. If
you continue to use the pointer returned from the first call past the second call, you can
see unexpected results. The buffer that it points to no longer has values from the first call.

The defect appears even if you do not call getenv a second time but simply return the
pointer. The reason is that someone calling your function might use the returned pointer
after a second call to getenv. By returning the pointer from your call to getenv, you
make your function unsafe to use.

The same rationale is true for other nonreentrant functions covered by this defect.

Fix
After the first call to getenv, make a copy of the buffer that the returned pointer points
to. After the second call to getenv, use this copy. Even if the second call modifies the
buffer, your copy is untouched.

Examples
Return from getenv Used After Second Call to getenv
#include <stdlib.h>
#include <string.h>

int func()
{
 int result = 0;

 char *home = getenv("HOME"); /* First call */
 if (home != NULL) {
 char *user = NULL;
 char *user_name_from_home = strrchr(home, '/');

 if (user_name_from_home != NULL) {
 user = getenv("USER"); /* Second call */
 if ((user != NULL) &&
 (strcmp(user, user_name_from_home) == 0))

 Misuse of return value from nonreentrant standard function

3-515

 {
 result = 1;
 }
 }
 }
 return result;
}

In this example, the pointer user_name_from_home is derived from the pointer home.
home points to the buffer returned from the first call to getenv. Therefore,
user_name_from_home points to a location in the same buffer.

After the second call to getenv, the buffer is modified. If you continue to use
user_name_from_home, you can get unexpected results.

If you want to access the buffer from the first call to getenv past the second call, make a
copy of the buffer after the first call. One possible correction is to use the strdup
function to make the copy.

#include <stdlib.h>
#include <string.h>

int func()
{
 int result = 0;

 char *home = getenv("HOME");
 if (home != NULL) {
 char *user = NULL;
 char *user_name_from_home = strrchr(home, '/');
 if (user_name_from_home != NULL) {
 /* Make copy before second call */
 char *saved_user_name_from_home = strdup(user_name_from_home);
 if (saved_user_name_from_home != NULL) {
 user = getenv("USER");
 if ((user != NULL) &&
 (strcmp(user, saved_user_name_from_home) == 0))
 {
 result = 1;
 }
 free(saved_user_name_from_home);
 }
 }

3 Defects

3-516

 }
 return result;
}

Result Information
Group: Programming
Language: C | C++
Default: Off
Command-Line Syntax: NON_REENTRANT_STD_RETURN
Impact: High
CERT C ID: ENV34-C
CERT C++ ID: ENV34-C
ISO/IEC TS 17961 ID: libuse

See Also
Polyspace Results
Modification of internal buffer returned from nonreentrant standard
function | Use of obsolete standard function

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2017a

 Misuse of return value from nonreentrant standard function

3-517

https://www.securecoding.cert.org/confluence/x/GAAa
https://wiki.sei.cmu.edu/confluence/x/8tYxBQ

Misuse of sign-extended character value
Data type conversion with sign extension causes unexpected behavior

Description
Misuse of sign-extended character value occurs when you convert a signed or plain
char data type to a wider integer data type with sign extension. You then use the
resulting sign-extended value as array index, for comparison with EOF or as argument to
a character-handling function.

Risk
Comparison with EOF: Suppose, your compiler implements the plain char type as signed.
In this implementation, the character with the decimal form of 255 (–1 in two’s
complement form) is stored as a signed value. When you convert a char variable to the
wider data type int for instance, the sign bit is preserved (sign extension). This sign
extension results in the character with the decimal form 255 being converted to the
integer –1, which cannot be distinguished from EOF.

Use as array index: By similar reasoning, you cannot use sign-extended plain char
variables as array index. If the sign bit is preserved, the conversion from char to int can
result in negative integers. You must use positive integer values for array index.

Argument to character-handling function: By similar reasoning, you cannot use sign-
extended plain char variables as arguments to character-handling functions declared in
ctype.h, for instance, isalpha() or isdigit(). According to the C11 standard
(Section 7.4), if you supply an integer argument that cannot be represented as unsigned
char or EOF, the resulting behavior is undefined.

Fix
Before conversion to a wider integer data type, cast the signed or plain char value
explicitly to unsigned char.

3 Defects

3-518

Examples

Sign-Extended Character Value Compared with EOF
#include <stdio.h>
#include <stdlib.h>
#define fatal_error() abort()

extern char parsed_token_buffer[20];

static int parser(char *buf)
{
 int c = EOF;
 if (buf && *buf) {
 c = *buf++;
 }
 return c;
}

void func()
{
 if (parser(parsed_token_buffer) == EOF) {
 /* Handle error */
 fatal_error();
 }
}

In this example, the function parser can traverse a string input buf. If a character in the
string has the decimal form 255, when converted to the int variable c, its value becomes
–1, which is indistinguishable from EOF. The later comparison with EOF can lead to a false
positive.

One possible correction is to cast the plain char value to unsigned char before
conversion to the wider int type.

#include <stdio.h>
#include <stdlib.h>
#define fatal_error() abort()

extern char parsed_token_buffer[20];

static int parser(char *buf)

 Misuse of sign-extended character value

3-519

{
 int c = EOF;
 if (buf && *buf) {
 c = (unsigned char)*buf++;
 }
 return c;
}

void func()
{
 if (parser(parsed_token_buffer) == EOF) {
 /* Handle error */
 fatal_error();
 }
}

Result Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: CHARACTER_MISUSE
Impact: Medium
CWE ID: 704
CERT C ID: STR34-C, STR37-C
CERT C++ ID: STR34-C, STR37-C
ISO/IEC TS 17961 ID: signconv

See Also
Polyspace Results
Character value absorbed into EOF | Errno not checked | Invalid use of
standard library integer routine | Returned value of a sensitive
function not checked

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

3 Defects

3-520

https://cwe.mitre.org/data/definitions/704.html
https://www.securecoding.cert.org/confluence/x/QgBi
https://www.securecoding.cert.org/confluence/x/fAs
https://wiki.sei.cmu.edu/confluence/x/BdYxBQ
https://wiki.sei.cmu.edu/confluence/x/BNcxBQ

Introduced in R2017a

 Misuse of sign-extended character value

3-521

Modification of internal buffer returned from
nonreentrant standard function
Function attempts to modify internal buffer returned from a nonreentrant standard
function

Description
Modification of internal buffer returned from nonreentrant standard function
occurs when the following happens:

• A nonreentrant standard function returns a pointer.
• You attempt to write to the memory location that the pointer points to.

Nonreentrant standard functions that return a non const-qualified pointer to an internal
buffer include getenv, getlogin, crypt, setlocale, localeconv, strerror and
others.

Risk
Modifying the internal buffer that a nonreentrant standard function returns can cause the
following issues:

• It is possible that the modification does not succeed or alters other internal data.

For instance, getenv returns a pointer to an environment variable value. If you modify
this value, you alter the environment of the process and corrupt other internal data.

• Even if the modification succeeds, it is possible that a subsequent call to the same
standard function does not return your modified value.

For instance, you modify the environment variable value that getenv returns. If
another process, thread, or signal handler calls setenv, the modified value is
overwritten. Therefore, a subsequent call to getenv does not return your modified
value.

3 Defects

3-522

Fix
Avoid modifying the internal buffer using the pointer returned from the function.

Examples

Modification of getenv Return Value
#include <stdlib.h>
#include <string.h>

void printstr(const char*);

void func() {
 char* env = getenv("LANGUAGE");
 if (env != NULL) {
 strncpy(env, "C", 1);
 printstr(env);
 }
}

In this example, the first argument of strncpy is the return value from a nonreentrant
standard function getenv. The behavior can be undefined because strncpy modifies this
argument.

One possible solution is to copy the return value of getenv and pass the copy to the
strncpy function.

#include <stdlib.h>
#include <string.h>
enum {
 SIZE20 = 20
};

void printstr(const char*);

void func() {
 char* env = getenv("LANGUAGE");
 if (env != NULL) {
 char env_cp[SIZE20];

 Modification of internal buffer returned from nonreentrant standard function

3-523

 strncpy(env_cp, env, SIZE20);
 strncpy(env_cp, "C", 1);
 printstr(env_cp);
 }
}

Result Information
Group: Programming
Language: C | C++
Default: Off
Command-Line Syntax: WRITE_INTERNAL_BUFFER_RETURNED_FROM_STD_FUNC
Impact: Low
CWE ID: 573, 628
CERT C ID: ENV30-C, STR06-C
CERT C++ ID: ENV30-C
ISO/IEC TS 17961 ID: libmod

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2015b

3 Defects

3-524

https://cwe.mitre.org/data/definitions/573.html
https://cwe.mitre.org/data/definitions/628.html
https://www.securecoding.cert.org/confluence/x/XgAl
https://www.securecoding.cert.org/confluence/x/owAV
https://wiki.sei.cmu.edu/confluence/x/79UxBQ

Non-initialized pointer
Pointer not initialized before dereference

Description
Non-initialized pointer occurs when a pointer is not assigned an address before
dereference.

Examples

Non-initialized pointer error
#include <stdlib.h>

int* assign_pointer(int* prev)
{
 int j = 42;
 int* pi;

 if (prev == NULL)
 {
 pi = (int*)malloc(sizeof(int));
 if (pi == NULL) return NULL;
 }

 *pi = j;
 /* Defect: Writing to uninitialized pointer */

 return pi;
}

If prev is not NULL, the pointer pi is not assigned an address. However, pi is
dereferenced on every execution paths, irrespective of whether prev is NULL or not.

One possible correction is to assign an address to pi when prev is not NULL.

 Non-initialized pointer

3-525

#include <stdlib.h>

int* assign_pointer(int* prev)
{
 int j = 42;
 int* pi;

 if (prev == NULL)
 {
 pi = (int*)malloc(sizeof(int));
 if (pi == NULL) return NULL;
 }
 /* Fix: Initialize pi in branches of if statement */
 else
 pi = prev;

 *pi = j;

 return pi;
}

Check Information
Group: Data flow
Language: C | C++
Default: On
Command-Line Syntax: NON_INIT_PTR
Impact: High
CWE ID: 456, 457, 824, 908
CERT C ID: EXP33-C, MSC15-C
CERT C++ ID: EXP53-CPP, EXP54-CPP
ISO/IEC TS 17961 ID: uninitref

See Also
Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Non-initialized variable

3 Defects

3-526

https://cwe.mitre.org/data/definitions/456.html
https://cwe.mitre.org/data/definitions/457.html
https://cwe.mitre.org/data/definitions/824.html
https://cwe.mitre.org/data/definitions/908.html
https://www.securecoding.cert.org/confluence/x/4gE
https://www.securecoding.cert.org/confluence/x/EoLu
https://wiki.sei.cmu.edu/confluence/x/EXw-BQ
https://wiki.sei.cmu.edu/confluence/x/OXw-BQ

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2013b

 Non-initialized pointer

3-527

Non-initialized variable
Variable not initialized before use

Description
Non-initialized variable occurs when a variable is not initialized before its value is read.

Examples

Non-initialized variable error
int get_sensor_value(void)
{
 extern int getsensor(void);
 int command;
 int val;

 command = getsensor();
 if (command == 2)
 {
 val = getsensor();
 }

 return val;
 /* Defect: val does not have a value if command is not 2 */
}

If command is not 2, the variable val is unassigned. In this case, the return value of
function get_sensor_value is undetermined.

One possible correction is to initialize val during declaration so that the initialization is
not bypassed on some execution paths.

int get_sensor_value(void)
{
 extern int getsensor(void);

3 Defects

3-528

 int command;
 /* Fix: Initialize val */
 int val=0;

 command = getsensor();
 if (command == 2)
 {
 val = getsensor();
 }

 return val;
 }

val is assigned an initial value of 0. When command is not equal to 2, the function
get_sensor_value returns this value.

Check Information
Group: Data flow
Language: C | C++
Default: On
Command-Line Syntax: NON_INIT_VAR
Impact: High
CWE ID: 456, 457, 908
CERT C ID: EXP33-C, MSC15-C, MSC39-C
CERT C++ ID: EXP53-CPP, EXP54-CPP, MSC39-C
ISO/IEC TS 17961 ID: uninitref

See Also
Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Non-initialized pointer

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

 Non-initialized variable

3-529

https://cwe.mitre.org/data/definitions/456.html
https://cwe.mitre.org/data/definitions/457.html
https://cwe.mitre.org/data/definitions/908.html
https://www.securecoding.cert.org/confluence/x/4gE
https://www.securecoding.cert.org/confluence/x/EoLu
https://www.securecoding.cert.org/confluence/x/VwCMAg
https://wiki.sei.cmu.edu/confluence/x/EXw-BQ
https://wiki.sei.cmu.edu/confluence/x/OXw-BQ
https://wiki.sei.cmu.edu/confluence/x/ndYxBQ

Introduced in R2013b

3 Defects

3-530

Nonsecure hash algorithm
Context used for message digest creation is associated with weak algorithm

Description
Nonsecure hash algorithm occurs when you use a cryptographic hash function that is
proven to be weak against certain forms of attack.

The hash functions flagged by this checker include SHA-0, SHA-1, MD4, MD5, and
RIPEMD-160. The checker detects the use of these hash functions in:

• Functions from the EVP API such as EVP_DigestUpdate or EVP_SignUpdate.
• Functions from the low level API such as SHA1_Update or MD5_Update.

Risk
You use a hash function to create a message digest from input data and thereby ensure
integrity of your data. The hash functions flagged by this checker use algorithms with
known weaknesses that an attacker can exploit. The attacks can comprise the integrity of
your data.

Fix
Use a more secure hash function. For instance, use the later SHA functions such as
SHA-224, SHA-256, SHA-384, and SHA-512.

Examples

Use of MD5 Algorithm

#include <openssl/evp.h>

#define fatal_error() exit(-1)

 Nonsecure hash algorithm

3-531

int ret;
unsigned char *out_buf;
unsigned int out_len;

void func(unsigned char *src, size_t len, EVP_PKEY* pkey){
 EVP_MD_CTX* ctx = EVP_MD_CTX_create();

 ret = EVP_SignInit_ex(ctx, EVP_md5(), NULL);
 if (ret != 1) fatal_error();

 ret = EVP_DigestUpdate(ctx,src,len);

 if (ret != 1) fatal_error();

 ret = EVP_SignFinal(ctx, out_buf, &out_len, pkey);
 if (ret != 1) fatal_error();
}

In this example, during initialization with EVP_SignInit_ex, the context object is
associated with the weak hash function MD5. The checker flags the usage of this context
in the update step with EVP_DigestUpdate.

One possible correction is to use a hash function from the SHA-2 family, such as SHA-256.

#include <openssl/evp.h>

#define fatal_error() exit(-1)

int ret;
unsigned char *out_buf;
unsigned int out_len;

void func(unsigned char *src, size_t len, EVP_PKEY* pkey){
 EVP_MD_CTX* ctx = EVP_MD_CTX_create();

 ret = EVP_SignInit_ex(ctx, EVP_sha256(), NULL);
 if (ret != 1) fatal_error();

 ret = EVP_SignUpdate(ctx, src, len);
 if (ret != 1) fatal_error();

 ret = EVP_SignFinal(ctx, out_buf, &out_len, pkey);

3 Defects

3-532

 if (ret != 1) fatal_error();
}

Result Information
Group: Cryptography
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_MD_WEAK_HASH
Impact: Medium
CWE ID: 310, 327, 328, 353, 522

See Also
Context initialized incorrectly for digest operation

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2018a

 Nonsecure hash algorithm

3-533

https://cwe.mitre.org/data/definitions/310.html
https://cwe.mitre.org/data/definitions/327.html
https://cwe.mitre.org/data/definitions/328.html
https://cwe.mitre.org/data/definitions/353.html
https://cwe.mitre.org/data/definitions/522.html

Nonsecure parameters for key generation
Context used for key generation is associated with weak parameters

Description
Nonsecure parameters for key generation occurs when you attempt key generation
by using an EVP_PKEY_CTX context object that is associated with weak parameters. What
constitutes a weak parameter depends on the public key algorithm used. In the DSA
algorithm, a weak parameter can be the result of setting an insufficient parameter length.

For instance, you set the number of bits used for DSA parameter generation to 512 bits,
and then use the parameters for key generation:

EVP_PKEY_CTX *pctx,*kctx;
EVP_PKEY *params, *pkey;

/* Initializations for parameter generation */
pctx = EVP_PKEY_CTX_new_id(EVP_PKEY_DSA, NULL);
params = EVP_PKEY_new();

/* Parameter generation */
ret = EVP_PKEY_paramgen_init(pctx);
ret = EVP_PKEY_CTX_set_dsa_paramgen_bits(pctx, KEYLEN_512BITS);
ret = EVP_PKEY_paramgen(pctx, ¶ms);

/* Initializations for key generation */
kctx = EVP_PKEY_CTX_new(params, NULL);
pkey = EVP_PKEY_new();

/* Key generation */
ret = EVP_PKEY_keygen_init(kctx);
ret = EVP_PKEY_keygen(kctx, &pkey);

Risk
Weak parameters lead to keys that are not sufficiently strong for encryption and expose
sensitive information to known ways of attack.

3 Defects

3-534

Fix
Depending on the algorithm, use these parameters:

• Diffie-Hellman (DH): Set the length of the DH prime parameter to 2048 bits.

ret = EVP_PKEY_CTX_set_dh_paramgen_prime_len(pctx, 2048);

Set the DH generator to 2 or 5.

ret = EVP_PKEY_CTX_set_dh_paramgen_generator(pctx, 2);
• Digital Signature Algorithm (DSA): Set the number of bits used for DSA parameter

generation to 2048 bits.

ret = EVP_PKEY_CTX_set_dsa_paramgen_bits(pctx, 2048);
• RSA: Set the RSA key length to 2048 bits.

ret = EVP_PKEY_CTX_set_rsa_keygen_bits(kctx, 2048);
• Elliptic curve (EC): Avoid using curves that are known to be broken, for instance,

X9_62_prime256v1. Use, for instance, sect239k1.

ret = EVP_PKEY_CTX_set_ec_paramgen_curve_nid(pctx, NID_sect239k1);

Examples

Insufficient Bits for RSA Key Generation

#include <stddef.h>
#include <openssl/rsa.h>
#include <openssl/evp.h>

#define fatal_error() exit(-1)

int ret;
int func(EVP_PKEY *pkey){
 EVP_PKEY_CTX * ctx = EVP_PKEY_CTX_new_id(EVP_PKEY_RSA, NULL);
 if (ctx == NULL) fatal_error();

 ret = EVP_PKEY_keygen_init(ctx);
 if (ret <= 0) fatal_error();

 Nonsecure parameters for key generation

3-535

 ret = EVP_PKEY_CTX_set_rsa_keygen_bits(ctx, 512);
 if (ret <= 0) fatal_error();
 return EVP_PKEY_keygen(ctx, &pkey);
}

In this example, the RSA key generation uses 512 bits, which makes the generated key
vulnerable to attacks.

Use 2048 bits for RSA key generation.

#include <stddef.h>
#include <openssl/rsa.h>
#include <openssl/evp.h>

#define fatal_error() exit(-1)

int ret;
int func(EVP_PKEY *pkey){
 EVP_PKEY_CTX * ctx = EVP_PKEY_CTX_new_id(EVP_PKEY_RSA, NULL);
 if (ctx == NULL) fatal_error();

 ret = EVP_PKEY_keygen_init(ctx);
 if (ret <= 0) fatal_error();
 ret = EVP_PKEY_CTX_set_rsa_keygen_bits(ctx, 2048);
 if (ret <= 0) fatal_error();
 return EVP_PKEY_keygen(ctx, &pkey);
}

Result Information
Group: Cryptography
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_PKEY_WEAK_PARAMS
Impact: Medium
CWE ID: 310, 326, 327, 522

See Also
Context initialized incorrectly for cryptographic operation |
Incorrect key for cryptographic algorithm | Missing parameters for key

3 Defects

3-536

https://cwe.mitre.org/data/definitions/310.html
https://cwe.mitre.org/data/definitions/326.html
https://cwe.mitre.org/data/definitions/327.html
https://cwe.mitre.org/data/definitions/522.html

generation | Missing data for encryption, decryption or signing |
Missing peer key | Missing private key | Missing public key

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

External Websites
https://safecurves.cr.yp.to/
https://csrc.nist.gov/publications/detail/fips/186/4/final

Introduced in R2018a

 Nonsecure parameters for key generation

3-537

https://safecurves.cr.yp.to/
https://csrc.nist.gov/publications/detail/fips/186/4/final

Nonsecure RSA public exponent
Context used in key generation is associated with low exponent value

Description
Nonsecure RSA public exponent occurs when you attempt RSA key generation by
using a context object that is associated with a low public exponent.

For instance, you set a public exponent of 3 in the context object, and then use it for key
generation.

/* Set public exponent */
ret = BN_dec2bn(&pubexp, "3");

/* Initialize context */
ctx = EVP_PKEY_CTX_new_id(EVP_PKEY_RSA, NULL);
pkey = EVP_PKEY_new();
ret = EVP_PKEY_keygen_init(kctx);

/* Set public exponent in context */
ret = EVP_PKEY_CTX_set_rsa_keygen_pubexp(ctx, pubexp);

/* Generate key */
ret = EVP_PKEY_keygen(kctx, &pkey);

Risk
A low RSA public exponent makes certain kinds of attacks more damaging, especially
when a weak padding scheme is used or padding is not used at all.

Fix
It is recommended to use a public exponent of 65537. Using a higher public exponent can
make the operations slower.

3 Defects

3-538

Examples

Using RSA Public Exponent of 3

#include <stddef.h>
#include <openssl/rsa.h>
#include <openssl/evp.h>

#define fatal_error() exit(-1)

int ret;
int func(EVP_PKEY *pkey){
 BIGNUM* pubexp;
 EVP_PKEY_CTX* ctx;

 pubexp = BN_new();
 if (pubexp == NULL) fatal_error();
 ret = BN_set_word(pubexp, 3);
 if (ret <= 0) fatal_error();

 ctx = EVP_PKEY_CTX_new_id(EVP_PKEY_RSA, NULL);
 if (ctx == NULL) fatal_error();

 ret = EVP_PKEY_keygen_init(ctx);
 if (ret <= 0) fatal_error();
 ret = EVP_PKEY_CTX_set_rsa_keygen_bits(ctx, 2048);
 if (ret <= 0) fatal_error();
 ret = EVP_PKEY_CTX_set_rsa_keygen_pubexp(ctx, pubexp);
 if (ret <= 0) fatal_error();
 return EVP_PKEY_keygen(ctx, &pkey);
}

In this example, an RSA public exponent of 3 is associated with the context object ctx.
The low exponent makes operations that use the generated key vulnerable to certain
attacks.

One possible correction is to use the recommended public exponent 65537.

#include <stddef.h>
#include <openssl/rsa.h>

 Nonsecure RSA public exponent

3-539

#include <openssl/evp.h>

#define fatal_error() exit(-1)

int ret;
int func(EVP_PKEY *pkey){
 BIGNUM* pubexp;
 EVP_PKEY_CTX* ctx;

 pubexp = BN_new();
 if (pubexp == NULL) fatal_error();
 ret = BN_set_word(pubexp, 65537);
 if (ret <= 0) fatal_error();

 ctx = EVP_PKEY_CTX_new_id(EVP_PKEY_RSA, NULL);
 if (ctx == NULL) fatal_error();

 ret = EVP_PKEY_keygen_init(ctx);
 if (ret <= 0) fatal_error();
 ret = EVP_PKEY_CTX_set_rsa_keygen_bits(ctx, 2048);
 if (ret <= 0) fatal_error();
 ret = EVP_PKEY_CTX_set_rsa_keygen_pubexp(ctx, pubexp);
 if (ret <= 0) fatal_error();
 return EVP_PKEY_keygen(ctx, &pkey);
}

Result Information
Group: Cryptography
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_RSA_LOW_EXPONENT
Impact: Medium
CWE ID: 310, 326, 327, 522

See Also
Incompatible padding for RSA algorithm operation | Missing blinding
for RSA algorithm | Missing padding for RSA algorithm | Weak padding
for RSA algorithm

3 Defects

3-540

https://cwe.mitre.org/data/definitions/310.html
https://cwe.mitre.org/data/definitions/326.html
https://cwe.mitre.org/data/definitions/327.html
https://cwe.mitre.org/data/definitions/522.html

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2018a

 Nonsecure RSA public exponent

3-541

Nonsecure SSL/TLS protocol
Context used for handling SSL/TLS connections is associated with weak protocol

Description
Nonsecure SSL/TLS protocol occurs when you do not disable nonsecure protocols in an
SSL_CTX or SSL context object before using the object for handling SSL/TLS connections.

For instance, you disable the protocols SSL2.0 and TLS1.0 but forget to disable the
protocol SSL3.0, which is also considered weak.

/* Create and configure context */
ctx = SSL_CTX_new(SSLv23_method());
SSL_CTX_set_options(ctx, SSL_OP_NO_SSLv2|SSL_OP_NO_TLSv1);

/* Use context to handle connection */
ssl = SSL_new(ctx);
SSL_set_fd(ssl, NULL);
ret = SSL_connect(ssl);

Risk
The protocols SSL2.0, SSL3.0, and TLS1.0 are considered weak in the cryptographic
community. Using one of these protocols can expose your connections to cross-protocol
attacks. The attacker can decrypt an RSA ciphertext without knowing the RSA private
key.

Fix
Disable the nonsecure protocols in the context object before using the object to handle
connections.

/* Create and configure context */
ctx = SSL_CTX_new(SSLv23_method());
SSL_CTX_set_options(ctx, SSL_OP_NO_SSLv2|SSL_OP_NO_SSLv3|SSL_OP_NO_TLSv1);

3 Defects

3-542

Examples

Nonsecure Protocols Not Disabled

#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <openssl/ssl.h>
#include <openssl/err.h>

#define fatal_error() exit(-1)

int ret;
int func(){
 SSL_CTX *ctx;
 SSL *ssl;

 SSL_library_init();

 /* context configuration */
 ctx = SSL_CTX_new(SSLv23_client_method());
 if (ctx==NULL) fatal_error();

 ret = SSL_CTX_use_certificate_file(ctx, "cert.pem", SSL_FILETYPE_PEM);
 if (ret <= 0) fatal_error();

 ret = SSL_CTX_load_verify_locations(ctx, NULL, "ca/path");
 if (ret <= 0) fatal_error();

 /* Handle connection */
 ssl = SSL_new(ctx);
 if (ssl==NULL) fatal_error();
 SSL_set_fd(ssl, NULL);

 return SSL_connect(ssl);
}

In this example, the protocols SSL2.0, SSL3.0, and TLS1.0 are not disabled in the context
object before the object is used for a new connection.

 Nonsecure SSL/TLS protocol

3-543

Disable nonsecure protocols before using the objects for a new connection. Use the
function SSL_CTX_set_options to disable the protocols SSL2.0, SSL3.0, and TLS1.0.

#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <openssl/ssl.h>
#include <openssl/err.h>

#define fatal_error() exit(-1)

int ret;
int func(){
 SSL_CTX *ctx;
 SSL *ssl;

 SSL_library_init();

 /* context configuration */
 ctx = SSL_CTX_new(SSLv23_client_method());
 if (ctx==NULL) fatal_error();

 SSL_CTX_set_options(ctx, SSL_OP_NO_SSLv2|SSL_OP_NO_SSLv3|SSL_OP_NO_TLSv1);

 ret = SSL_CTX_use_certificate_file(ctx, "cert.pem", SSL_FILETYPE_PEM);
 if (ret <= 0) fatal_error();

 ret = SSL_CTX_load_verify_locations(ctx, NULL, "ca/path");
 if (ret <= 0) fatal_error();

 /* Handle connection */
 ssl = SSL_new(ctx);
 if (ssl==NULL) fatal_error();
 SSL_set_fd(ssl, NULL);

 return SSL_connect(ssl);
}

3 Defects

3-544

Result Information
Group: Cryptography
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_SSL_WEAK_PROTOCOL
Impact: Medium
CWE ID: 310, 327, 522, 693

See Also

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2018a

 Nonsecure SSL/TLS protocol

3-545

https://cwe.mitre.org/data/definitions/310.html
https://cwe.mitre.org/data/definitions/327.html
https://cwe.mitre.org/data/definitions/522.html
https://cwe.mitre.org/data/definitions/693.html

Null pointer
NULL pointer dereferenced

Description
Null pointer occurs when you use a pointer with a value of NULL as if it points to a valid
memory location.

Examples
Null pointer error
#include <stdlib.h>

int FindMax(int *arr, int Size)
{
 int* p=NULL;

 *p=arr[0];
 /* Defect: Null pointer dereference */

 for(int i=0;i<Size;i++)
 {
 if(arr[i] > (*p))
 *p=arr[i];
 }

 return *p;
}

The pointer p is initialized with value of NULL. However, when the value arr[0] is
written to *p, p is assumed to point to a valid memory location.

One possible correction is to initialize p with a valid memory address before dereference.

#include <stdlib.h>

3 Defects

3-546

int FindMax(int *arr, int Size)
{
 /* Fix: Assign address to null pointer */
 int* p=&arr[0];

 for(int i=0;i<Size;i++)
 {
 if(arr[i] > (*p))
 *p=arr[i];
 }

 return *p;
}

Check Information
Group: Static memory
Language: C | C++
Default: On
Command-Line Syntax: NULL_PTR
Impact: High
CWE ID: 476, 690
CERT C ID: EXP34-C, MSC15-C
CERT C++ ID: EXP34-C
ISO/IEC TS 17961 ID: nullref

See Also
Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Arithmetic operation with NULL pointer | Non-initialized pointer

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

 Null pointer

3-547

https://cwe.mitre.org/data/definitions/476.html
https://cwe.mitre.org/data/definitions/690.html
https://www.securecoding.cert.org/confluence/x/PAw
https://www.securecoding.cert.org/confluence/x/EoLu
https://wiki.sei.cmu.edu/confluence/x/QdcxBQ

Introduced in R2013b

3 Defects

3-548

Object slicing
Derived class object passed by value to function with base class parameter

Description
Object slicing occurs when you pass a derived class object by value to a function, but
the function expects a base class object as parameter.

Risk
If you pass a derived class object by value to a function, you expect the derived class copy
constructor to be called. If the function expects a base class object as parameter:

1 The base class copy constructor is called.
2 In the function body, the parameter is considered as a base class object.

In C++, virtual methods of a class are resolved at run time according to the actual type
of the object. Because of object slicing, an incorrect implementation of a virtual
method can be called. For instance, the base class contains a virtual method and the
derived class contains an implementation of that method. When you call the virtual
method from the function body, the base class method is called, even though you pass a
derived class object to the function.

Fix
One possible fix is to pass the object by reference or pointer. Passing by reference or
pointer does not cause invocation of copy constructors. If you do not want the object to be
modified, use a const qualifier with your function parameter.

Another possible fix is to overload the function with another function that accepts the
derived class object as parameter.

 Object slicing

3-549

Examples

Function Call Causing Object Slicing
#include <iostream>

class Base {
public:
 explicit Base(int b) {
 _b = b;
 }
 virtual ~Base() {}
 virtual int update() const;
protected:
 int _b;
};

class Derived: public Base {
public:
 explicit Derived(int b):Base(b) {}
 int update() const;
};

//Class methods definition

int Base::update() const {
 return (_b + 1);
}

int Derived::update() const {
 return (_b -1);
}

//Other function definitions
void funcPassByValue(const Base bObj) {
 std::cout << "Updated _b=" << bObj.update() << std::endl;
}

int main() {
 Derived dObj(0);
 funcPassByValue(dObj); //Function call slices object

3 Defects

3-550

 return 0;
 }

In this example, the call funcPassByValue(dObj) results in the output Updated _b=1
instead of the expected Updated _b=-1. Because funcPassByValue expects a Base
object parameter, it calls the Base class copy constructor.

Therefore, even though you pass the Derived object dObj, the function
funcPassByValue treats its parameter b as a Base object. It calls Base::update()
instead of Derived::update().

One possible correction is to pass the Derived object dObj by reference or by pointer. In
the following, corrected example, funcPassByReference and funcPassByPointer
have the same objective as funcPassByValue in the preceding example. However,
funcPassByReference expects a reference to a Base object and funcPassByPointer
expects a pointer to a Base object.

Passing the Derived object d by a pointer or by reference does not slice the object. The
calls funcPassByReference(dObj) and funcPassByPointer(&dObj) produce the
expected result Updated _b=-1.

#include <iostream>

class Base {
public:
 explicit Base(int b) {
 _b = b;
 }
 virtual ~Base() {}
 virtual int update() const;
protected:
 int _b;
};

class Derived: public Base {
public:
 explicit Derived(int b):Base(b) {}
 int update() const;
};

//Class methods definition

 Object slicing

3-551

int Base::update() const {
 return (_b + 1);
}

int Derived::update() const {
 return (_b -1);
}

//Other function definitions
void funcPassByReference(const Base& bRef) {
 std::cout << "Updated _b=" << bRef.update() << std::endl;
}

void funcPassByPointer(const Base* bPtr) {
 std::cout << "Updated _b=" << bPtr->update() << std::endl;
}

int main() {
 Derived dObj(0);
 funcPassByReference(dObj); //Function call does not slice object
 funcPassByPointer(&dObj); //Function call does not slice object
 return 0;
 }

Note If you pass by value, because a copy of the object is made, the original object is not
modified. Passing by reference or by pointer makes the object vulnerable to modification.
If you are concerned about your original object being modified, add a const qualifier to
your function parameter, as in the preceding example.

Result Information
Group: Object oriented
Language: C++
Default: On
Command-Line Syntax: OBJECT_SLICING
Impact: High
CERT C++ ID: OOP51-CPP

3 Defects

3-552

https://wiki.sei.cmu.edu/confluence/x/QX0-BQ

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2015b

 Object slicing

3-553

Opening previously opened resource
Opening an already opened file

Description
Opening previously opened resource checks for file opening functions that are
opening an already opened file.

Risk
If you open a resource multiple times, you can encounter:

• A race condition when accessing the file.
• Undefined or unexpected behavior for that file.
• Portability issues when you run your program on different targets.

Fix
Once a resource is open, close the resource before reopening.

Examples

File Reopened With New Permissions
#include <stdio.h>
const char* logfile = "my_file.log";

void doubleresourceopen()
{
 FILE* fpa = fopen(logfile, "w");
 if (fpa == NULL) {
 return;
 }
 (void)fprintf(fpa, "Writing");

3 Defects

3-554

 FILE* fpb = fopen(logfile, "r");
 (void)fclose(fpa);
 (void)fclose(fpb);
}

In this example, a logfile is opened in the first line of this function with write
privileges. Halfway through the function, the logfile is opened again with read
privileges.

One possible correction is to close the file before reopening the file with different
privileges.

#include <stdio.h>
const char* logfile = "my_file.log";

void doubleresourceopen()
{
 FILE* fpa = fopen(logfile, "w");
 if (fpa == NULL) {
 return;
 }
 (void)fprintf(fpa, "Writing");
 (void)fclose(fpa);
 FILE* fpb = fopen(logfile, "r");
 (void)fclose(fpb);
}

Result Information
Group: Resource management
Language: C | C++
Default: On
Command-Line Syntax: DOUBLE_RESOURCE_OPEN
Impact: Medium
CWE ID: 362, 413, 675
CERT C ID: FIO24-C
CERT C++ ID:

 Opening previously opened resource

3-555

https://cwe.mitre.org/data/definitions/362.html
https://cwe.mitre.org/data/definitions/413.html
https://cwe.mitre.org/data/definitions/675.html
https://www.securecoding.cert.org/confluence/x/pwA1

See Also

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2016b

3 Defects

3-556

Overlapping assignment
Memory overlap between left and right sides of an assignment

Description
Overlapping assignment occurs when there is a memory overlap between the left and
right sides of an assignment. For instance, a variable is assigned to itself or one member
of a union is assigned to another.

Risk
If the left and right sides of an assignment have memory overlap, the behavior is either
redundant or undefined. For instance:

• Self-assignment such as x=(int)(long)x; is redundant unless x is volatile-
qualified.

• Assignment of one union member to another causes undefined behavior.

For instance, in the following code:

• The result of the assignment u1.a = u1.b is undefined because u1.b is not
initialized.

• The result of the assignment u2.b = u2.a depends on the alignment and
endianness of the implementation. It is not defined by C standards.

union {
 char a;
 int b;
}u1={'a'}, u2={'a'}; //'u1.a' and 'u2.a' are initialized

u1.a = u1.b;
u2.b = u2.a;

Fix
Avoid assignment between two variables that have overlapping memory.

 Overlapping assignment

3-557

Examples

Assignment of Union Members
#include <string.h>

union Data {
 int i;
 float f;
};

int main() {
 union Data data;
 data.i = 0;
 data.f = data.i;

 return 0;
}

In this example, the variables data.i and data.f are part of the same union and are
stored in the same location. Therefore, part of their memory storage overlaps.

Result Information
Group: Programming
Language: C | C++
Default: Off
Command-Line Syntax: OVERLAPPING_ASSIGN
Impact: Low
CWE ID: 665
CERT C ID: MSC15-C

See Also
Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Copy of overlapping memory

3 Defects

3-558

https://cwe.mitre.org/data/definitions/665.html
https://www.securecoding.cert.org/confluence/x/EoLu

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2015b

 Overlapping assignment

3-559

Partial override of overloaded virtual
functions
Class overrides fraction of inherited virtual functions with a given name

Description
Partial override of overloaded virtual functions occurs when:

• A base class has multiple virtual methods with the same name but different
signatures (overloading).

• A class derived from the base class overrides at least one of those virtual methods,
but not all of them.

Risk
The virtual methods that the derived class does not override are hidden. You cannot
call those methods using an object of the derived class.

Fix
See if the overloads in the base class are required. If they are needed, possible solutions
include:

• In your derived class, if you override one virtual method, override all virtual
methods from the base class with the same name as that method.

• Otherwise, add the line using Base_class_name::method_name to the derived
class declaration. In this way, you can call the base class methods using an object of
the derived class.

3 Defects

3-560

Examples

Partial Override
class Base {
public:
 explicit Base(int b);
 virtual ~Base() {};
 virtual void set() {
 _b = (int)0;
 };
 virtual void set(short i) {
 _b = (int)i;
 };
 virtual void set(int i) {
 _b = (int)i;
 };
 virtual void set(long i) {
 _b = (int)i;
 };
 virtual void set(float i) {
 _b = (int)i;
 };
 virtual void set(double i) {
 _b = (int)i;
 };
private:
 int _b;
};

class Derived: public Base {
 public:
 Derived(int b, int d): Base(b), _d(d) {};
 void set(int i) { Base::set(i); _d = (int)i; };
 private:
 int _d;
};

In this example, the class Derived overrides the function set that takes an int
argument. It does not override other functions that have the same name set but take
arguments of other types.

 Partial override of overloaded virtual functions

3-561

The defect appears on the derived class name in the derived class definition. To find
which base class method is overridden:

1 Navigate to the base class definition. On the Source pane, right-click the base class
name and select Go To Definition.

2 In the base class definition, identify the method that has the same name and
signature as a derived class method name.

One possible correction is add the line using Base::set to the Derived class
declaration.

class Base {
public:
 explicit Base(int b);
 virtual ~Base() {};
 virtual void set() {
 _b = (int)0;
 };
 virtual void set(short i) {
 _b = (int)i;
 };
 virtual void set(int i) {
 _b = (int)i;
 };
 virtual void set(long i) {
 _b = (int)i;
 };
 virtual void set(float i) {
 _b = (int)i;
 };
 virtual void set(double i) {
 _b = (int)i;
 };
private:
 int _b;
};

class Derived: public Base {
 public:
 Derived(int b, int d): Base(b), _d(d) {};
 using Base::set;
 void set(int i) { Base::set(i); _d = (int)i; };
 private:

3 Defects

3-562

 int _d;
};

Result Information
Group: Object oriented
Language: C++
Default: On
Command-Line Syntax: PARTIAL_OVERRIDE
Impact: Medium

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2015b

 Partial override of overloaded virtual functions

3-563

Partially accessed array
Array partly read or written before end of scope

Description
Partially accessed array occurs when an array is partially read or written before the
end of array scope. For arrays local to a function, the end of scope occurs when the
function ends.

Examples

Partially accessed array error

int Calc_Sum(void)
{
 int tab[5]={0,1,2,3,4},sum=0;
 /* Defect: tab[4] is not read */

 for (int i=0; i<4;i++) sum+=tab[i];

 return(sum);

 }

The array tab is only partially read before end of function Calc_Sum. While calculating
sum, tab[4] is not included.

One possible correction is to read every element in the array tab.

int Calc_Sum(void)
{
 int tab[5]={0,1,2,3,4},sum=0;

 /* Fix: Include tab[4] in calculating sum */

3 Defects

3-564

 for (int i=0; i<5;i++) sum+=tab[i];

 return(sum);

 }

Check Information
Group: Data flow
Language: C | C++
Default: On for handwritten code, off for generated code
Command-Line Syntax: PARTIALLY_ACCESSED_ARRAY
Impact: Low

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2013b

 Partially accessed array

3-565

Pointer access out of bounds
Pointer dereferenced outside its bounds

Description
Pointer access out of bounds occurs when a pointer is dereferenced outside its bounds.

When a pointer is assigned an address, a block of memory is associated with the pointer.
You cannot access memory beyond that block using the pointer.

Examples
Pointer access out of bounds error
int* Initialize(void)
{
 int arr[10];
 int *ptr=arr;

 for (int i=0; i<=9;i++)
 {
 ptr++;
 *ptr=i;
 /* Defect: ptr out of bounds for i=9 */
 }

 return(arr);
}

ptr is assigned the address arr that points to a memory block of size 10*sizeof(int).
In the for-loop, ptr is incremented 10 times. In the last iteration of the loop, ptr points
outside the memory block assigned to it. Therefore, it cannot be dereferenced.

One possible correction is to reverse the order of increment and dereference of ptr.

int* Initialize(void)
{

3 Defects

3-566

 int arr[10];
 int *ptr=arr;

 for (int i=0; i<=9;i++)
 {
 /* Fix: Dereference pointer before increment */
 *ptr=i;
 ptr++;
 }

 return(arr);
}

After the last increment, even though ptr points outside the memory block assigned to it,
it is not dereferenced more.

Check Information
Group: Static memory
Language: C | C++
Default: On
Command-Line Syntax: OUT_BOUND_PTR
Impact: High
CWE ID: 119, 131, 188, 466, 823
CERT C ID: API02-C, ARR30-C, ARR38-C, ARR39-C, EXP08-C, EXP39-C, FIO37-C,
MEM35-C, MSC15-C, STR31-C
CERT C++ ID: ARR30-C, ARR38-C, ARR39-C, CTR50-CPP, EXP39-C, FIO37-C, MEM35-
C, MEM50-CPP, MEM52-CPP, STR31-C, STR50-CPP, STR53-CPP
ISO/IEC TS 17961 ID: ptrcomp, insufmem, invptr, taintformatio

See Also
Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Array access out of bounds

Topics
“Interpret Polyspace Bug Finder Results”

 Pointer access out of bounds

3-567

https://cwe.mitre.org/data/definitions/119.html
https://cwe.mitre.org/data/definitions/131.html
https://cwe.mitre.org/data/definitions/188.html
https://cwe.mitre.org/data/definitions/466.html
https://cwe.mitre.org/data/definitions/823.html
https://wiki.sei.cmu.edu/confluence/x/otYxBQ
https://wiki.sei.cmu.edu/confluence/x/wtYxBQ
https://wiki.sei.cmu.edu/confluence/x/W9UxBQ
https://wiki.sei.cmu.edu/confluence/x/ytYxBQ
https://wiki.sei.cmu.edu/confluence/x/-tUxBQ
https://wiki.sei.cmu.edu/confluence/x/ptYxBQ
https://wiki.sei.cmu.edu/confluence/x/JtcxBQ
https://wiki.sei.cmu.edu/confluence/x/ANYxBQ
https://wiki.sei.cmu.edu/confluence/x/stUxBQ
https://wiki.sei.cmu.edu/confluence/x/sNUxBQ
https://wiki.sei.cmu.edu/confluence/x/wtYxBQ
https://wiki.sei.cmu.edu/confluence/x/W9UxBQ
https://wiki.sei.cmu.edu/confluence/x/ytYxBQ
https://wiki.sei.cmu.edu/confluence/x/cHw-BQ
https://wiki.sei.cmu.edu/confluence/x/ptYxBQ
https://wiki.sei.cmu.edu/confluence/x/JtcxBQ
https://wiki.sei.cmu.edu/confluence/x/ANYxBQ
https://wiki.sei.cmu.edu/confluence/x/ANYxBQ
https://wiki.sei.cmu.edu/confluence/x/onw-BQ
https://wiki.sei.cmu.edu/confluence/x/u3w-BQ
https://wiki.sei.cmu.edu/confluence/x/sNUxBQ
https://wiki.sei.cmu.edu/confluence/x/i3w-BQ
https://wiki.sei.cmu.edu/confluence/x/h3s-BQ

“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2013b

3 Defects

3-568

Pointer dereference with tainted offset
Offset is from an unsecure source and dereference may be out of bounds

Description
Pointer dereference with tainted offset detects pointer dereferencing, either reading
or writing, using an offset variable from an unknown or unsecure source.

This check focuses on dynamically allocated buffers. For static buffer offsets, see Array
access with tainted index.

Risk
The index might be outside the valid array range. If the tainted index is outside the array
range, it can cause:

• Buffer underflow/underwrite, or writing to memory before the beginning of the buffer.
• Buffer overflow, or writing to memory after the end of a buffer.
• Over reading a buffer, or accessing memory after the end of the targeted buffer.
• Under-reading a buffer, or accessing memory before the beginning of the targeted
buffer.

An attacker can use an invalid read or write to compromise your program.

Fix
Validate the index before you use the variable to access the pointer. Check to make sure
that the variable is inside the valid range and does not overflow.

Examples
Dereference Pointer Array
#include <stdlib.h>

 Pointer dereference with tainted offset

3-569

enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};
extern void read_pint(int*);

int taintedptroffset(int i) {
 int* pint = (int*)calloc(SIZE10, sizeof(int));
 int c = 0;
 if(pint) {
 /* Filling array */
 read_pint(pint);
 c = pint[i];
 free(pint);
 }
 return c;
}

In this example, the function initializes an integer pointer pint. The pointer is
dereferenced using the input index i. The value of i could be outside the pointer range,
causing an out-of-range error.

One possible correction is to validate the value of the index. If the index is inside the valid
range, continue with the pointer dereferencing.

#include <stdlib.h>

enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};
extern void read_pint(int*);

int taintedptroffset(int i) {
 int* pint = (int*)calloc(SIZE10, sizeof(int));
 int c = 0;
 if (pint) {
 /* Filling array */
 read_pint(pint);
 if (i>0 && i<SIZE10) {
 c = pint[i];
 }

3 Defects

3-570

 free(pint);
 }
 return c;
}

Result Information
Group: Tainted Data
Language: C | C++
Default: Off
Command-Line Syntax: TAINTED_PTR_OFFSET
Impact: Low
CWE ID: 122, 124, 129, 823
CERT C ID: API00-C, API02-C, ARR30-C
CERT C++ ID: ARR30-C, CTR50-CPP, STR53-CPP
ISO/IEC TS 17961 ID: invptr

See Also
Array access with tainted index | Use of tainted pointer

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2015b

 Pointer dereference with tainted offset

3-571

https://cwe.mitre.org/data/definitions/122.html
https://cwe.mitre.org/data/definitions/124.html
https://cwe.mitre.org/data/definitions/129.html
https://cwe.mitre.org/data/definitions/823.html
https://www.securecoding.cert.org/confluence/x/egAV
https://www.securecoding.cert.org/confluence/x/oIAzAg
https://www.securecoding.cert.org/confluence/x/DYDXAg
https://wiki.sei.cmu.edu/confluence/x/wtYxBQ
https://wiki.sei.cmu.edu/confluence/x/cHw-BQ
https://wiki.sei.cmu.edu/confluence/x/h3s-BQ

Pointer or reference to stack variable
leaving scope
Pointer to local variable leaves the variable scope

Description
Pointer or reference to stack variable leaving scope occurs when a pointer or
reference to a local variable leaves the scope of the variable. For instance:

• A function returns a pointer to a local variable.
• A function performs the assignment globPtr = &locVar. globPtr is a global

pointer variable and locVar is a local variable.
• A function performs the assignment *paramPtr = &locVar. paramPtr is a function

parameter that is, for instance, an int** pointer and locVar is a local int variable.
• A C++ method performs the assignment memPtr = &locVar. memPtr is a pointer

data member of the class the method belongs to. locVar is a variable local to the
method.

The defect also applies to memory allocated using the alloca function. The defect does
not apply to static, local variables.

Risk
Local variables are allocated an address on the stack. Once the scope of a local variable
ends, this address is available for reuse. Using this address to access the local variable
value outside the variable scope can cause unexpected behavior.

If a pointer to a local variable leaves the scope of the variable, Polyspace Bug Finder
highlights the defect. The defect appears even if you do not use the address stored in the
pointer. For maintainable code, it is a good practice to not allow the pointer to leave the
variable scope. Even if you do not use the address in the pointer now, someone else using
your function can use the address, causing undefined behavior.

3 Defects

3-572

Fix
Do not allow a pointer or reference to a local variable to leave the variable scope.

Examples

Pointer to Local Variable Returned from Function
void func2(int *ptr) {
 *ptr = 0;
}

int* func1(void) {
 int ret = 0;
 return &ret ;
}
void main(void) {
 int* ptr = func1() ;
 func2(ptr) ;
}

In this example, func1 returns a pointer to local variable ret.

In main, ptr points to the address of the local variable. When ptr is accessed in func2,
the access is illegal because the scope of ret is limited to func1,

Result Information
Group: Static memory
Language: C | C++
Default: On
Command-Line Syntax: LOCAL_ADDR_ESCAPE
Impact: High
CWE ID: 562, 825
CERT C ID: DCL30-C
CERT C++ ID: DCL30-C, EXP54-CPP
ISO/IEC TS 17961 ID: addrescape

 Pointer or reference to stack variable leaving scope

3-573

https://cwe.mitre.org/data/definitions/562.html
https://cwe.mitre.org/data/definitions/825.html
https://www.securecoding.cert.org/confluence/x/bQ4
https://wiki.sei.cmu.edu/confluence/x/UtcxBQ
https://wiki.sei.cmu.edu/confluence/x/OXw-BQ

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2015b

3 Defects

3-574

Pointer to non-initialized value converted to
const pointer
Pointer to constant assigned address that does not contain a value

Description
Pointer to non initialized value converted to const pointer occurs when a pointer to
a constant is assigned an address that does not yet contain a value.

Examples
Pointer to non initialized value converted to const pointer
error
#include<stdio.h>

void Display_Parity()
 {
 int num,parity;
 const int* num_ptr = #
 /* Defect: Address &num does not store a value */

 printf("Enter a number\n:");
 scanf("%d",&num);

 parity=((*num_ptr)%2);
 if(parity==0)
 printf("The number is even.");
 else
 printf("The number is odd.");

 }

num_ptr is declared as a pointer to a constant. However the variable num does not
contain a value when num_ptr is assigned the address &num.

 Pointer to non-initialized value converted to const pointer

3-575

One possible correction is to obtain the value of num from the user before &num is
assigned to num_ptr.

#include<stdio.h>

void Display_Parity()
 {
 int num,parity;
 const int* num_ptr;

 printf("Enter a number\n:");
 scanf("%d",&num);

 /* Fix: Assign &num to pointer after it receives a value */
 num_ptr=#
 parity=((*num_ptr)%2);
 if(parity==0)
 printf("The number is even.");
 else
 printf("The number is odd.");
 }

The scanf statement stores a value in &num. Once the value is stored, it is legitimate to
assign &num to num_ptr.

Check Information
Group: Data flow
Language: C | C++
Default: Off
Command-Line Syntax: NON_INIT_PTR_CONV
Impact: Medium
ISO/IEC TS 17961 ID: uninitref

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”

3 Defects

3-576

“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2013b

 Pointer to non-initialized value converted to const pointer

3-577

Possible invalid operation on boolean
operand
Operation can exceed precision of Boolean operand or result in arbitrary value

Description
Possible invalid operation on boolean operand occurs when you use a Boolean
operand in an arithmetic, relational, or bitwise operation and:

• The Boolean operand has a trap representation. The size of a Boolean type in memory
is at least one addressable unit (size of char). A Boolean type requires only one bit to
represent the value true (1) or false (0). The representation of a Boolean
operand in memory contains padding bits. The memory representation can result in
values that are not true or false, a trap representation.

• The result of the operation can exceed the precision of the Boolean operand.

For example, in this code snippet:

bool_v >> 2

• If the value of bool_v is true (1) or false (0), the bitwise shift exceeds the one-
bit precision of bool_v and always results in 0.

• If bool_v has a trap representation, the result of the operation is an arbitrary value.

Possible invalid operation on boolean operand raises no defect when:

• The operation does not result in a precision overflow. For instance, bitwise & or |
operations with 0x01 or 0x00.

• The Boolean operand cannot have a trap representation. For instance, a constant
expression that results in 0 or 1, or a comparison evaluated to true or false.

Risk
Arithmetic, relational, or bitwise operations on a Boolean operand can exceed the
operand precision and cause unexpected results when used as a Boolean value.
Operations on Boolean operands with trap representations can return arbitrary values.

3 Defects

3-578

Fix
Avoid performing operations on Boolean operands other than these operations:

• Assignment operation (=).
• Equality operations (== or !=).
• Logical operations (&&, ||, or !).

Examples
Possible Trap Representation of Boolean Operand
#include <stdio.h>
#include <stdbool.h>

#define BOOL _Bool

int arr[2] = {1, 2};

int func(BOOL b)
{
 return arr[b];
}

int main(void)
{
 BOOL b;
 char* ptr = (char*)&b;
 *ptr = 64;
 return func(b);
}

In this example, Boolean operand b is used as an array index in func for an array with
two elements. Depending on the compiler and optimization flags you use, the value b
might not be 0 or 1. For instance, in Linux Debian 8, if you use gcc version 4.9 with
optimization flag -O0, the value of b is 64, which causes a buffer overflow.

One possible correction is to use a variable b0 of type unsigned int to get only the
value of the last significant bit of the Boolean operand. The value of this bit is in the range
[0..1], even if the Boolean operand has a trap representation.

 Possible invalid operation on boolean operand

3-579

#include <stdio.h>
#include <stdbool.h>

#define BOOL _Bool

int arr[2] = {1, 2};

int func(BOOL b)
{
 unsigned int b0 = (unsigned int)b;
 b0 &= 0x1;
 return arr[b0];
}

int main(void)
{
 BOOL b;
 char* ptr = (char*)&b;
 *ptr = 64;
 return func(b);
}

Result Information
Group: Numerical
Language: C | C++
Default: Off
Command-Line Syntax: INVALID_OPERATION_ON_BOOLEAN
Impact: Low
CWE ID: 190
CERT C ID: INT35-C
CERT C++ ID: EXP46-C, INT35-C

See Also
Bitwise and arithmetic operation on the same data | Bitwise operation
on negative value | Integer conversion overflow | Integer overflow |
Integer precision exceeded | MISRA C++:2008 Rule 4-5-2 | MISRA C:2004
Rule 12.6 | MISRA C:2012 Rule 10.1 | MISRA C:2012 Rule 12.2 | Shift of a
negative value | Shift operation overflow | Unsigned integer conversion
overflow | Unsigned integer overflow

3 Defects

3-580

https://cwe.mitre.org/data/definitions/190.html
https://wiki.sei.cmu.edu/confluence/x/Q9UxBQ
https://wiki.sei.cmu.edu/confluence/x/WNYxBQ
https://wiki.sei.cmu.edu/confluence/x/Q9UxBQ

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2018b

 Possible invalid operation on boolean operand

3-581

Possible misuse of sizeof
Use of sizeof operator can cause unintended results

Description
Possible misuse of sizeof occurs when Polyspace Bug Finder detects possibly
unintended results from the use of sizeof operator. For instance:

• You use the sizeof operator on an array parameter name, expecting the array size.
However, the array parameter name by itself is a pointer. The sizeof operator
returns the size of that pointer.

• You use the sizeof operator on an array element, expecting the array size. However,
the operator returns the size of the array element.

• The size argument of certain functions such as strncmp or wcsncpy is incorrect
because you used the sizeof operator earlier with possibly incorrect expectations.
For instance:

• In a function call strncmp(string1, string2, num), num is obtained from an
incorrect use of the sizeof operator on a pointer.

• In a function call wcsncpy(destination, source, num), num is the not the
number of wide characters but a size in bytes obtained by using the sizeof
operator. For instance, you use wcsncpy(destination, source,
sizeof(destination) - 1) instead of wcsncpy(destination, source,
(sizeof(desintation)/sizeof(wchar_t)) - 1).

Risk
Incorrect use of the sizeof operator can cause the following issues:

• If you expect the sizeof operator to return array size and use the return value to
constrain a loop, the number of loop runs are smaller than what you expect.

• If you use the return value of sizeof operator to allocate a buffer, the buffer size is
smaller than what you require. Insufficient buffer can lead to resultant weaknesses
such as buffer overflows.

3 Defects

3-582

• If you use the return value of sizeof operator incorrectly in a function call, the
function does not behave as you expect.

Fix
Possible fixes are:

• Do not use the sizeof operator on an array parameter name or array element to
determine array size.

The best practice is to pass the array size as a separate function parameter and use
that parameter in the function body.

• Use the sizeof operator carefully to determine the number argument of functions
such as strncmp or wcsncpy. For instance, for wide string functions such as
wcsncpy, use the number of wide characters as argument instead of the number of
bytes.

Examples

sizeof Used Incorrectly to Determine Array Size
#define MAX_SIZE 1024

void func(int a[MAX_SIZE]) {
 int i;

 for (i = 0; i < sizeof(a)/sizeof(int); i++) {
 a[i] = i + 1;
 }
}

In this example, sizeof(a) returns the size of the pointer a and not the array size.

One possible correction is to use another means to determine the array size.

#define MAX_SIZE 1024

void func(int a[MAX_SIZE]) {
 int i;

 Possible misuse of sizeof

3-583

 for (i = 0; i < MAX_SIZE; i++) {
 a[i] = i + 1;
 }
}

Result Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: SIZEOF_MISUSE
Impact: High
CWE ID: 467
CERT C ID: ARR00-C, ARR01-C, ARR38-C, ARR39-C
CERT C++ ID: ARR38-C, ARR39-C
ISO/IEC TS 17961 ID: libptr, insufmem, sizeofptr

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

External Websites
Linux man page for strncmp
Linux man page for wcsncpy

Introduced in R2015b

3 Defects

3-584

https://cwe.mitre.org/data/definitions/467.html
https://www.securecoding.cert.org/confluence/x/FgH3
https://www.securecoding.cert.org/confluence/x/6wE
https://www.securecoding.cert.org/confluence/x/EYCGB
https://www.securecoding.cert.org/confluence/x/HADXAQ
https://wiki.sei.cmu.edu/confluence/x/W9UxBQ
https://wiki.sei.cmu.edu/confluence/x/ytYxBQ
http://man7.org/linux/man-pages/man3/strcmp.3.html
http://man7.org/linux/man-pages/man3/strcmp.3.html

Possibly unintended evaluation of
expression because of operator precedence
rules
Operator precedence rules cause unexpected evaluation order in arithmetic expression

Description
Possibly unintended evaluation of expression because of operator precedence
rules occurs when an arithmetic expression result is possibly unintended because
operator precedence rules dictate an evaluation order that you do not expect.

The defect highlights expressions of the form x op_1 y op_2 z. Here, op_1 and op_2
are operator combinations that commonly induce this error. For instance, x == y | z.

The checker does not flag all operator combinations. For instance, x == y || z is not
flagged because you most likely intended to perform a logical OR between x == y and z.
Specifically, the checker flags these combinations:

• && and ||: For instance, x || y && z or x && y || z.
• Assignment and bitwise operations: For instance, x = y | z.
• Assignment and comparison operations: For instance, x = y != z or x = y > z.
• Comparison operations: For instance, x > y > z (except when one of the

comparisons is an equality x == y > z).
• Shift and numerical operation: For instance, x << y + 2.
• Pointer dereference and arithmetic: For instance, *p++.

Risk
The defect can cause the following issues:

• If you or another code reviewer reviews the code, the intended order of evaluation is
not immediately clear.

• It is possible that the result of the evaluation does not meet your expectations. For
instance:

 Possibly unintended evaluation of expression because of operator precedence rules

3-585

• In the operation *p++, it is possible that you expect the dereferenced value to be
incremented. However, the pointer p is incremented before the dereference.

• In the operation (x == y | z), it is possible that you expect x to be compared
with y | z. However, the == operation happens before the | operation.

Fix
See if the order of evaluation is what you intend. If not, apply parentheses to implement
the evaluation order that you want.

For better readability of your code, it is good practice to apply parenthesis to implement
an evaluation order even when operator precedence rules impose that order.

Examples

Expressions with Possibly Unintended Evaluation Order
int test(int a, int b, int c) {
 return(a & b == c);
}

In this example, the == operation happens first, followed by the & operation. If you
intended the reverse order of operations, the result is not what you expect.

One possible correction is to apply parenthesis to implement the intended evaluation
order.

int test(int a, int b, int c) {
 return((a & b) == c);
}

Result Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: OPERATOR_PRECEDENCE

3 Defects

3-586

Impact: High
CWE ID: 783
CERT C ID: EXP00-C, EXP13-C

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

External Websites
C++ Operator Precedence

Introduced in R2015b

 Possibly unintended evaluation of expression because of operator precedence rules

3-587

https://cwe.mitre.org/data/definitions/783.html
https://www.securecoding.cert.org/confluence/x/_wI
https://www.securecoding.cert.org/confluence/x/LoFCAQ
http://en.cppreference.com/w/cpp/language/operator_precedence

Precision loss in integer to float conversion
Least significant bits of integer lost during conversion to floating-point type

Description
Precision loss from integer to float conversion occurs when you cast an integer value
to a floating-point type that cannot represent the original integer value.

For instance, the long int value 1234567890L is too large for a variable of type
float .

Risk
If the floating-point type cannot represent the integer value, the behavior is undefined
(see C11 standard, 6.3.1.4, paragraph 2). For instance, least significant bits of the
variable value can be dropped leading to unexpected results.

Fix
Convert to a floating-point type that can represent the integer value.

For instance, if the float data type cannot represent the integer value, use the double
data type instead.

When writing a function that converts an integer to floating point type, before the
conversion, check if the integer value can be represented in the floating-point type. For
instance, DBL_MANT_DIG * log2(FLT_RADIX) represents the number of base-2 digits
in the type double. Before conversion to the type double, check if this number is
greater than or equal to the precision of the integer that you are converting. To determine
the precision of an integer num, use this code:

 size_t precision = 0;
 while (num != 0) {
 if (num % 2 == 1) {
 precision++;
 }

3 Defects

3-588

 num >>= 1;
 }

Some implementations provide a builtin function to determine the precision of an integer.
For instance, GCC provides the function __builtin_popcount.

Examples

Conversion of Large Integer to Floating-Point Type
#include <stdio.h>

int main(void) {
 long int big = 1234567890L;
 float approx = big;
 printf("%ld\n", (big - (long int)approx));
 return 0;
}

In this example, the long int variable big is converted to float.

One possible correction is to convert to the double data type instead of float.

#include <stdio.h>

int main(void) {
 long int big = 1234567890L;
 double approx = big;
 printf("%ld\n", (big - (long int)approx));
 return 0;
}

Result Information
Group: Numerical
Language: C | C++
Default: Off
Command-Line Syntax: INT_TO_FLOAT_PRECISION_LOSS
Impact: Low

 Precision loss in integer to float conversion

3-589

CWE ID: 189, 681, 704
CERT C ID: FLP36-C
CERT C++ ID: FLP36-C

See Also

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2018b

3 Defects

3-590

https://cwe.mitre.org/data/definitions/189.html
https://cwe.mitre.org/data/definitions/681.html
https://cwe.mitre.org/data/definitions/704.html
https://wiki.sei.cmu.edu/confluence/x/XdYxBQ
https://wiki.sei.cmu.edu/confluence/x/XdYxBQ

Predefined macro used as an object
You use standard library macros such as assert and errno as objects

Description
Predefined macro used as an object occurs when you use certain identifiers in a way
that requires an underlying object to be present. These identifiers are defined as macros.
The C Standard does not allow you to redefine them as objects. You use the identifiers in
such a way that macro expansion of the identifiers cannot occur.

For instance, you refer to an external variable errno:

extern int errno;

However, errno does not occur as a variable but a macro.

The defect applies to these macros: assert, errno, math_errhandling, setjmp,
va_arg, va_copy, va_end, and va_start. The checker looks for the defect only in
source files (not header files).

Risk
The C11 Standard (Sec. 7.1.4) allows you to redefine most macros as objects. To access
the object and not the macro in a source file, you do one of these:

• Redeclare the identifier as an external variable or function.
• For function-like macros, enclose the identifier name in parentheses.

If you try to use these strategies for macros that cannot be redefined as objects, an error
occurs.

Fix
Do not use the identifiers in such a way that a macro expansion is suppressed.

• Do not redeclare the identifiers as external variables or functions.

 Predefined macro used as an object

3-591

• For function-like macros, do not enclose the macro name in parentheses.

Examples

Use of assert as Function
#include<assert.h>
typedef void (*err_handler_func)(int);

extern void demo_handle_err(err_handler_func, int);

void func(int err_code) {
 extern void assert(int);
 demo_handle_err(&(assert), err_code);
}

In this example, the assert macro is redefined as an external function. When passed as
an argument to demo_handle_err, the identifier assert is enclosed in parentheses,
which suppresses use of the assert macro.

One possible correction is to directly use the assert macro from assert.h. A different
implementation of the function demo_handle_err directly uses the assert macro
instead of taking the address of an assert function.

#include<assert.h>
void demo_handle_err(int err_code) {
 assert(err_code == 0);
}

void func(int err_code) {
 demo_handle_err(err_code);
}

Result Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: MACRO_USED_AS_OBJECT

3 Defects

3-592

Impact: Low
CERT C ID: MSC38-C
CERT C++ ID: MSC38-C

See Also
MISRA C:2012 Rule 21.2

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2018a

 Predefined macro used as an object

3-593

https://www.securecoding.cert.org/confluence/x/_ICGAg
https://wiki.sei.cmu.edu/confluence/x/qdYxBQ

Predictable block cipher initialization vector
Initialization vector is generated from a weak random number generator

Description
Predictable block cipher initialization vector occurs when you use a weak random
number generator for the block cipher initialization vector.

Risk
If you use a weak random number generator for the initiation vector, your data is
vulnerable to dictionary attacks.

Block ciphers break your data into blocks of fixed size. Block cipher modes such as CBC
(Cipher Block Chaining) protect against dictionary attacks by XOR-ing each block with the
encrypted output from the previous block. To protect the first block, these modes use a
random initialization vector (IV). If you use a weak random number generator for your IV,
your data becomes vulnerable to dictionary attacks.

Fix
Use a strong pseudo-random number generator (PRNG) for the initialization vector. For
instance, use:

• OS-level PRNG such as /dev/random on UNIX or CryptGenRandom() on Windows
• Application-level PRNG such as Advanced Encryption Standard (AES) in Counter

(CTR) mode, HMAC-SHA1, etc.

For a list of random number generators that are cryptographically weak, see
Vulnerable pseudo-random number generator.

3 Defects

3-594

Examples

Predictable Initialization Vector
#include <openssl/evp.h>
#include <openssl/rand.h>
#include <stdlib.h>
#define SIZE16 16

int func(EVP_CIPHER_CTX *ctx, unsigned char *key){
 unsigned char iv[SIZE16];
 RAND_pseudo_bytes(iv, 16);
 return EVP_CipherInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv, 1);
}

In this example, the function RAND_pseudo_bytes declared in openssl/rand.h
produces the initialization vector. The byte sequences that RAND_pseudo_bytes
generates are not necessarily unpredictable.

Use a strong random number generator to produce the initialization vector. The corrected
code here uses the function RAND_bytes declared in openssl/rand.h.

#include <openssl/evp.h>
#include <openssl/rand.h>
#include <stdlib.h>
#define SIZE16 16

int func(EVP_CIPHER_CTX *ctx, unsigned char *key){
 unsigned char iv[SIZE16];
 RAND_bytes(iv, 16);
 return EVP_CipherInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv, 1);
}

Result Information
Group: Cryptography
Language: C | C++
Default: Off

 Predictable block cipher initialization vector

3-595

Command-Line Syntax: CRYPTO_CIPHER_PREDICTABLE_IV
Impact: Medium
CWE ID: 310, 329, 330, 338
CERT C ID: MSC18-C

See Also

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2017a

3 Defects

3-596

https://cwe.mitre.org/data/definitions/310.html
https://cwe.mitre.org/data/definitions/329.html
https://cwe.mitre.org/data/definitions/330.html
https://cwe.mitre.org/data/definitions/338.html
https://www.securecoding.cert.org/confluence/x/vQFqAQ

Predictable cipher key
Encryption or decryption key is generated from a weak random number generator

Description
Predictable cipher key occurs when you use a weak random number generator for the
encryption or decryption key.

Risk
If you use a weak random number generator for the encryption or decryption key, an
attacker can retrieve your key easily.

You use a key to encrypt and later decrypt your data. If a key is easily retrieved, data
encrypted using that key is not secure.

Fix
Use a strong pseudo-random number generator (PRNG) for the key. For instance:

• Use an OS-level PRNG such as /dev/random on UNIX or CryptGenRandom() on
Windows

• Use an application-level PRNG such as Advanced Encryption Standard (AES) in
Counter (CTR) mode, HMAC-SHA1, etc.

For a list of random number generators that are cryptographically weak, see
Vulnerable pseudo-random number generator.

Examples

Predictable Cipher Key

 Predictable cipher key

3-597

#include <openssl/evp.h>
#include <openssl/rand.h>
#include <stdlib.h>
#define SIZE16 16

int func(EVP_CIPHER_CTX *ctx, unsigned char *iv){
 unsigned char key[SIZE16];
 RAND_pseudo_bytes(key, 16);
 return EVP_CipherInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv, 1);
}

In this example, the function RAND_pseudo_bytes declared in openssl/rand.h
produces the cipher key. However, the byte sequences that RAND_pseudo_bytes
generates are not necessarily unpredictable.

One possible correction is to use a strong random number generator to produce the
cipher key. The corrected code here uses the function RAND_bytes declared in openssl/
rand.h.

#include <openssl/evp.h>
#include <openssl/rand.h>
#include <stdlib.h>
#define SIZE16 16

int func(EVP_CIPHER_CTX *ctx, unsigned char *iv){
 unsigned char key[SIZE16];
 RAND_bytes(key, 16);
 return EVP_CipherInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv, 1);
}

Result Information
Group: Cryptography
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_CIPHER_PREDICTABLE_KEY
Impact: Medium
CWE ID: 310, 326, 330, 338
CERT C ID: MSC18-C

3 Defects

3-598

https://cwe.mitre.org/data/definitions/310.html
https://cwe.mitre.org/data/definitions/326.html
https://cwe.mitre.org/data/definitions/330.html
https://cwe.mitre.org/data/definitions/338.html
https://www.securecoding.cert.org/confluence/x/vQFqAQ

See Also

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2017a

 Predictable cipher key

3-599

Predictable random output from predictable
seed
Seeding routine uses a predictable seed making the output predictable

Description
Predictable random output from predictable seed looks for random standard
functions that use a nonconstant but predictable seed. Examples of predictable seed
generators are time, gettimeofday, and getpid.

Risk
When you use predictable seed values for random number generation, your random
numbers are also predictable. A hacker can disrupt your program if they know how your
program behaves.

Fix
You can use a different function to generate less predictable seeds.

You can also use a different random number generator that does not require a seed. For
example, the Windows API function rand_s seeds itself by default. It uses information
from the entire system, for example, system time, thread ids, system counter, and memory
clusters. This information is more random and a user cannot access this information.

Some standard random routines are inherently cryptographically weak on page 3-817,
and should not be used for security purposes.

Examples
Seed as an Argument
#include <stdlib.h>
#include <time.h>

3 Defects

3-600

void seed_rng(int seed)
{
 srand(seed);
}

int generate_num(void)
{
 seed_rng(time(NULL) + 3);
 /* ... */
}

This example uses srand to start the random number generator with seed as the seed.
However, seed is predictable because the function time generates it. So, an attacker can
predict the random numbers generated by srand.

One possible correction is to use a random number generator that does not require a
seed. This example uses rand_s.

#define _CRT_RAND_S

#include <stdlib.h>
#include <stdio.h>
#include <errno.h>

int generate_num(void)
{
 unsigned int number;
 errno_t err;
 err = rand_s(&number);

 if(err != 0)
 {
 return number;
 }
 else
 {
 return err;
 }
}

 Predictable random output from predictable seed

3-601

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: RAND_SEED_PREDICTABLE
Impact: Medium
CWE ID: 330, 337
CERT C ID: MSC32-C
CERT C++ ID: MSC32-C, MSC51-CPP

See Also
Deterministic random output from constant seed | Unsafe standard
encryption function | Vulnerable pseudo-random number generator

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2015b

3 Defects

3-602

https://cwe.mitre.org/data/definitions/330.html
https://cwe.mitre.org/data/definitions/337.html
https://www.securecoding.cert.org/confluence/x/hABhAQ
https://wiki.sei.cmu.edu/confluence/x/W9YxBQ
https://wiki.sei.cmu.edu/confluence/x/-ns-BQ

Preprocessor directive in macro argument
You use a preprocessor directive in the argument to a function-like macro

Description
Preprocessor directive in macro argument occurs when you use a preprocessor
directive in the argument to a function-like macro or a function that might be
implemented as a function-like macro.

For instance, a #ifdef statement occurs in the argument to a memcpy function. The
memcpy function might be implemented as a macro.

memcpy(dest, src,
 #ifdef PLATFORM1
 12
 #else
 24
 #endif
);

The checker flags similar usage in printf and assert, which can also be implemented
as macros.

Risk
During preprocessing, a function-like macro call is replaced by the macro body and the
parameters are replaced by the arguments to the macro call (argument substitution).
Suppose a macro min() is defined as follows.

#define min(X, Y) ((X) < (Y) ? (X) : (Y))

When you call min(1,2), it is replaced by the body ((X) < (Y) ? (X) : (Y)). X and
Y are replaced by 1 and 2.

According to the C11 Standard (Sec. 6.10.3), if the list of arguments to a function-like
macro itself has preprocessing directives, the argument substitution during
preprocessing is undefined.

 Preprocessor directive in macro argument

3-603

Fix
To ensure that the argument substitution happens in an unambiguous manner, use the
preprocessor directives outside the function-like macro.

For instance, to execute memcpy with different arguments based on a #ifdef directive,
call memcpy multiple times within the #ifdef directive branches.

#ifdef PLATFORM1
 memcpy(dest, src, 12);
#else
 memcpy(dest, src, 24);
#endif

Examples

Directives in Function-Like Macros
#include <stdio.h>

#define print(A) printf(#A)

void func(void) {
 print(
#ifdef SW
 "Message 1"
#else
 "Message 2"
#endif
);
}

In this example, the preprocessor directives #ifdef and #endif occur in the argument
to the function-like macro print().

One possible correction is to use the function-like macro multiple times in the branches of
the #ifdef directive.

#include <stdio.h>

3 Defects

3-604

#define print(A) printf(#A)

void func(void) {
#ifdef SW
 print("Message 1");
#else
 print("Message 2");
#endif
}

Result Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: PRE_DIRECTIVE_MACRO_ARG
Impact: Low
CERT C ID: PRE32-C
CERT C++ ID: PRE32-C

See Also
MISRA C:2012 Rule 20.6

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2018a

 Preprocessor directive in macro argument

3-605

https://www.securecoding.cert.org/confluence/x/JYC2AQ
https://wiki.sei.cmu.edu/confluence/x/y9YxBQ

Privilege drop not verified
Attacker can gain unintended elevated access to program

Description
Privilege drop not verified detects calls to functions that relinquish privileges. If you do
not verify that the privileges were dropped before the end of your function, a defect is
raised.

Risk
If privilege relinquishment fails, an attacker can regain elevated privileges and have more
access to your program than intended. This security hole can cause unexpected behavior
in your code if left open.

Fix
Before the end of scope, verify that the privileges that you dropped were actually
dropped.

Examples

Drop Privileges Within a Function
#define _BSD_SOURCE
#include <sys/types.h>
#include <unistd.h>
#include <grp.h>
#include <stdlib.h>
#define fatal_error() abort()
extern int need_more_privileges;

void missingprivilegedropcheck()
{
 /* Code intended to run with elevated privileges */

3 Defects

3-606

 /* Temporarily drop elevated privileges */
 if (seteuid(getuid()) != 0) {
 /* Handle error */
 fatal_error();
 }

 /* Code intended to run with lower privileges */

 if (need_more_privileges) {
 /* Restore elevated privileges */
 if (seteuid(0) != 0) {
 /* Handle error */
 fatal_error();
 }
 /* Code intended to run with elevated privileges */
 }

 /* ... */

 /* Permanently drop elevated privileges */
 if (setuid(getuid()) != 0) {
 /* Handle error */
 fatal_error();
 }

 /* Code intended to run with lower privileges */
}

In this example, privileges are elevated and dropped to run code with the intended
privilege level. When privileges are dropped, the privilege level before exiting the
function body is not verified. A malicious attacker can regain their elevated privileges.

One possible correction is to use setuid to verify that the privileges were dropped.

#define _BSD_SOURCE
#include <sys/types.h>
#include <unistd.h>
#include <grp.h>
#include <stdlib.h>
#define fatal_error() abort()
extern int need_more_privileges;

void missingprivilegedropcheck()

 Privilege drop not verified

3-607

{
 /* Store the privileged ID for later verification */
 uid_t privid = geteuid();

 /* Code intended to run with elevated privileges */

 /* Temporarily drop elevated privileges */
 if (seteuid(getuid()) != 0) {
 /* Handle error */
 fatal_error();
 }

 /* Code intended to run with lower privileges */

 if (need_more_privileges) {
 /* Restore elevated Privileges */
 if (seteuid(privid) != 0) {
 /* Handle error */
 fatal_error();
 }
 /* Code intended to run with elevated privileges */
 }

 /* ... */

 /* Restore privileges if needed */
 if (geteuid() != privid) {
 if (seteuid(privid) != 0) {
 /* Handle error */
 fatal_error();
 }
 }

 /* Permanently drop privileges */
 if (setuid(getuid()) != 0) {
 /* Handle error */
 fatal_error();
 }

 if (setuid(0) != -1) {
 /* Privileges can be restored, handle error */
 fatal_error();
 }

3 Defects

3-608

 /* Code intended to run with lower privileges; */
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: MISSING_PRIVILEGE_DROP_CHECK
Impact: High
CWE ID: 250, 273
CERT C ID: POS37-C
CERT C++ ID: POS37-C

See Also

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2016b

 Privilege drop not verified

3-609

https://cwe.mitre.org/data/definitions/250.html
https://cwe.mitre.org/data/definitions/273.html
https://www.securecoding.cert.org/confluence/x/WIAAAQ
https://wiki.sei.cmu.edu/confluence/x/y9YxBQ

Qualifier removed in conversion
Variable qualifier is lost during conversion

Description
Qualifier removed in conversion occurs during a conversion when one variable has a
qualifier and the other does not. For example, when converting from a const int to an
int, the conversion removes the const qualifier.

This defect applies only for projects in C.

Examples

Cast of Character Pointers
void implicit_cast(void) {
 const char cc, *pcc = &cc;
 char * quo;

 quo = &cc;
 quo = pcc;

 read(quo);
}

During the assignment to the character q, the variables, cc and pcc, are converted from
const char to char. The const qualifier is removed during the conversion causing a
defect.

One possible correction is to add the same qualifiers to the new variables. In this
example, changing q to a const char fixes the defect.

void implicit_cast(void) {
 const char cc, *pcc = &cc;
 const char * quo;

3 Defects

3-610

 quo = &cc;
 quo = pcc;

 read(quo);
}

One possible correction is to remove the qualifiers in the converted variable. In this
example, removing the const qualifier from the cc and pcc initialization fixes the defect.

void implicit_basic_cast(void) {
 char cc, *pcc = &cc;
 char * quo;

 quo = &cc;
 quo = pcc;

 read(quo);
}

Check Information
Group: Programming
Language: C
Default: Off
Command-Line Syntax: QUALIFIER_MISMATCH
Impact: Low
CWE ID: 704
CERT C ID: EXP05-C, EXP32-C, EXP37-C
CERT C++ ID: EXP37-C
ISO/IEC TS 17961 ID: argcomp

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

 Qualifier removed in conversion

3-611

https://cwe.mitre.org/data/definitions/704.html
https://www.securecoding.cert.org/confluence/x/VAE
https://www.securecoding.cert.org/confluence/x/hAY
https://www.securecoding.cert.org/confluence/x/VQBc
https://wiki.sei.cmu.edu/confluence/x/49UxBQ

Introduced in R2013b

3 Defects

3-612

Resource leak
File stream not closed before FILE pointer scope ends or pointer is reassigned

Description
Resource leak occurs when you open a file stream by using a FILE pointer but do not
close it before:

• The end of the pointer’s scope.
• Assigning the pointer to another stream.

Risk
If you do not release file handles explicitly as soon as possible, a failure can occur due to
exhaustion of resources.

Fix
Close a FILE pointer before the end of its scope, or before you assign the pointer to
another stream.

Examples

FILE Pointer Not Released Before End of Scope
#include <stdio.h>

void func1(void) {
 FILE *fp1;
 fp1 = fopen ("data1.txt", "w");
 fprintf (fp1, "*");

 fp1 = fopen ("data2.txt", "w");
 fprintf (fp1, "!");

 Resource leak

3-613

 fclose (fp1);
}

In this example, the file pointer fp1 is pointing to a file data1.txt. Before fp1 is
explicitly dissociated from the file stream of data1.txt, it is used to access another file
data2.txt.

One possible correction is to explicitly dissociate fp1 from the file stream of data1.txt.

#include <stdio.h>

void func1(void) {
 FILE *fp1;
 fp1 = fopen ("data1.txt", "w");
 fprintf (fp1, "*");
 fclose(fp1);

 fp1 = fopen ("data2.txt", "w");
 fprintf (fp1, "!");
 fclose (fp1);
}

Result Information
Group: Resource management
Language: C | C++
Default: On
Command-Line Syntax: RESOURCE_LEAK
Impact: High
CWE ID: 772
CERT C ID: FIO42-C, MEM12-C
CERT C++ ID: FIO42-C, FIO51-CPP
ISO/IEC TS 17961 ID: fileclose

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”

3 Defects

3-614

https://cwe.mitre.org/data/definitions/772.html
https://www.securecoding.cert.org/confluence/x/GAGQBw
https://www.securecoding.cert.org/confluence/x/8AG7AQ
https://wiki.sei.cmu.edu/confluence/x/QtUxBQ
https://wiki.sei.cmu.edu/confluence/x/6Hw-BQ

“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2015b

 Resource leak

3-615

Return from computational exception signal
handler
Undefined behavior when signal handler returns normally from program error

Description
Return from computational exception signal handler occurs when a signal handler
returns after catching a computational exception signal SIGFPE, SIGILL, or SIGSEGV.

Risk
A signal handler that returns normally from a computational exception is undefined
behavior. Even if the handler attempts to fix the error that triggered the signal, the
program can behave unexpectedly.

Fix
Check the validity of the values of your variables before the computation to avoid using a
signal handler to catch exceptions. If you cannot avoid a handler to catch computation
exception signals, call abort(), quick_exit(), or _Exit() in the handler to stop the
program.

Examples
Signal Handler Return from Division by Zero
#include <errno.h>
#include <limits.h>
#include <signal.h>
#include <stdlib.h>

static volatile sig_atomic_t denom;
/* Declare signal handler to catch division by zero
computation error. */

3 Defects

3-616

void sig_handler(int s)
{
 int s0 = s;
 if (denom == 0)
 {
 denom = 1;
 }
 /* Normal return from computation exception
 signal */
 return;
}

long func(int v)
{
 denom = (sig_atomic_t)v;

 if (signal(SIGFPE, sig_handler) == SIG_ERR)
 {
 /* Handle error */
 }

 long result = 100 / (long)denom;
 return result;
}

In this example, sig_handler is declared to handle a division by zero computation error.
The handler changes the value of denom if it is zero and returns, which is undefined
behavior.

After catching a computational exception, call abort() from sig_handler to exit the
program without further error.

#include <errno.h>
#include <limits.h>
#include <signal.h>
#include <stdlib.h>

static volatile sig_atomic_t denom;
/* Declare signal handler to catch division by zero
computation error. */

 Return from computational exception signal handler

3-617

void sig_handler(int s)
{
 int s0 = s;
 /* call to abort() to exit the program */
 abort();
}

long func(int v)
{
 denom = (sig_atomic_t)v;

 if (signal(SIGFPE, sig_handler) == SIG_ERR)
 {
 /* Handle error */
 }

 long result = 100 / (long)denom;
 return result;
}

Result Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: SIG_HANDLER_COMP_EXCP_RETURN
Impact: Low
CWE ID: 387
CERT C ID: SIG35-C
CERT C++ ID: SIG35-C

See Also
Function called from signal handler not asynchronous-safe | Function
called from signal handler not asynchronous-safe (strict) | Signal
call from within signal handler

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

3 Defects

3-618

https://cwe.mitre.org/data/definitions/387.html
https://www.securecoding.cert.org/confluence/x/QgGRAg
https://wiki.sei.cmu.edu/confluence/x/b9YxBQ

Introduced in R2017b

 Return from computational exception signal handler

3-619

Return of non const handle to encapsulated
data member
Method returns pointer or reference to internal member of object

Description
Return of non-const handle to encapsulated data member occurs when:

• A class method returns a handle to a data member. Handles include pointers and
references.

• The method is more accessible than the data member. For instance, the method has
access specifier public, but the data member is private or protected.

Risk
The access specifier determines the accessibility of a class member. For instance, a class
member declared with the private access specifier cannot be accessed outside a class.
Therefore, nonmember, nonfriend functions cannot modify the member.

When a class method returns a handle to a less accessible data member, the member
accessibility changes. For instance, if a public method returns a pointer to a private
data member, the data member is effectively not private anymore. A nonmember,
nonfriend function calling the public method can use the returned pointer to view and
modify the data member.

Also, if you assign the pointer to a data member of an object to another pointer, when you
delete the object, the second pointer can be left dangling. The second pointer points to
the part of an object that does not exist anymore.

Fix
One possible fix is to avoid returning a handle to a data member from a class method.
Return a data member by value so that a copy of the member is returned. Modifying the
copy does not change the data member.

3 Defects

3-620

If you must return a handle, use a const qualifier with the method return type so that the
handle allows viewing, but not modifying, the data member.

Examples
Return of Pointer to private Data Member
#include <string>
#define NUM_RECORDS 100

struct Date {
 int dd;
 int mm;
 int yyyy;
};

struct Period {
 Date startDate;
 Date endDate;
};

class DataBaseEntry {
private:
 std::string employeeName;
 Period employmentPeriod;
public:
 Period* getPeriod(void);
};

Period* DataBaseEntry::getPeriod(void) {
 return &employmentPeriod;
}

void use(Period*);
void reset(Period*);

int main() {
 DataBaseEntry dataBase[NUM_RECORDS];
 Period* tempPeriod;
 for(int i=0;i < NUM_RECORDS;i++) {

 Return of non const handle to encapsulated data member

3-621

 tempPeriod = dataBase[i].getPeriod();
 use(tempPeriod);
 reset(tempPeriod);
 }
 return 0;
}

void reset(Period* aPeriod) {
 aPeriod->startDate.dd = 1;
 aPeriod->startDate.mm = 1;
 aPeriod->startDate.yyyy = 2000;
}

In this example, employmentPeriod is private to the class DataBaseEntry. It is
therefore immune from modification by nonmember, nonfriend functions. However,
returning a pointer to employmentPeriod breaks this encapsulation. For instance, the
nonmember function reset modifies the member startDate of employmentPeriod.

One possible correction is to return the data member employmentPeriod by value
instead of pointer. Modifying the return value does not change the data member because
the return value is a copy of the data member.

#include <string>
#define NUM_RECORDS 100

struct Date {
 int dd;
 int mm;
 int yyyy;
};

struct Period {
 Date startDate;
 Date endDate;
};

class DataBaseEntry {
private:
 std::string employeeName;
 Period employmentPeriod;
public:
 Period getPeriod(void);

3 Defects

3-622

};

Period DataBaseEntry::getPeriod(void) {
 return employmentPeriod;
}

void use(Period*);
void reset(Period*);

int main() {
 DataBaseEntry dataBase[NUM_RECORDS];
 Period tempPeriodVal;
 Period* tempPeriod;
 for(int i=0;i < NUM_RECORDS;i++) {
 tempPeriodVal = dataBase[i].getPeriod();
 tempPeriod = &tempPeriodVal;
 use(tempPeriod);
 reset(tempPeriod);
 }
 return 0;
}

void reset(Period* aPeriod) {
 aPeriod->startDate.dd = 1;
 aPeriod->startDate.mm = 1;
 aPeriod->startDate.yyyy = 2000;
}

Result Information
Group: Object oriented
Language: C++
Default: Off
Command-Line Syntax: BREAKING_DATA_ENCAPSULATION
Impact: Medium
CWE ID: 375, 767

 Return of non const handle to encapsulated data member

3-623

https://cwe.mitre.org/data/definitions/375.html
https://cwe.mitre.org/data/definitions/767.html

See Also
Polyspace Analysis Options
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2015b

3 Defects

3-624

Returned value of a sensitive function not
checked
Sensitive functions called without checking for unexpected return values and errors

Description
Returned value of a sensitive function not checked occurs when you call sensitive
standard functions, but you:

• Ignore the return value.
• Use an output or a return value without testing the validity of the return value.

For this defect, two type of functions are considered: sensitive and critical sensitive.

A sensitive function is a standard function that can encounter:

• Exhausted system resources (for example, when allocating resources)
• Changed privileges or permissions
• Tainted sources when reading, writing, or converting data from external sources
• Unsupported features despite an existing API

A critical sensitive function is a sensitive function that performs one of these critical or
vulnerable tasks:

• Set privileges (for example, setuid)
• Create a jail (for example, chroot)
• Create a process (for example, fork)
• Create a thread (for example, pthread_create)
• Lock or unlock mutex (for example, pthread_mutex_lock)
• Lock or unlock memory segments (for example, mlock)

Risk
If you do not check the return value of functions that perform sensitive or critical
sensitive tasks, your program can behave unexpectedly. Errors from these functions can

 Returned value of a sensitive function not checked

3-625

propagate throughout the program causing incorrect output, security vulnerabilities, and
possibly system failures.

Fix
Before continuing with the program, test the return value of critical sensitive functions.

For sensitive functions, you can explicitly ignore a return value by casting the function to
void. Polyspace does not raise this defect for sensitive functions cast to void. This
resolution is not accepted for critical sensitive functions because they perform more
vulnerable tasks.

Examples

Sensitive Function Return Ignored
#include <pthread.h>

void initialize() {
 pthread_attr_t attr;

 pthread_attr_init(&attr);
}

This example shows a call to the sensitive function pthread_attr_init. The return
value of pthread_attr_init is ignored, causing a defect.

One possible correction is to cast the function to void. This fix informs Polyspace and any
reviewers that you are explicitly ignoring the return value of the sensitive function.

#include <pthread.h>

void initialize() {
 pthread_attr_t attr;

 (void)pthread_attr_init(&attr);
}

3 Defects

3-626

One possible correction is to test the return value of pthread_attr_init to check for
errors.

#include <pthread.h>
#include <stdlib.h>
#define fatal_error() abort()

void initialize() {
 pthread_attr_t attr;
 int result;

 result = pthread_attr_init(&attr);
 if (result != 0) {
 /* Handle error */
 fatal_error();
 }
}

Critical Function Return Ignored
#include <pthread.h>
extern void *start_routine(void *);

void returnnotchecked() {
 pthread_t thread_id;
 pthread_attr_t attr;
 void *res;

 (void)pthread_attr_init(&attr);
 (void)pthread_create(&thread_id, &attr, &start_routine, ((void *)0));
 pthread_join(thread_id, &res);
}

In this example, two critical functions are called: pthread_create and pthread_join.
The return value of the pthread_create is ignored by casting to void, but because
pthread_create is a critical function (not just a sensitive function), Polyspace does not
ignore this Return value of a sensitive function not checked defect. The other critical
function, pthread_join, returns value that is ignored implicitly. pthread_join uses
the return value of pthread_create, which was not checked.

The correction for this defect is to check the return value of these critical functions to
verify the function performed as expected.

 Returned value of a sensitive function not checked

3-627

#include <pthread.h>
#include <stdlib.h>
#define fatal_error() abort()

extern void *start_routine(void *);

void returnnotchecked() {
 pthread_t thread_id;
 pthread_attr_t attr;
 void *res;
 int result;

 (void)pthread_attr_init(&attr);
 result = pthread_create(&thread_id, &attr, &start_routine, NULL);
 if (result != 0) {
 /* Handle error */
 fatal_error();
 }

 result = pthread_join(thread_id, &res);
 if (result != 0) {
 /* Handle error */
 fatal_error();
 }
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: RETURN_NOT_CHECKED
Impact: High
CWE ID: 252, 253, 690, 754
CERT C ID: EXP12-C, ERR33-C, POS54-C
CERT C++ ID: ERR33-C, POS54-C
ISO/IEC TS 17961 ID: liberr

3 Defects

3-628

https://cwe.mitre.org/data/definitions/252.html
https://cwe.mitre.org/data/definitions/253.html
https://cwe.mitre.org/data/definitions/690.html
https://cwe.mitre.org/data/definitions/754.html
https://www.securecoding.cert.org/confluence/x/9YIRAQ
https://www.securecoding.cert.org/confluence/x/w4C4Ag
https://www.securecoding.cert.org/confluence/x/iIBfBw
https://wiki.sei.cmu.edu/confluence/x/kNYxBQ
https://wiki.sei.cmu.edu/confluence/x/kNYxBQ

See Also

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2016b

 Returned value of a sensitive function not checked

3-629

Self assignment not tested in operator
Copy assignment operator does not test for self-assignment

Description
Self assignment not tested in operator occurs when you do not test if the argument to
the copy assignment operator of an object is the object itself.

Risk
Self-assignment causes unnecessary copying. Though it is unlikely that you assign an
object to itself, because of aliasing, you or users of your class cannot always detect a self-
assignment.

Self-assignment can cause subtle errors if a data member is a pointer and you allocate
memory dynamically to the pointer. In your copy assignment operator, you typically
perform these steps:

1 Deallocate the memory originally associated with the pointer.

delete ptr;
2 Allocate new memory to the pointer. Initialize the new memory location with contents

obtained from the operator argument.

 ptr = new ptrType(*(opArgument.ptr));

If the argument to the operator, opArgument, is the object itself, after your first step, the
pointer data member in the operator argument, opArgument.ptr, is not associated with
a memory location. *opArgument.ptr contains unpredictable values. Therefore, in the
second step, you initialize the new memory location with unpredictable values.

Fix
Test for self-assignment in the copy assignment operator of your class. Only after the test,
perform the assignments in the copy assignment operator.

3 Defects

3-630

Examples

Missing Test for Self-Assignment
class MyClass1 { };
class MyClass2 {
public:
 MyClass2() : p_(new MyClass1()) { }
 MyClass2(const MyClass2& f) : p_(new MyClass1(*f.p_)) { }
 ~MyClass2() {
 delete p_;
 }
 MyClass2& operator= (const MyClass2& f)
 {
 delete p_;
 p_ = new MyClass1(*f.p_);
 return *this;
 }
private:
 MyClass1* p_;
};

In this example, the copy assignment operator in MyClass2 does not test for self-
assignment. If the parameter f is the current object, after the statement delete p_, the
memory allocated to pointer f.p_ is also deallocated. Therefore, the statement p_ =
new MyClass1(*f.p_) initializes the memory location that p_ points to with
unpredictable values.

One possible correction is to test for self-assignment in the copy assignment operator.

class MyClass1 { };
class MyClass2 {
public:
 MyClass2() : p_(new MyClass1()) { }
 MyClass2(const MyClass2& f) : p_(new MyClass1(*f.p_)) { }
 ~MyClass2() {
 delete p_;
 }
 MyClass2& operator= (const MyClass2& f)
 {
 if(&f != this) {
 delete p_;

 Self assignment not tested in operator

3-631

 p_ = new MyClass1(*f.p_);
 }
 return *this;
 }
private:
 MyClass1* p_;
};

Result Information
Group: Object oriented
Language: C++
Default: Off
Command-Line Syntax: MISSING_SELF_ASSIGN_TEST
Impact: Medium
CERT C++ ID: OOP54-CPP

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2015b

3 Defects

3-632

https://wiki.sei.cmu.edu/confluence/x/oHs-BQ

Sensitive data printed out
Function prints sensitive data

Description
Sensitive data printed out detects print functions, such as stdout or stderr, that
print sensitive information.

The checker considers the following as sensitive information:

• Return values of password manipulation functions such as getpw, getpwnam or
getpwuid.

• Input values of functions such as the Windows-specific function LogonUser.

Risk
Printing sensitive information, such as passwords or user information, allows an attacker
additional access to the information.

Fix
One fix for this defect is to not print out sensitive information.

If you are saving your logfile to an external file, set the file permissions so that attackers
cannot access the logfile information.

Examples

Printing Passwords
#include <sys/types.h>
#include <pwd.h>
#include <stdio.h>
#include <string.h>

 Sensitive data printed out

3-633

#include <unistd.h>

extern void verify_null(const char* buf);
void bug_sensitivedataprint(const char * my_user) {
 struct passwd* result, pwd;
 long bufsize = sysconf(_SC_GETPW_R_SIZE_MAX);
 char buf[1024] = "";
 getpwnam_r(my_user, &pwd, buf, bufsize, &result);
 puts("Name\n");
 puts(pwd.pw_name);
 puts("PassWord\n");
 puts(pwd.pw_passwd);
 memset(buf, 0, sizeof(buf));
 verify_null(buf);
}

In this example, Bug Finder flags puts for printing out the password pwd.pw_passwd.

One possible correction is to obfuscate the password information so that the information
is not visible.

#include <sys/types.h>
#include <pwd.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>

extern void verify_null(const char* buf);

void sensitivedataprint(const char * my_user) {
 struct passwd* result, pwd;
 long bufsize = sysconf(_SC_GETPW_R_SIZE_MAX);
 char buf[1024] = "";
 getpwnam_r(my_user, &pwd, buf, bufsize, &result);
 puts("Name\n");
 puts(pwd.pw_name);
 puts("PassWord\n");
 puts("XXXXXXXX\n");
 memset(buf, 0, sizeof(buf));
 verify_null(buf);
}

3 Defects

3-634

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: SENSITIVE_DATA_PRINT
Impact: Medium
CWE ID: 532, 534, 535
CERT C ID: MEM06-C

See Also
Sensitive heap memory not cleared before release | Uncleared sensitive
data in stack

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2015b

 Sensitive data printed out

3-635

https://cwe.mitre.org/data/definitions/532.html
https://cwe.mitre.org/data/definitions/534.html
https://cwe.mitre.org/data/definitions/535.html
https://www.securecoding.cert.org/confluence/x/xoC_

Sensitive heap memory not cleared before
release
Sensitive data not cleared or released by memory routine

Description
Sensitive heap memory not cleared before release detects dynamically allocated
memory containing sensitive data. If you do not clear the sensitive data when you free the
memory, Bug Finder raises a defect on the free function.

Risk
If the memory zone is reallocated, an attacker can still inspect the sensitive data in the
old memory zone.

Fix
Before calling free, clear out the sensitive data using memset or SecureZeroMemory.

Examples

Sensitive Buffer Freed, Not Cleared
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <pwd.h>

void sensitiveheapnotcleared(const char * my_user) {
 struct passwd* result, pwd;
 long bufsize = sysconf(_SC_GETPW_R_SIZE_MAX);
 char* buf = (char*) malloc(1024);
 getpwnam_r(my_user, &pwd, buf, bufsize, &result);

3 Defects

3-636

 free(buf);
}

In this example, the function uses a buffer of passwords and frees the memory before the
end of the function. However, the data in the memory is not cleared by using the free
command.

One possible correction is to write over the data to clear out the sensitive information.
This example uses memset to write over the data with zeros.

#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <pwd.h>
#include <assert.h>

#define isNull(arr) for(int i=0; i<(sizeof(arr)/sizeof(arr[0])); i++) assert(arr[i]==0)

void sensitiveheapnotcleared(const char * my_user) {
 struct passwd* result, pwd;
 long bufsize = sysconf(_SC_GETPW_R_SIZE_MAX);
 char* buf = (char*) malloc(1024);

 if (buf) {
 getpwnam_r(my_user, &pwd, buf, bufsize, &result);
 memset(buf, 0, (size_t)1024);
 isNull(buf);
 free(buf);
 }
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: SENSITIVE_HEAP_NOT_CLEARED
Impact: Medium
CWE ID: 244, 312, 316
CERT C ID: MEM03-C, MSC18-C

 Sensitive heap memory not cleared before release

3-637

https://cwe.mitre.org/data/definitions/244.html
https://cwe.mitre.org/data/definitions/312.html
https://cwe.mitre.org/data/definitions/316.html
https://www.securecoding.cert.org/confluence/x/4A8
https://www.securecoding.cert.org/confluence/x/vQFqAQ

See Also
Uncleared sensitive data in stack | Sensitive data printed out

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2015b

3 Defects

3-638

Shared data access within signal handler
Access or modification of shared data causes inconsistent state

Description
Shared data access within signal handler occurs when you access or modify a shared
object inside a signal handler.

Risk
When you define a signal handler function to access or modify a shared object, the
handler accesses or modifies the shared object when it receives a signal. If another
function is already accessing the shared object, that function causes a race condition and
can leave the data in an inconsistent state.

Fix
To access or modify shared objects inside a signal handler, check that the objects are lock-
free atomic, or, if they are integers, declare them as volatile sig_atomic_t.

Examples

int Variable Access in Signal Handler
#include <signal.h>
#include <stdlib.h>
#include <string.h>

/* declare global variable. */
int e_flag;

void sig_handler(int signum)
{
 /* Signal handler accesses variable that is not
 of type volatile sig_atomic_t. */

 Shared data access within signal handler

3-639

 e_flag = signum;
}

int func(void)
{
 if (signal(SIGINT, sig_handler) == SIG_ERR)
 {
 /* Handle error */
 abort();
 }
 /* Program code */
 if (raise(SIGINT) != 0)
 {
 /* Handle error */
 abort();
 }
 /* More code */
 return 0;
}

In this example, sig_handler accesses e_flag, a variable of type int. A concurrent
access by another function can leave e_flag in an inconsistent state.

Before you access a shared variable from a signal handler, declare the variable with type
volatile sig_atomic_t instead of int. You can safely access variables of this type
asynchronously.

#include <signal.h>
#include <stdlib.h>
#include <string.h>

/* Declare variable of type volatile sig_atomic_t. */
volatile sig_atomic_t e_flag;
void sig_handler(int signum)
{
 /* Use variable of proper type inside signal handler. */
 e_flag = signum;

}

int func(void)
{

3 Defects

3-640

 if (signal(SIGINT, sig_handler) == SIG_ERR)
 {
 /* Handle error */
 abort();
 }
 /* Program code */
 if (raise(SIGINT) != 0)
 {
 /* Handle error */
 abort();
 }
 /* More code */
 return 0;
}

Result Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: SIG_HANDLER_SHARED_OBJECT
Impact: Medium
CWE ID: 364, 413
CERT C ID: SIG31-C
CERT C++ ID: SIG31-C
ISO/IEC TS 17961 ID: accsig

See Also
Function called from signal handler not asynchronous-safe | Signal
call from within signal handler

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2017b

 Shared data access within signal handler

3-641

https://cwe.mitre.org/data/definitions/364.html
https://cwe.mitre.org/data/definitions/413.html
https://www.securecoding.cert.org/confluence/x/GIEt
https://wiki.sei.cmu.edu/confluence/x/VdYxBQ

Shift of a negative value
Shift operator on negative value

Description
Shift of a negative value occurs when a bit-wise shift is used on a variable that can
have negative values. Shifts can overwrite the sign bit that identifies a number as
negative.

Examples

Shifting a negative variable
int shifting(int val)
{
 int res = -1;
 return res << val;
}

In the return statement, the variable res is shifted a certain number of bits to the left.
However, because res is negative, the shift might overwrite the sign bit.

One possible correction is to change the data type of the shifted variable to unsigned.
This correction eliminates the sign bit, so left shifting does not change the sign of the
variable.

int shifting(int val)
{
 unsigned int res = -1;
 return res << val;
}

3 Defects

3-642

Check Information
Group: Numerical
Language: C | C++
Default: Off
Command-Line Syntax: SHIFT_NEG
Impact: Low
CWE ID: 189
CERT C ID: INT34-C
CERT C++ ID: INT34-C

See Also
Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Shift operation overflow

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2013b

 Shift of a negative value

3-643

https://cwe.mitre.org/data/definitions/189.html
https://www.securecoding.cert.org/confluence/x/IRE
https://wiki.sei.cmu.edu/confluence/x/ItcxBQ

Shift operation overflow
Overflow from shifting operation

Description
Shift operation overflow occurs when a shift operation can result in values that cannot
be represented by the result data type. The data type of a variable determines the number
of bytes allocated for the variable storage and constrains the range of allowed values.

The exact storage allocation for different data types depends on your processor. See
Target processor type (-target).

Examples

Left Shift of Integer
int left_shift(void) {

 int foo = 33;
 return 1 << foo;
}

In the return statement of this function, bit-wise shift operation is performed shifting 1
foo bits to the left. However, an int has only 32 bits, so the range of the shift must be
between 0 and 31. Therefore, this shift operation causes an overflow.

One possible correction is to store the shift operation result in a larger data type. In this
example, by returning a long long instead of an int, the overflow defect is fixed.

long long left_shift(void) {

 int foo = 33;
 return 1LL << foo;
}

3 Defects

3-644

Check Information
Group: Numerical
Language: C | C++
Default: Off
Command-Line Syntax: SHIFT_OVFL
Impact: Low
CWE ID: 189, 190
CERT C ID: INT34-C
CERT C++ ID: INT34-C

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2013b

 Shift operation overflow

3-645

https://cwe.mitre.org/data/definitions/189.html
https://cwe.mitre.org/data/definitions/190.html
https://www.securecoding.cert.org/confluence/x/IRE
https://wiki.sei.cmu.edu/confluence/x/ItcxBQ

Side effect of expression ignored
sizeof, _Alignof, or _Generic operates on expression with side effect

Description
Side effect of expression ignored occurs when the sizeof, _Alignof, or _Generic
operator operates on an expression with a side effect. When evaluated, an expression with
side effect modifies at least one of the variables in the expression.

For instance, the defect checker does not flag sizeof(n+1) because n+1 does not
modify n. The checker flags sizeof(n++) because n++ is intended to modify n.

The check also applies to the C++ operator alignof and its C extensions, __alignof__
and __typeof__.

Risk
The expression in a _Alignof or _Generic operator is not evaluated. The expression in
a sizeof operator is evaluated only if it is required for calculating the size of a variable-
length array, for instance, sizeof(a[n++]).

When an expression with a side effect is not evaluated, the variable modification from the
side effect does not happen. If you rely on the modification, you can see unexpected
results.

Fix
Evaluate the expression with a side effect in a separate statement, and then use the result
in a sizeof, _Alignof, or _Generic operator.

For instance, instead of:

a = sizeof(n++);

perform the operation in two steps:

n++;
a = sizeof(n);

3 Defects

3-646

The checker considers a function call as an expression with a side effect. Even if the
function does not have side effects now, it might have side effects on later additions. The
code is more maintainable if you call the function outside the sizeof operator.

Examples

Increment Operator in sizeof
#include <stdio.h>

void func(void) {
 unsigned int a = 1U;
 unsigned int b = (unsigned int)sizeof(++a);
 printf ("%u, %u\n", a, b);
}

In this example, sizeof operates on ++a, which is intended to modify a. Because the
expression is not evaluated, the modification does not happen. The printf statement
shows that a still has the value 1.

One possible correction is to perform the increment first, and then provide the result to
the sizeof operator.

#include <stdio.h>

void func(void) {
 unsigned int a = 1U;
 ++a;
 unsigned int b = (unsigned int)sizeof (a);
 printf ("%u, %u\n", a, b);
}

Result Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: SIDE_EFFECT_IGNORED
Impact: Low

 Side effect of expression ignored

3-647

CERT C ID: EXP44-C
CERT C++ ID: EXP52-CPP

See Also
MISRA C:2012 Rule 13.6

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2018a

3 Defects

3-648

https://www.securecoding.cert.org/confluence/x/LQo
https://wiki.sei.cmu.edu/confluence/x/oXs-BQ

Side effect in arguments to unsafe macro
Macro contains arguments that can be evaluated multiple times or not evaluated

Description
Side effect in arguments to unsafe macro occurs when you call an unsafe macro with
an expression that has a side effect.

• Unsafe macro: When expanded, an unsafe macro evaluates its arguments multiple
times or does not evaluate its argument at all.

For instance, the ABS macro evaluates its argument x twice.

#define ABS(x) (((x) < 0) ? -(x) : (x))

• Side effect: When evaluated, an expression with a side effect modifies at least one of
the variables in the expression.

For instance, ++n modifies n, but n+1 does not modify n.

The checker does not consider side effects in nested macros. The checker also does
not consider function calls or volatile variable access as side effects.

Risk
If you call an unsafe macro with an expression that has a side effect, the expression is
evaluated multiple times or not evaluated at all. The side effect can occur multiple times
or not occur at all, causing unexpected behavior.

For instance, in the call MACRO(++n), you expect only one increment of the variable n. If
MACRO is an unsafe macro, the increment happens more than once or does not happen at
all.

The checker flags expressions with side effects in the assert macro because the assert
macro is disabled in non-debug mode. To compile in non-debug mode, you define the
NDEBUG macro during compilation. For instance, in GCC, you use the flag -DNDEBUG.

 Side effect in arguments to unsafe macro

3-649

Fix
Evaluate the expression with a side effect in a separate statement, and then use the result
as a macro argument.

For instance, instead of:

MACRO(++n);

perform the operation in two steps:

++n;
MACRO(n);

Alternatively, use an inline function instead of a macro. Pass the expression with side
effect as argument to the inline function.

The checker considers modifications of a local variable defined only in the block scope of
a macro body as a side effect. This defect cannot happen since the variable is visible only
in the macro body. If you see a defect of this kind, ignore the defect.

Examples

Macro Argument with Side Effects
#define ABS(x) (((x) < 0) ? -(x) : (x))

void func(int n) {
 /* Validate that n is within the desired range */
 int m = ABS(++n);

 /* ... */
}

In this example, the ABS macro evaluates its argument twice. The second evaluation can
result in an unintended increment.

One possible correction is to first perform the increment, and then pass the result to the
macro.

3 Defects

3-650

#define ABS(x) (((x) < 0) ? -(x) : (x))

void func(int n) {
 /* Validate that n is within the desired range */
 ++n;
 int m = ABS(n);

 /* ... */
}

Another possible correction is to evaluate the expression in an inline function.

static inline int iabs(int x) {
 return (((x) < 0) ? -(x) : (x));
}

void func(int n) {
 /* Validate that n is within the desired range */

int m = iabs(++n);

 /* ... */
}

Result Information
Group: Programming
Language: C | C++
Default: Off
Command-Line Syntax: SIDE_EFFECT_IN_UNSAFE_MACRO_ARG
Impact: Medium
CERT C ID: PRE31-C
CERT C++ ID: PRE31-C

See Also
MISRA C:2012 Rule 13.2 | MISRA C:2012 Rule 13.3 | MISRA C:2012 Rule
13.4 | Side effect of expression ignored | Stream argument with
possibly unintended side effects

 Side effect in arguments to unsafe macro

3-651

https://wiki.sei.cmu.edu/confluence/x/I9YxBQ
https://wiki.sei.cmu.edu/confluence/x/I9YxBQ

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2018b

3 Defects

3-652

Sign change integer conversion overflow
Overflow when converting between signed and unsigned integers

Description
Sign change integer conversion overflow occurs when converting an unsigned integer
to a signed integer. If the variable does not have enough bytes to represent both the
original constant and the sign bit, the conversion overflows.

The exact storage allocation for different integer types depends on your processor. See
Target processor type (-target).

Examples

Convert from unsigned char to char
char sign_change(void) {
 unsigned char count = 255;

 return (char)count;
}

In the return statement, the unsigned character variable count is converted to a signed
character. However, char has 8 bits, 1 for the sign of the constant and 7 to represent the
number. The conversion operation overflows because 255 uses 8 bits.

One possible correction is using a larger integer type. By using an int, there are enough
bits to represent the sign and the number value.

int sign_change(void) {
 unsigned char count = 255;

 return (int)count;
}

 Sign change integer conversion overflow

3-653

Check Information
Group: Numerical
Language: C | C++
Default: On
Command-Line Syntax: SIGN_CHANGE
Impact: Medium
CWE ID: 192, 194, 195, 196
CERT C ID: INT31-C
CERT C++ ID: INT31-C

See Also
Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Float conversion overflow | Unsigned integer conversion overflow |
Integer conversion overflow

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2013b

3 Defects

3-654

https://cwe.mitre.org/data/definitions/192.html
https://cwe.mitre.org/data/definitions/194.html
https://cwe.mitre.org/data/definitions/195.html
https://cwe.mitre.org/data/definitions/196.html
https://www.securecoding.cert.org/confluence/x/RQE
https://wiki.sei.cmu.edu/confluence/x/U9YxBQ

Signal call from within signal handler
Nonpersistent signal handler calling signal() in Windows system causes race condition

Description
Signal call from within signal handler occurs when you call signal() from a
nonpersistent signal handler on a Windows platform.

Risk
A nonpersistent signal handler is reset after catching a signal. The handler does not catch
subsequent signals unless the handler is reestablished by calling signal(). A
nonpersistent signal handler on a Windows platform is reset to SIG_DFL. If another signal
interrupts the execution of the handler, that signal can cause a race condition between
SIG_DFL and the existing signal handler. A call to signal() can also result in an infinite
loop inside the handler.

Fix
Do not call signal() from a signal handler on Windows platforms.

Examples
signal() Called from Signal Handler
#include <stdio.h>
#include <stdlib.h>
#include <signal.h>
#include <unistd.h>

volatile sig_atomic_t e_flag = 0;

void sig_handler(int signum)

 Signal call from within signal handler

3-655

{
 int s0 = signum;
 e_flag = 1;

 /* Call signal() to reestablish sig_handler
 upon receiving SIG_ERR. */

 if (signal(s0, sig_handler) == SIG_ERR)
 {
 /* Handle error */
 }
}

void func(void)
{
 if (signal(SIGINT, sig_handler) == SIG_ERR)
 {
 /* Handle error */

 }
 /* more code */
}

In this example, the definition of sig_handler() includes a call to signal() when the
handler catches SIG_ERR. On Windows platforms, signal handlers are nonpersistent. This
code can result in a race condition.

If your code requires the use of a persistent signal handler on a Windows platform, use a
persistent signal handler after performing a thorough risk analysis.

#include <stdio.h>
#include <stdlib.h>
#include <signal.h>
#include <unistd.h>

volatile sig_atomic_t e_flag = 0;

void sig_handler(int signum)
{
 int s0 = signum;

3 Defects

3-656

 e_flag = 1;
 /* No call to signal() */
}

int main(void)
{

 if (signal(SIGINT, sig_handler) == SIG_ERR)
 {
 /* Handle error */

 }
}

Result Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: SIG_HANDLER_CALLING_SIGNAL
Impact: Medium
CWE ID: 387, 474
CERT C ID: SIG34-C
CERT C++ ID: SIG34-C
ISO/IEC TS 17961 ID: sigcall

See Also

Topics
Function called from signal handler not asynchronous-safe
Return from computational exception signal handler
Shared data access within signal handler
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2017b

 Signal call from within signal handler

3-657

https://cwe.mitre.org/data/definitions/387.html
https://cwe.mitre.org/data/definitions/474.html
https://www.securecoding.cert.org/confluence/x/rIDp
https://wiki.sei.cmu.edu/confluence/x/NtYxBQ

Signal call in multithreaded program
Program with multiple threads uses signal function

Description
Signal call in multithreaded program occurs when you use the signal() function in
a program with multiple threads.

Risk
According to the C11 standard (Section 7.14.1.1), use of the signal() function in a
multithreaded program is undefined behavior.

Fix
Depending on your intent, use other ways to perform an asynchronous action on a specific
thread.

Examples

Use of signal() Function to Terminate Loop in Thread
#include <signal.h>
#include <stddef.h>
#include <threads.h>

volatile sig_atomic_t flag = 0;

void handler(int signum) {
 flag = 1;
}

/* Runs until user sends SIGUSR1 */
int func(void *data) {
 while (!flag) {

3 Defects

3-658

 /* ... */
 }
 return 0;
}

int main(void) {
 signal(SIGINT, handler); /* Undefined behavior */
 thrd_t tid;

 if (thrd_success != thrd_create(&tid, func, NULL)) {
 /* Handle error */
 }
 /* ... */
 return 0;
}

In this example, the signal function is used to terminate a while loop in the thread
created with thrd_create.

One possible correction is to use an atomic_bool variable that multiple threads can
access. In the corrected example, the child thread evaluates this variable before every
loop iteration. After completing the program, you can modify this variable so that the
child thread exits the loop.

#include <stdatomic.h>
#include <stdbool.h>
#include <stddef.h>
#include <threads.h>

atomic_bool flag = ATOMIC_VAR_INIT(false);

int func(void *data) {
 while (!flag) {
 /* ... */
 }
 return 0;
}

int main(void) {
 thrd_t tid;

 if (thrd_success != thrd_create(&tid, func, NULL)) {

 Signal call in multithreaded program

3-659

 /* Handle error */
 }
 /* ... */
 /* Set flag when done */
 flag = true;

 return 0;
}

Result Information
Group: Concurrency
Language: C | C++
Default: Off
Command-Line Syntax: SIGNAL_USE_IN_MULTITHREADED_PROGRAM
Impact: Low
CERT C ID: CON37-C
CERT C++ ID: CON37-C

See Also
Function called from signal handler not asynchronous-safe | MISRA C:
2012 Rule 21.5 | Signal call from within signal handler

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2018b

3 Defects

3-660

https://wiki.sei.cmu.edu/confluence/x/w9YxBQ
https://wiki.sei.cmu.edu/confluence/x/w9YxBQ

Standard function call with incorrect
arguments
Argument to a standard function does not meet requirements for use in the function

Description
Standard function call with incorrect arguments occurs when the arguments to
certain standard functions do not meet the requirements for their use in the functions.

For instance, the arguments to these functions can be invalid in the following ways.

Function Type Situation Risk Fix
String manipulation
functions such as
strlen and strcpy

The pointer
arguments do not
point to a NULL-
terminated string.

The behavior of the
function is
undefined.

Pass a NULL-
terminated string to
string manipulation
functions.

File handling
functions in stdio.h
such as fputc and
fread

The FILE* pointer
argument can have
the value NULL.

The behavior of the
function is
undefined.

Test the FILE*
pointer for NULL
before using it as
function argument.

File handling
functions in
unistd.h such as
lseek and read

The file descriptor
argument can be -1.

The behavior of the
function is
undefined.

Most
implementations of
the open function
return a file
descriptor value of
-1. In addition, they
set errno to indicate
that an error has
occurred when
opening a file.

Test the return value
of the open function
for -1 before using it
as argument for
read or lseek.

If the return value is
-1, check the value of
errno to see which
error has occurred.

 Standard function call with incorrect arguments

3-661

Function Type Situation Risk Fix
The file descriptor
argument represents
a closed file
descriptor.

The behavior of the
function is
undefined.

Close the file
descriptor only after
you have completely
finished using it.
Alternatively, reopen
the file descriptor
before using it as
function argument.

Directory name
generation functions
such as mkdtemp and
mkstemps

The last six
characters of the
string template are
not XXXXXX.

The function
replaces the last six
characters with a
string that makes the
file name unique. If
the last six
characters are not
XXXXXX, the function
cannot generate a
unique enough
directory name.

Test if the last six
characters of a string
are XXXXXX before
using the string as
function argument.

Functions related to
environment
variables such as
getenv and setenv

The string argument
is "".

The behavior is
implementation-
defined.

Test the string
argument for ""
before using it as
getenv or setenv
argument.

The string argument
terminates with an
equal sign, =. For
instance, "C="
instead of "C".

The behavior is
implementation-
defined.

Do not terminate the
string argument with
=.

String handling
functions such as
strtok and strstr

• strtok: The
delimiter
argument is "".

• strstr: The
search string
argument is "".

Some
implementations do
not handle these
edge cases.

Test the string for ""
before using it as
function argument.

3 Defects

3-662

Examples

NULL Pointer Passed as strnlen Argument
#include <string.h>
#include <stdlib.h>

enum {
 SIZE10 = 10,
 SIZE20 = 20
};

int func() {
 char* s = NULL;
 return strnlen(s, SIZE20);
}

In this example, a NULL pointer is passed as strnlen argument instead of a NULL-
terminated string.

Before running analysis on the code, specify a GNU compiler. See Compiler (-
compiler).

Pass a NULL-terminated string as the first argument of strnlen.

#include <string.h>
#include <stdlib.h>

enum {
 SIZE10 = 10,
 SIZE20 = 20
};

int func() {
 char* s = "";
 return strnlen(s, SIZE20);
}

Result Information
Group: Programming

 Standard function call with incorrect arguments

3-663

Language: C | C++
Default: On
Command-Line Syntax: STD_FUNC_ARG_MISMATCH
Impact: Medium
CWE ID: 628, 685, 686, 687, 690, 910
CERT C ID: EXP37-C, STR32-C, FIO46-C, API00-C, MSC15-C
CERT C++ ID: EXP37-C, FIO46-C, STR32-C
ISO/IEC TS 17961 ID: argcomp, liberr, nonnullcs

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2015b

3 Defects

3-664

https://cwe.mitre.org/data/definitions/628.html
https://cwe.mitre.org/data/definitions/685.html
https://cwe.mitre.org/data/definitions/686.html
https://cwe.mitre.org/data/definitions/687.html
https://cwe.mitre.org/data/definitions/690.html
https://cwe.mitre.org/data/definitions/910.html
https://www.securecoding.cert.org/confluence/x/VQBc
https://www.securecoding.cert.org/confluence/x/KgE
https://www.securecoding.cert.org/confluence/x/KAGQBw
https://www.securecoding.cert.org/confluence/x/egAV
https://www.securecoding.cert.org/confluence/x/EoLu
https://wiki.sei.cmu.edu/confluence/x/49UxBQ
https://wiki.sei.cmu.edu/confluence/x/QdUxBQ
https://wiki.sei.cmu.edu/confluence/x/r9UxBQ

Static uncalled function
Function with static scope not called in file

Description
Static uncalled function occurs when a static function is not called in the same file
where it is defined.

Examples

Uncalled function error
Save the following code in the file Initialize_Value.c

#include <stdlib.h>
#include <stdio.h>

static int Initialize(void)
/* Defect: Function not called */
 {
 int input;
 printf("Enter an integer:");
 scanf("%d",&input);
 return(input);
 }

 void main()
 {
 int num;

 num=0;

 printf("The value of num is %d",num);
 }

The static function Initialize is not called in the file Initialize_Value.c.

 Static uncalled function

3-665

One possible correction is to call Initialize at least once in the file
Initialize_Value.c.

#include <stdlib.h>
#include <stdio.h>

static int Initialize(void)
 {
 int input;
 printf("Enter an integer:");
 scanf("%d",&input);
 return(input);
 }

 void main()
 {
 int num;

 /* Fix: Call static function Initialize */
 num=Initialize();

 printf("The value of num is %d",num);
 }

Check Information
Group: Data flow
Language: C | C++
Default: Off
Command-Line Syntax: UNCALLED_FUNC
Impact: Low
CWE ID: 561

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

3 Defects

3-666

https://cwe.mitre.org/data/definitions/561.html

Introduced in R2013b

 Static uncalled function

3-667

Stream argument with possibly unintended
side effects
Stream argument side effects occur more than once

Description
Stream argument with possibly unintended side effects occurs when you call
getc(), putc(), getwc(), or putwc() with a stream argument that has side effects.

Stream argument with possibly unintended side effects considers the following as
stream side effects:

• Any assignment of a variable of a stream, such as FILE *, or any assignment of a
variable of a deeper stream type, such as an array of FILE *.

• Any call to a function that manipulates a stream or a deeper stream type.

The number of defects raised corresponds to the number of side effects detected. When a
stream argument is evaluated multiple times in a function implemented as a macro, a
defect is raised for each evaluation that has a side effect.

A defect is also raised on functions that are not implemented as macros but that can be
implemented as macros on another operating system.

Risk
If the function is implemented as an unsafe macro, the stream argument can be evaluated
more than once, and the stream side effect happens multiple times. For instance, a stream
argument calling fopen() might open the same file multiple times, which is unspecified
behavior.

Fix
To ensure that the side effect of a stream happens only once, use a separate statement for
the stream argument.

3 Defects

3-668

Examples

Stream Argument of getc() Has Side Effect fopen()
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>

#define fatal_error() abort()

const char* myfile = "my_file.log";

void func(void)
{
 int c;
 FILE* fptr;
 /* getc() has stream argument fptr with
 * 2 side effects: call to fopen(), and assignment
 * of fptr
 */
 c = getc(fptr = fopen(myfile, "r"));
 if (c == EOF) {
 /* Handle error */
 (void)fclose(fptr);
 fatal_error();
 }
 if (fclose(fptr) == EOF) {
 /* Handle error */
 fatal_error();
 }
}

void main(void)
{
 func();

}

In this example, getc() is called with stream argument fptr. The stream argument has
two side effects: the call to fopen() and the assignment of fptr. If getc() is
implemented as an unsafe macro, the side effects happen multiple times.

 Stream argument with possibly unintended side effects

3-669

One possible correction is to use a separate statement for fopen(). The call to fopen()
and the assignment of fptr happen in this statement so there are no side effects when
you pass fptr to getc().

#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>

#define fatal_error() abort()

const char* myfile = "my_file.log";

void func(void)
{
 int c;
 FILE* fptr;

 /* Separate statement for fopen()
 * before call to getc()
 */
 fptr = fopen(myfile, "r");
 if (fptr == NULL) {
 /* Handle error */
 fatal_error();
 }
 c = getc(fptr);
 if (c == EOF) {
 /* Handle error */
 (void)fclose(fptr);
 fatal_error();
 }
 if (fclose(fptr) == EOF) {
 /* Handle error */
 fatal_error();
 }
}

void main(void)
{
 func();

}

3 Defects

3-670

Result Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: STREAM_WITH_SIDE_EFFECT
Impact: Low
CERT C ID: FIO41-C
CERT C++ ID: FIO41-C

See Also

Topics
Returned value of a sensitive function not checked
Opening previously opened resource
Standard function call with incorrect arguments
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2018a

 Stream argument with possibly unintended side effects

3-671

https://www.securecoding.cert.org/confluence/x/1AA1
https://wiki.sei.cmu.edu/confluence/x/PdYxBQ

Subtraction or comparison between pointers
to different arrays
Subtraction or comparison between pointers causes undefined behavior

Description
Subtraction or comparison between pointers to different arrays occurs when you
subtract or compare pointers that are null or that point to elements in different arrays.
The relational operators for the comparison are >, <, >=, and <=.

Risk
When you subtract two pointers to elements in the same array, the result is the difference
between the subscripts of the two array elements. Similarly, when you compare two
pointers to array elements, the result is the positions of the pointers relative to each
other. If the pointers are null or point to different arrays, a subtraction or comparison
operation is undefined. If you use the subtraction result as a buffer index, it can cause a
buffer overflow.

Fix
Before you subtract or use relational operators to compare pointers to array elements,
check that they are non-null and that they point to the same array.

Examples

Subtraction Between Pointers to Elements in Different Arrays
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define SIZE20 20

3 Defects

3-672

size_t func(void)
{
 int nums[SIZE20];
 int end;
 int *next_num_ptr = nums;
 size_t free_elements;
 /* Increment next_num_ptr as array fills */

 /* Subtraction operation is undefined unless array nums
 is adjacent to variable end in memory. */
 free_elements = &end - next_num_ptr;
 return free_elements;
}

In this example, the array nums is incrementally filled. Pointer subtraction is then used to
determine how many free elements remain. Unless end points to a memory location one
past the last element of nums, the subtraction operation is undefined.

Subtract the pointer to the last element that was filled from the pointer to the last
element in the array.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define SIZE20 20

size_t func(void)
{
 int nums[SIZE20];
 int *next_num_ptr = nums;
 size_t free_elements;
 /* Increment next_num_ptr as array fills */

 /* Subtraction operation involves pointers to the same array. */
 free_elements = &(nums[SIZE20 - 1]) - next_num_ptr;

 return free_elements + 1;
}

 Subtraction or comparison between pointers to different arrays

3-673

Result Information
Group: Static memory
Language: C | C++
Default: On
Command-Line Syntax: PTR_TO_DIFF_ARRAY
Impact: High
CWE ID: 469
CERT C ID: ARR36-C
ISO/IEC TS 17961 ID: ptrobj

See Also

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2017b

3 Defects

3-674

https://cwe.mitre.org/data/definitions/469.html
https://www.securecoding.cert.org/confluence/x/LIDp

Tainted division operand
Division / operands from an unsecure source

Description
Tainted division operand detects division operations where one or both of the integer
operands is from an unsecure source.

Risk
• If the numerator is the minimum possible value and the denominator is -1, your

division operation overflows because the result cannot be represented by the current
variable size.

• If the denominator is zero, your division operation fails possibly causing your program
to crash.

These risks can be used to execute arbitrary code. This code is usually outside the scope
of a program's implicit security policy.

Fix
Before performing the division, validate the values of the operands. Check for
denominators of 0 or -1, and numerators of the minimum integer value.

Examples
Division of Function Arguments
extern void print_int(int);

int taintedintdivision(int usernum, int userden) {
 int r = usernum/userden;
 print_int(r);
 return r;
}

 Tainted division operand

3-675

This example function divides two argument variables, then prints and returns the result.
The argument values are unknown and can cause division by zero or integer overflow.

One possible correction is to check the values of the numerator and denominator before
performing the division.

#include "limits.h"

extern void print_int(int);

int taintedintdivision(int usernum, int userden) {
 int r = 0;
 if (userden!=0 && !(usernum=INT_MIN && userden==-1)) {
 r = usernum/userden;
 }
 print_int(r);
 return r;
}

Result Information
Group: Tainted Data
Language: C | C++
Default: Off
Command-Line Syntax: TAINTED_INT_DIVISION
Impact: Low
CWE ID: 189, 190, 369
CERT C ID: API00-C, INT32-C, INT33-C
CERT C++ ID: INT32-C, INT33-C
ISO/IEC TS 17961 ID: diverr

See Also
Integer division by zero | Float division by zero | Tainted modulo
operand

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

3 Defects

3-676

https://cwe.mitre.org/data/definitions/189.html
https://cwe.mitre.org/data/definitions/190.html
https://cwe.mitre.org/data/definitions/369.html
https://www.securecoding.cert.org/confluence/x/egAV
https://www.securecoding.cert.org/confluence/x/RgE
https://www.securecoding.cert.org/confluence/x/cAI
https://wiki.sei.cmu.edu/confluence/x/UtYxBQ
https://wiki.sei.cmu.edu/confluence/x/ftYxBQ

Introduced in R2015b

 Tainted division operand

3-677

Tainted modulo operand
Remainder % operands are from an unsecure source

Description
Tainted modulo operand checks the operands of remainder % operations. Bug Finder
flags modulo operations with one or more tainted operands.

Risk
• If the second remainder operand is zero, your remainder operation fails, causing your

program to crash.
• If the second remainder operand is -1, your remainder operation can overflow if the

remainder operation is implemented based on the division operation that can overflow.
• If one of the operands is negative, the operation result is uncertain. For C89, the

modulo operation is not standardized, so the result from negative operands is
implementation-defined.

These risks can be exploited by attackers to gain access to your program or the target in
general.

Fix
Before performing the modulo operation, validate the values of the operands. Check the
second operand for values of 0 and -1. Check both operands for negative values.

Examples
Modulo with Function Arguments
extern void print_int(int);

int taintedintmod(int userden) {
 int rem = 128%userden;

3 Defects

3-678

 print_int(rem);
 return rem;
}

In this example, the function performs a modulo operation by using an input argument.
The argument is not checked before calculating the remainder for values that can crash
the program, such as 0 and -1.

One possible correction is to check the values of the operands before performing the
modulo operation. In this corrected example, the modulo operation continues only if the
second operand is greater than zero.

extern void print_int(int);

int taintedintmod(int userden) {
 int rem = 0;
 if (userden > 0) {
 rem = 128 % userden;
 }
 print_int(rem);
 return rem;
}

Result Information
Group: Tainted Data
Language: C | C++
Default: Off
Command-Line Syntax: TAINTED_INT_MOD
Impact: Low
CWE ID: 369, 682
CERT C ID: API00-C, INT10-C, INT32-C, INT33-C
CERT C++ ID: INT32-C, INT33-C
ISO/IEC TS 17961 ID: diverr, intoflow

See Also
Integer division by zero | Tainted division operand

 Tainted modulo operand

3-679

https://cwe.mitre.org/data/definitions/369.html
https://cwe.mitre.org/data/definitions/682.html
https://www.securecoding.cert.org/confluence/display/c/API00-C.+Functions+should+validate+their+parameters
https://www.securecoding.cert.org/confluence/x/NQBi
https://www.securecoding.cert.org/confluence/x/RgE
https://www.securecoding.cert.org/confluence/x/cAI
https://wiki.sei.cmu.edu/confluence/x/UtYxBQ
https://wiki.sei.cmu.edu/confluence/x/ftYxBQ

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2015b

3 Defects

3-680

Tainted NULL or non-null-terminated string
Argument is from an unsecure source and may be NULL or not NULL-terminated

Description
Tainted NULL or non-null-terminated string looks for strings from unsecure sources
that are being used in string manipulation routines that implicitly dereference the string
buffer. For example, strcpy or sprintf.

Tainted NULL or non-null-terminated string raises no defect for a string returned
from a call to scanf-family variadic functions. Similarly, no defect is raised when you
pass the string with a %s specifier to printf-family variadic functions.

Note If you reference a string using the form ptr[i], *ptr, or pointer arithmetic, Bug
Finder raises a Use of tainted pointer defect instead. The Tainted NULL or non-null-
terminated string defect is raised only when the pointer is used as a string.

Risk
If a string is from an unsecure source, it is possible that an attacker manipulated the
string or pointed the string pointer to a different memory location.

If the string is NULL, the string routine cannot dereference the string, causing the
program to crash. If the string is not null-terminated, the string routine might not know
when the string ends. This error can cause you to write out of bounds, causing a buffer
overflow.

Fix
Validate the string before you use it. Check that:

• The string is not NULL.
• The string is null-terminated
• The size of the string matches the expected size.

 Tainted NULL or non-null-terminated string

3-681

Examples

Getting String from Input Argument
#include <stdio.h>
#include <string.h>
#include <stdlib.h>

#define SIZE128 128

extern void print_str(const char*);

void warningMsg(char* userstr)
{
 char str[SIZE128] = "Warning: ";
 strncat(str, userstr, SIZE128-(strlen(str)+1));
 print_str(str);
}

void errorMsg(char* userstr)
{
 char str[SIZE128] = "Error: ";
 strncat(str, userstr, SIZE128-(strlen(str)+1));
 print_str(str);
}

In this example, the string str is concatenated with the argument userstr. The value of
userstr is unknown. If the size of userstr is greater than the space available, the
concatenation overflows.

One possible correction is to check the size of userstr and make sure that the string is
null-terminated before using it in strncat. This example uses a helper function,
sansitize_str, to validate the string. The defects are concentrated in this function.

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

#define SIZE128 128

extern void print_str(const char*);

3 Defects

3-682

int sanitize_str(char* s) {
 int res = 0;
 if (s && (strlen(s) > 0)) { // TAINTED_STRING only flagged here
 // - string is not null
 // - string has a positive and limited size
 // - TAINTED_STRING on strlen used as a firewall
 res = 1;
 }
 return res;
}

void warningMsg(char* userstr)
{
 char str[SIZE128] = "Warning: ";
 if (sanitize_str(userstr))
 strncat(str, userstr, SIZE128-(strlen(str)+1));
 print_str(str);
}

void errorMsg(char* userstr)
{
 char str[SIZE128] = "Error: ";
 if (sanitize_str(userstr))
 strncat(str, userstr, SIZE128-(strlen(str)+1));
 print_str(str);
}

Another possible correction is to call function errorMsg and warningMsg with specific
strings.

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

#define SIZE128 128

extern void print_str(const char*);

void warningMsg(char* userstr)
{
 char str[SIZE128] = "Warning: ";
 strncat(str, userstr, SIZE128-(strlen(str)+1));
 print_str(str);
}

 Tainted NULL or non-null-terminated string

3-683

void errorMsg(char* userstr)
{
 char str[SIZE128] = "Error: ";
 strncat(str, userstr, SIZE128-(strlen(str)+1));
 print_str(str);
}

int manageSensorValue(int sensorValue) {
 int ret = sensorValue;
 if (sensorValue < 0) {
 errorMsg("sensor value should be positive");
 exit(1);
 } else if (sensorValue > 50) {
 warningMsg("sensor value greater than 50 (applying threshold)...");
 sensorValue = 50;
 }

 return sensorValue;
}

Result Information
Group: Tainted Data
Language: C | C++
Default: Off
Command-Line Syntax: TAINTED_STRING
Impact: Low
CWE ID: 120, 170, 476, 690, 822
CERT C ID: STR31-C, STR32-C, FIO17-C, ENV01-C, API00-C
CERT C++ ID: STR31-C, STR32-C, STR50-CPP
ISO/IEC TS 17961 ID: nonnullcs, taintstrcpy, taintformatio

See Also
Tainted string format

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

3 Defects

3-684

https://cwe.mitre.org/data/definitions/120.html
https://cwe.mitre.org/data/definitions/170.html
https://cwe.mitre.org/data/definitions/476.html
https://cwe.mitre.org/data/definitions/690.html
https://cwe.mitre.org/data/definitions/822.html
https://www.securecoding.cert.org/confluence/x/KAE
https://www.securecoding.cert.org/confluence/x/KgE
https://www.securecoding.cert.org/confluence/x/-AC7AQ
https://www.securecoding.cert.org/confluence/x/OIAc
https://www.securecoding.cert.org/confluence/x/egAV
https://wiki.sei.cmu.edu/confluence/x/sNUxBQ
https://wiki.sei.cmu.edu/confluence/x/r9UxBQ
https://wiki.sei.cmu.edu/confluence/x/i3w-BQ

Introduced in R2015b

 Tainted NULL or non-null-terminated string

3-685

Tainted sign change conversion
Value from an unsecure source changes sign

Description
Tainted sign change conversion looks for values from unsecure sources that are
converted, implicitly or explicitly, from signed to unsigned values.

For example, functions that use size_t as arguments implicitly convert the argument to
an unsigned integer. Some functions that implicitly convert size_t are:

bcmp
memcpy
memmove
strncmp
strncpy
calloc
malloc
memalign

Risk
If you convert a small negative number to unsigned, the result is a large positive number.
The large positive number can create security vulnerabilities. For example, if you use the
unsigned value in:

• Memory size routines — causes allocating memory issues.
• String manipulation routines — causes buffer overflow.
• Loop boundaries — causes infinite loops.

Fix
To avoid converting unsigned negative values, check that the value being converted is
within an acceptable range. For example, if the value represents a size, validate that the
value is not negative and less than the maximum value size.

3 Defects

3-686

Examples

Set Memory Value with Size Argument
#include <stdlib.h>
#include <string.h>

enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};

void bug_taintedsignchange(int size) {
 char str[SIZE128] = "";
 if (size<SIZE128) {
 memset(str, 'c', size);
 }
}

In this example, a char buffer is created and filled using memset. The size argument to
memset is an input argument to the function.

The call to memset implicitly converts size to unsigned integer. If size is a large
negative number, the absolute value could be too large to represent as an integer, causing
a buffer overflow.

One possible correction is to check if size is inside the valid range. This correction
checks if size is greater than zero and less than the buffer size before calling memset.

#include <stdlib.h>
#include <string.h>

enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};

void corrected_taintedsignchange(int size) {
 char str[SIZE128] = "";
 if (size>0 && size<SIZE128) {

 Tainted sign change conversion

3-687

 memset(str, 'c', size);
 }
}

Result Information
Group: Tainted Data
Language: C | C++
Default: Off
Command-Line Syntax: TAINTED_SIGN_CHANGE
Impact: Medium
CWE ID: 128, 131, 192, 194, 195
CERT C ID: API00-C, INT02-C, INT31-C, MEM04-C, MEM11-C, MSC21-C
CERT C++ ID: INT31-C
ISO/IEC TS 17961 ID: taintsink

See Also
Sign change integer conversion overflow

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2015b

3 Defects

3-688

https://cwe.mitre.org/data/definitions/128.html
https://cwe.mitre.org/data/definitions/131.html
https://cwe.mitre.org/data/definitions/192.html
https://cwe.mitre.org/data/definitions/194.html
https://cwe.mitre.org/data/definitions/195.html
https://www.securecoding.cert.org/confluence/x/egAV
https://www.securecoding.cert.org/confluence/x/QgE
https://www.securecoding.cert.org/confluence/x/RQE
https://www.securecoding.cert.org/confluence/x/GQI
https://www.securecoding.cert.org/confluence/x/sQCuAQ
https://www.securecoding.cert.org/confluence/x/EwDJAQ
https://wiki.sei.cmu.edu/confluence/x/U9YxBQ

Tainted size of variable length array
Size of the variable-length array (VLA) is from an unsecure source and may be zero,
negative, or too large

Description
Tainted size of variable length array detects variable length arrays (VLA) whose size is
from an unsecure source.

Risk
If an attacker changed the size of your VLA to an unexpected value, it can cause your
program to crash or behave unexpectedly.

If the size is non-positive, the behavior of the VLA is undefined. Your program does not
perform as expected.

If the size is unbounded, the VLA can cause memory exhaustion or stack overflow.

Fix
Validate your VLA size to make sure that it is positive and less than a maximum value.

Examples

Input Argument Used as Size of VLA
enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};

int taintedvlasize(int size) {

 Tainted size of variable length array

3-689

 int tabvla[size];
 int res = 0;
 for (int i=0 ; i<SIZE10 ; ++i) {
 tabvla[i] = i*i;
 res += tabvla[i];
 }
 return res;
}

In this example, a variable length array size is based on an input argument. Because this
input argument value is not checked, the size may be negative or too large.

One possible correction is to check the size variable before creating the variable length
array. This example checks if the size is larger than 10 and less than 100, before creating
the VLA

enum {
 SIZE10 = 10,
 SIZE100 = 100,
 SIZE128 = 128
};

int taintedvlasize(int size) {
 int res = 0;
 if (size>SIZE10 && size<SIZE100) {
 int tabvla[size];
 for (int i=0 ; i<SIZE10 ; ++i) {
 tabvla[i] = i*i;
 res += tabvla[i];
 }
 }
 return res;
}

Result Information
Group: Tainted Data
Language: C | C++
Default: Off
Command-Line Syntax: TAINTED_VLA_SIZE
Impact: Medium

3 Defects

3-690

CWE ID: 128, 131, 770, 789
CERT C ID: API00-C, ARR32-C, INT04-C, MEM04-C, MEM05-C
ISO/IEC TS 17961 ID: taintsink

See Also
Memory allocation with tainted size

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2015b

 Tainted size of variable length array

3-691

https://cwe.mitre.org/data/definitions/128.html
https://cwe.mitre.org/data/definitions/131.html
https://cwe.mitre.org/data/definitions/770.html
https://cwe.mitre.org/data/definitions/789.html
https://www.securecoding.cert.org/confluence/x/egAV
https://www.securecoding.cert.org/confluence/x/eQo
https://www.securecoding.cert.org/confluence/x/kgI
https://www.securecoding.cert.org/confluence/x/GQI
https://www.securecoding.cert.org/confluence/x/bAAV

Tainted string format
Input format argument is from an unsecure source

Description
Tainted string format detects string formatting with printf-style functions that
contain elements from unsecure sources.

Risk
If you use externally controlled elements to format a string, you can cause buffer overflow
or data-representation problems. An attacker can use these string formatting elements to
view the contents of a stack using %x or write to a stack using %n.

Fix
Pass a static string to format string functions. This fix ensures that an external actor
cannot control the string.

Another possible fix is to allow only the expected number of arguments. If possible, use
functions that do not support the vulnerable %n operator in format strings.

Examples
Get Elements from User Input
#include "stdio.h"

void taintedstringformat(char* userstr) {
 printf(userstr);
}

This example prints the input argument userstr. The string is unknown. If it contains
elements such as %, printf can interpret userstr as a string format instead of a string,
causing your program to crash.

3 Defects

3-692

One possible correction is to print userstr explicitly as a string so that there is no
ambiguity.

#include "stdio.h"

void taintedstringformat(char* userstr) {
 printf("%.20s", userstr);
}

Result Information
Group: Tainted Data
Language: C | C++
Default: Off
Command-Line Syntax: TAINTED_STRING_FORMAT
Impact: Low
CWE ID: 134
CERT C ID: API00-C, FIO30-C
CERT C++ ID: FIO30-C
ISO/IEC TS 17961 ID: usrfmt

See Also
Tainted NULL or non-null-terminated string

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2015b

 Tainted string format

3-693

https://cwe.mitre.org/data/definitions/134.html
https://www.securecoding.cert.org/confluence/x/egAV
https://www.securecoding.cert.org/confluence/x/WwE
https://wiki.sei.cmu.edu/confluence/x/RdYxBQ

Thread-specific memory leak
Dynamically allocated thread-specific memory not freed before end of thread

Description
Thread-specific memory leak occurs when you do not free thread-specific dynamically
allocated memory before the end of a thread.

To create thread-specific storage, you generally do these steps:

1 You create a key for thread-specific storage.
2 You create the threads.
3 In each thread, you allocate storage dynamically and then associate the key with this

storage.

After the association, you can read the stored data later using the key.
4 Before the end of the thread, you free the thread-specific memory using the key.

The checker flags execution paths in the thread where the last step is missing.

The checker works on these families of functions:

• tss_get and tss_set (C11)
• pthread_getspecific and pthread_setspecific (POSIX)

Risk
The data stored in the memory is available to other processes even after the threads end
(memory leak). Besides security vulnerabilities, memory leaks can shrink the amount of
available memory and reduce performance.

Fix
Free dynamically allocated memory before the end of a thread.

You can explicitly free dynamically allocated memory with functions such as free.

3 Defects

3-694

Alternatively, when you create a key, you can associate a destructor function with the key.
The destructor function is called with the key value as argument at the end of a thread. In
the body of the destructor function, you can free any memory associated with the key. If
you use this method, Bug Finder still flags a defect. Ignore this defect with appropriate
comments. See “Address Polyspace Results Through Bug Fixes or Comments”.

Examples
Memory Not Freed at End of Thread
#include <threads.h>
#include <stdlib.h>

/* Global key to the thread-specific storage */
tss_t key;
enum { MAX_THREADS = 3 };

int add_data(void) {
 int *data = (int *)malloc(2 * sizeof(int));
 if (data == NULL) {
 return -1; /* Report error */
 }
 data[0] = 0;
 data[1] = 1;

 if (thrd_success != tss_set(key, (void *)data)) {
 /* Handle error */
 }
 return 0;
}

void print_data(void) {
 /* Get this thread's global data from key */
 int *data = tss_get(key);

 if (data != NULL) {
 /* Print data */
 }
}

int func(void *dummy) {

 Thread-specific memory leak

3-695

 if (add_data() != 0) {
 return -1; /* Report error */
 }
 print_data();
 return 0;
}

int main(void) {
 thrd_t thread_id[MAX_THREADS];

 /* Create the key before creating the threads */
 if (thrd_success != tss_create(&key, NULL)) {
 /* Handle error */
 }

 /* Create threads that would store specific storage */
 for (size_t i = 0; i < MAX_THREADS; i++) {
 if (thrd_success != thrd_create(&thread_id[i], func, NULL)) {
 /* Handle error */
 }
 }

 for (size_t i = 0; i < MAX_THREADS; i++) {
 if (thrd_success != thrd_join(thread_id[i], NULL)) {
 /* Handle error */
 }
 }

 tss_delete(key);
 return 0;
}

In this example, the start function of each thread func calls two functions:

• add_data: This function allocates storage dynamically and associates the storage
with a key using the tss_set function.

• print_data: This function reads the stored data using the tss_get function.

At the points where func returns, the dynamically allocated storage has not been freed.

One possible correction is to free dynamically allocated memory explicitly before leaving
the start function of a thread. See the highlighted change in the corrected version.

3 Defects

3-696

In this corrected version, a defect still appears on the return statement in the error
handling section of func. The defect cannot occur in practice because the error handling
section is entered only if dynamic memory allocation fails. Ignore this remaining defect
with appropriate comments. See “Address Polyspace Results Through Bug Fixes or
Comments”.

#include <threads.h>
#include <stdlib.h>

/* Global key to the thread-specific storage */
tss_t key;
enum { MAX_THREADS = 3 };

int add_data(void) {
 int *data = (int *)malloc(2 * sizeof(int));
 if (data == NULL) {
 return -1; /* Report error */
 }
 data[0] = 0;
 data[1] = 1;

 if (thrd_success != tss_set(key, (void *)data)) {
 /* Handle error */
 }
 return 0;
}

void print_data(void) {
 /* Get this thread's global data from key */
 int *data = tss_get(key);

 if (data != NULL) {
 /* Print data */
 }
}

int func(void *dummy) {
 if (add_data() != 0) {
 return -1; /* Report error */
 }
 print_data();
 free(tss_get(key));
 return 0;

 Thread-specific memory leak

3-697

}

int main(void) {
 thrd_t thread_id[MAX_THREADS];

 /* Create the key before creating the threads */
 if (thrd_success != tss_create(&key, NULL)) {
 /* Handle error */
 }

 /* Create threads that would store specific storage */
 for (size_t i = 0; i < MAX_THREADS; i++) {
 if (thrd_success != thrd_create(&thread_id[i], func, NULL)) {
 /* Handle error */
 }
 }

 for (size_t i = 0; i < MAX_THREADS; i++) {
 if (thrd_success != thrd_join(thread_id[i], NULL)) {
 /* Handle error */
 }
 }

 tss_delete(key);
 return 0;
}

Result Information
Group: Concurrency
Language: C | C++
Default: Off
Command-Line Syntax: THREAD_MEM_LEAK
Impact: Medium
CWE ID: 401, 404
CERT C ID: CON30-C
ISO/IEC TS 17961 ID: fileclose

3 Defects

3-698

https://cwe.mitre.org/data/definitions/401.html
https://cwe.mitre.org/data/definitions/404.html
https://wiki.sei.cmu.edu/confluence/x/gtYxBQ

See Also

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2018b

 Thread-specific memory leak

3-699

Too many va_arg calls for current argument
list
Number of calls to va_arg exceeds number of arguments passed to variadic function

Description
Too many va_arg calls for current argument list occurs when the number of calls to
va_arg exceeds the number of arguments passed to the corresponding variadic function.
The analysis raises a defect only when the variadic function is called.

Too many va_arg calls for current argument list does not raise a defect when:

• The number of calls to va_arg inside the variadic function is indeterminate. For
example, if the calls are from an external source.

• The va_list used in va_arg is invalid.

Risk
When you call va_arg and there is no next argument available in va_list, the behavior
is undefined. The call to va_arg might corrupt data or return an unexpected result.

Fix
Ensure that you pass the correct number of arguments to the variadic function.

Examples

No Argument Available When Calling va_arg
#include <stdarg.h>
#include <stddef.h>
#include <math.h>

3 Defects

3-700

/* variadic function defined with
* one named argument 'count'
*/
int variadic_func(int count, ...) {
 int result = -1;
 va_list ap;
 va_start(ap, count);
 if (count > 0) {
 result = va_arg(ap, int);
 count --;
 if (count > 0) {
/* No further argument available
* in va_list when calling va_arg
*/

 result += va_arg(ap, int);
 }
 }
 va_end(ap);
 return result;
}

void func(void) {

 (void)variadic_func(2, 100);

}

In this example, the named argument and only one variadic argument are passed to
variadic_func() when it is called inside func(). On the second call to va_arg, no
further variadic argument is available in ap and the behavior is undefined.

One possible correction is to ensure that you pass the correct number of arguments to the
variadic function.

#include <stdarg.h>
#include <stddef.h>
#include <math.h>

/* variadic function defined with
* one named argument 'count'
*/

int variadic_func(int count, ...) {

 Too many va_arg calls for current argument list

3-701

 int result = -1;
 va_list ap;
 va_start(ap, count);
 if (count > 0) {
 result = va_arg(ap, int);
 count --;
 if (count > 0) {

/* The correct number of arguments is
* passed to va_list when variadic_func()
* is called inside func()
*/
 result += va_arg(ap, int);
 }
 }
 va_end(ap);
 return result;
}

void func(void) {

 (void)variadic_func(2, 100, 200);

}

Result Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: TOO_MANY_VA_ARG_CALLS
Impact: Medium
CWE ID: 685
CERT C ID: EXP47-C
CERT C++ ID: EXP47-C

See Also

Topics
Invalid va_list argument

3 Defects

3-702

https://cwe.mitre.org/data/definitions/685.html
https://www.securecoding.cert.org/confluence/x/BYAQCw
https://wiki.sei.cmu.edu/confluence/x/d9UxBQ

Incorrect data type passed to va_arg
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2018a

 Too many va_arg calls for current argument list

3-703

Typedef mismatch
Mismatch between typedef statements

Description
Typedef mismatch detects typedef statements with different underlying types for these
fundamental types:

• size_t
• ssize_t
• wchar_t
• ptrdiff_t

Risk
If you change the underlying type of size_t, ssize_t, wchar_t, or ptrdiff_t, you
have inconsistent definitions of the same type. Compilation units with different include
paths can potentially use different-sized types causing conflicts in your program.

For example, say that you define a function in one compilation unit that redefines size_t
as unsigned long. But in another compilation unit that uses the size_t definition from
<stddef.h>, you use the same function as an extern declaration. Your program will
encounter a mismatch between the function declaration and function definition.

Fix
Use consistent type definitions. For example:

• Remove custom type definitions for these fundamental types. Only use system
definitions.

• Use the same size for all compilation units. Move your typedef to a shared header
file.

3 Defects

3-704

Examples

Two Definitions of size_t
file1.c

typedef unsigned char size_t;

void func2()
{
 size_t var = 0;
 /*... more code ... */
}

file2.c

#include <stddef.h>

void func1()
{
 size_t var = 0;
 /*... more code ... */
}

In this example, Polyspace flags the definition of size_t in file1.c as a defect. This
definition is a typedef mismatch because another file in your project, file2.c, includes
stddef.h, which defines size_t as unsigned long.

One possible correction is to use the system definition of size_t in stddef.h to avoid
conflicting type definitions.

file1.c

#include <stddef.h>

void func2()
{
 size_t var = 0;
 /*... more code ... */
}

file2.c

 Typedef mismatch

3-705

#include <stddef.h>

void func1()
{
 size_t var = 0;
 /*... more code ... */
}

One possible correction is to use a shared header file to store your type definition that
gets included in both files.

types.h

typedef unsigned char size_t;

file1.c

#include "types.h"

void func2()
{
 size_t var = 0;
 /*... more code ... */
}

file2.c

#include "types.h"

void func1()
{
 size_t var = 0;
 /*... more code ... */
}

Result Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: TYPEDEF_MISMATCH
Impact: High

3 Defects

3-706

See Also
Declaration mismatch

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2016b

 Typedef mismatch

3-707

Umask used with chmod-style arguments
Argument to umask allows external user too much control

Description
Umask used with chmod-style arguments checks for umask commands that have an
argument specified in the style of arguments to chmod.

For new files, the umask value specifies which permissions not to set, in other words
which permissions to remove. The umask argument is bitwise-negated and then applied to
new file permissions.

In contrast, chmod sets the permissions as you specify them.

Risk
If you use chmod-style arguments, you specify opposite permissions of what you want.
This mistake can give external users unintended read/write access to new files and
folders.

Fix
Set the umask so that the user (u) has fewer permissions turned off than the group (g).
Set umask so that the group has fewer permissions turned off than other users (o), or u
<= g <= o.

You can see the umask value by calling,

umask

or the symbolic value by calling,

umask -S

3 Defects

3-708

Examples

Setting the Default Mask
#include <stdio.h>
#include <assert.h>
#include <sys/types.h>
#include <sys/stat.h>

typedef mode_t (*umask_func)(mode_t);

const mode_t default_mode = (
 S_IRUSR /* 00400 */
 | S_IWUSR /* 00200 */
 | S_IRGRP /* 00040 */
 | S_IWGRP /* 00020 */
 | S_IROTH /* 00004 */
 | S_IWOTH /* 00002 */
); /* 00666 (i.e. -rw-rw-rw-) */

static void my_umask(mode_t mode)
{
 umask(mode);
}

int umask_use(mode_t m)
{
 my_umask(default_mode);
 return 0;
}

This example uses a function called my_umask to set the default mask mode. However,
the default_mode variable gives the permissions 666 or -rw-rw-rw. umask negates
this value. However, this negation means the default mask mode turns off read/write
permissions for the user, group users, and other outside users.

One possible correction is to negate the default_mode argument to my_umask. This
correction nullifies the negation umask for new files.

#include <stdio.h>
#include <assert.h>
#include <sys/types.h>

 Umask used with chmod-style arguments

3-709

#include <sys/stat.h>

typedef mode_t (*umask_func)(mode_t);

const mode_t default_mode = (
 S_IRUSR /* 00400 */
 | S_IWUSR /* 00200 */
 | S_IRGRP /* 00040 */
 | S_IWGRP /* 00020 */
 | S_IROTH /* 00004 */
 | S_IWOTH /* 00002 */
); /* 00666 (i.e. -rw-rw-rw-) */

static void my_umask(mode_t mode)
{
 umask(mode);
}

int umask_use(mode_t m)
{
 my_umask(~default_mode);
 return 0;
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: BAD_UMASK
Impact: Low
CWE ID: 560, 922
CERT C ID: FIO06-C

See Also
Vulnerable permission assignments

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

3 Defects

3-710

https://cwe.mitre.org/data/definitions/560.html
https://cwe.mitre.org/data/definitions/922.html
https://www.securecoding.cert.org/confluence/x/KQU

External Websites
umask — Linux Manual Page

Introduced in R2015b

 Umask used with chmod-style arguments

3-711

http://man7.org/linux/man-pages/man2/umask.2.html

Uncleared sensitive data in stack
Variable in stack is not cleared and contains sensitive data

Description
Uncleared sensitive data in stack detects static memory containing sensitive data. If
you do not clear the sensitive data from your stack before exiting the function or
program, Bug Finder raises a defect on the last curly brace.

Risk
Leaving sensitive information in your stack, such as passwords or user information,
allows an attacker additional access to the information after your program has ended.

Fix
Before exiting a function or program, clear out the memory zones that contain sensitive
data by using memset or SecureZeroMemory.

Examples

Static Buffer of Password Information
#include <unistd.h>
#include <sys/types.h>
#include <pwd.h>

void bug_sensitivestacknotcleared(const char * my_user) {
 struct passwd* result, pwd;
 long bufsize = sysconf(_SC_GETPW_R_SIZE_MAX);
 char buf[1024] = "";
 getpwnam_r(my_user, &pwd, buf, bufsize, &result);
}

3 Defects

3-712

In this example, a static buffer is filled with password information. The program frees the
stack memory at the end of the program. However, the data is still accessible from the
memory.

One possible correction is to write over the memory before exiting the function. This
example uses memset to clear the data from the buffer memory.

#include <unistd.h>
#include <string.h>
#include <sys/types.h>
#include <pwd.h>
#include <assert.h>

#define isNull(arr) for(int i=0; i<(sizeof(arr)/sizeof(arr[0])); i++) assert(arr[i]==0)

void corrected_sensitivestacknotcleared(const char * my_user) {
 struct passwd* result, pwd;
 long bufsize = sysconf(_SC_GETPW_R_SIZE_MAX);
 char buf[1024] = "";
 getpwnam_r(my_user, &pwd, buf, bufsize, &result);
 memset(buf, 0, (size_t)1024);
 isNull(buf);
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: SENSITIVE_STACK_NOT_CLEARED
Impact: Medium
CWE ID: 226, 312, 316
CERT C ID: MEM03-C, MSC18-C

See Also
Sensitive heap memory not cleared before release | Sensitive data
printed out

 Uncleared sensitive data in stack

3-713

https://cwe.mitre.org/data/definitions/226.html
https://cwe.mitre.org/data/definitions/312.html
https://cwe.mitre.org/data/definitions/316.html
https://www.securecoding.cert.org/confluence/x/4A8
https://www.securecoding.cert.org/confluence/x/vQFqAQ

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2015b

3 Defects

3-714

Universal character name from token
concatenation
You create a universal character name by joining tokens with ## operator

Description
Universal character name from token concatenation occurs when two preprocessing
tokens joined with a ## operator create a universal character name. A universal character
name begins with \u or \U followed by hexadecimal digits. It represents a character not
found in the basic character set.

For instance, you form the character \u0401 by joining two tokens:

#define assign(uc1, uc2, val) uc1##uc2 = val
...
assign(\u04, 01, 4);

Risk
The C11 Standard (Sec. 5.1.1.2) states that if a universal character name is formed by
token concatenation, the behavior is undefined.

Fix
Use the universal character name directly instead of producing it through token
concatenation.

Examples

Universal Character Name from Token Concatenation
#define assign(uc1, uc2, val) uc1##uc2 = val

int func(void) {

 Universal character name from token concatenation

3-715

 int \u0401 = 0;
 assign(\u04, 01, 4);
 return \u0401;
}

In this example, the assign macro, when expanded, joins the two tokens \u04 and 01 to
form the universal character name \u0401.

One possible correction is to use the universal character name \u0401 directly. The
correction redefines the assign macro so that it does not join tokens.

#define assign(ucn, val) ucn = val

int func(void) {
 int \u0401 = 0;
 assign(\u0401, 4);
 return \u0401;
}

Result Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: PRE_UCNAME_JOIN_TOKENS
Impact: Low
CERT C ID: PRE30-C
CERT C++ ID: PRE30-C

See Also
MISRA C:2012 Rule 20.10

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2018a

3 Defects

3-716

https://www.securecoding.cert.org/confluence/x/Zg4
https://wiki.sei.cmu.edu/confluence/x/UdcxBQ

Unprotected dynamic memory allocation
Pointer returned from dynamic allocation not checked for NULL value

Description
Unprotected dynamic memory allocation occurs when the code does not check
whether or not the dynamic memory allocation succeeded.

When memory is dynamically allocated using malloc, calloc, or realloc, it returns a
value NULL if the requested memory is not available. If the code following the allocation
accesses the memory block without checking for the NULL value, this access is not
protected from failures.

Examples

Unprotected dynamic memory allocation error
#include <stdlib.h>

void Assign_Value(void)
{
 int* p = (int*)calloc(5, sizeof(int));

 *p = 2;
 /* Defect: p is not checked for NULL value */

 free(p);
}

If the memory allocation fails, the function calloc returns NULL to p. Before accessing
the memory through p, the code does not check whether p is NULL

One possible correction is to check whether p has value NULL before dereference.

#include <stdlib.h>

 Unprotected dynamic memory allocation

3-717

void Assign_Value(void)
 {
 int* p = (int*)calloc(5, sizeof(int));

 /* Fix: Check if p is NULL */
 if(p!=NULL) *p = 2;

 free(p);
 }

Check Information
Group: Dynamic memory
Language: C | C++
Default: Off
Command-Line Syntax: UNPROTECTED_MEMORY_ALLOCATION
Impact: Low
CWE ID: 253, 690, 789
CERT C ID: MEM10-C, MEM11-C, ERR33-C
CERT C++ ID: ERR33-C, MEM52-CPP
ISO/IEC TS 17961 ID: liberr

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2013b

3 Defects

3-718

https://cwe.mitre.org/data/definitions/253.html
https://cwe.mitre.org/data/definitions/690.html
https://cwe.mitre.org/data/definitions/789.html
https://www.securecoding.cert.org/confluence/x/jgEOAQ
https://www.securecoding.cert.org/confluence/x/sQCuAQ
https://www.securecoding.cert.org/confluence/x/w4C4Ag
https://wiki.sei.cmu.edu/confluence/x/kNYxBQ
https://wiki.sei.cmu.edu/confluence/x/u3w-BQ

Unreachable code
Code not executed because of preceding control-flow statements

Description
Unreachable code defects occur on code which cannot be reached because of the
preceding code.

Statements such as break, goto, and return, move the flow of the program to another
section or function. Because of this flow escape, the statements following the control-flow
code, statistically, do not execute, and therefore the statements are unreachable.

This check also finds code following trivial infinite loops, such as while(1). These types
of loops only release the flow of the program by exiting the program. This type of exit
causes code after the infinite loop to be unreachable.

Examples

Unreachable Code After Return
typedef enum _suit {UNKNOWN_SUIT, SPADES, HEARTS, DIAMONDS, CLUBS} suit;
suit nextcard(void);
void guess(suit s);

suit deal(void){
 suit card = nextcard();
 if((card < SPADES) || (card > CLUBS))
 card = UNKNOWN_SUIT;
 return card;

 if (card < HEARTS) {
 guess(card);
 }
 return card;
}

 Unreachable code

3-719

In this example, there are missing braces and misleading indentation. The first return
statement changes the flow of code back to where the function was called. Because of this
return statement, the if-block and second return statement do not execute.

If you correct the indentation and the braces, the error becomes clearer.

typedef enum _suit {UNKNOWN_SUIT, SPADES, HEARTS, DIAMONDS, CLUBS} suit;
suit nextcard(void);
void guess(suit s);

suit deal(void){
 suit card = nextcard();
 if((card < SPADES) || (card > CLUBS)){
 card = UNKNOWN_SUIT;
 }
 return card;

 if (card < HEARTS) {
 guess(card);
 }
 return card;
}

One possible correction is to remove the escape statement. In this example, remove the
first return statement to reach the final if statement.

typedef enum _suit {UNKNOWN_SUIT, SPADES, HEARTS, DIAMONDS, CLUBS} suit;
suit nextcard(void);
void guess(suit s);

suit deal(void){
 suit card = nextcard();
 if((card < SPADES) || (card > CLUBS))
 {
 card = UNKNOWN_SUIT;
 }

 if(card < HEARTS)
 {
 guess(card);
 }
 return card;
}

3 Defects

3-720

Another possible correction is to remove the unreachable code if you do not need it.
Because the function does not reach the second if-statement, removing it simplifies the
code and does not change the program behavior.

typedef enum _suit {UNKNOWN_SUIT, SPADES, HEARTS, DIAMONDS, CLUBS} suit;
suit nextcard(void);
void guess(suit s);

suit deal(void){
 suit card = nextcard();
 if((card < SPADES) || (card > CLUBS))
 {
 card = UNKNOWN_SUIT;
 }
 return card;
}

Infinite Loop Causing Unreachable Code
int add_apples(int apple) {
 int count = 1;
 while(1) {
 if(apple < 99){
 apple++;
 count++;
 }else{
 count--;
 }
 }
 return count;
}

In this example, the while(1) statement creates an infinite loop. The return count
statement following this infinite loop is unreachable because the only way to exit this
infinite loop is to exit the program.

One possible correction is to change the loop condition to make the while loop finite. In
the example correction here, the loop uses the statement from the if condition: apple <
99.

int add_apples1(int apple) {
 int count = 0;

 Unreachable code

3-721

 while(apple < 99) {
 apple++;
 count++;
 }
 if(count == 0)
 count = -1;
 return count;
}

Another possible correction is to add a break from the infinite loop, so there is a
possibility of reaching code after the infinite loop. In this example, a break is added to
the else block making the return count statement reachable.

int add_apples(int apple) {
 int count = 1;
 while(1) {
 if(apple < 99)
 {
 apple++;
 count++;
 }else{
 count--;
 break;
 }
 }
 return count;
}

Another possible correction is to remove the unreachable code. This correction cleans up
the code and makes it easier to review and maintain. In this example, remove the return
statement and change the function return type to void.

void add_apples(int apple) {
 int count = 1;
 while(1) {
 if(apple < 99)
 {
 apple++;
 count++;
 }else{
 count--;
 }

3 Defects

3-722

 }
}

Check Information
Group: Data flow
Language: C | C++
Default: On
Command-Line Syntax: UNREACHABLE
Impact: Medium
CWE ID: 561
CERT C ID: MSC01-C, MSC07-C, MSC12-C
ISO/IEC TS 17961 ID: swtchdflt

See Also
Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Code deactivated by constant false condition | Dead code | Useless if

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2013b

 Unreachable code

3-723

https://cwe.mitre.org/data/definitions/561.html
https://www.securecoding.cert.org/confluence/x/YgE
https://www.securecoding.cert.org/confluence/x/JwAy
https://www.securecoding.cert.org/confluence/x/NYA5

Unreliable cast of function pointer
Function pointer cast to another function pointer with different argument or return type

Description
Unreliable cast of function pointer occurs when a function pointer is cast to another
function pointer that has different argument or return type.

This defect applies only if the code language for the project is C.

Examples

Unreliable cast of function pointer error
#include <stdio.h>
#include <math.h>
#include <stdio.h>
#define PI 3.142

double Calculate_Sum(int (*fptr)(double))
{
 double sum = 0.0;
 double y;

 for (int i = 0; i <= 100; i++)
 {
 y = (*fptr)(i*PI/100);
 sum += y;
 }
 return sum / 100;
}

int main(void)
{
 double (*fp)(double);
 double sum;

3 Defects

3-724

 fp = sin;
 sum = Calculate_Sum(fp);
 /* Defect: fp implicitly cast to int(*) (double) */

 printf("sum(sin): %f\n", sum);
 return 0;
}

The function pointer fp is declared as double (*)(double). However in passing it to
function Calculate_Sum, fp is implicitly cast to int (*)(double).

One possible correction is to check that the function pointer in the definition of
Calculate_Sum has the same argument and return type as fp. This step makes sure
that fp is not implicitly cast to a different argument or return type.

#include <stdio.h>
#include <math.h>
#include <stdio.h>
define PI 3.142

/*Fix: fptr has same argument and return type everywhere*/
double Calculate_Sum(double (*fptr)(double))
{
 double sum = 0.0;
 double y;

 for (int i = 0; i <= 100; i++)
 {
 y = (*fptr)(i*PI/100);
 sum += y;
 }
 return sum / 100;
}

int main(void)
{
 double (*fp)(double);
 double sum;

 fp = sin;
 sum = Calculate_Sum(fp);
 printf("sum(sin): %f\n", sum);

 Unreliable cast of function pointer

3-725

 return 0;
}

Check Information
Group: Static memory
Language: C | C++
Default: On
Command-Line Syntax: FUNC_CAST
Impact: Medium
CERT C ID: EXP37-C, MSC15-C
CERT C++ ID: EXP37-C
ISO/IEC TS 17961 ID: argcomptaintnoproto

See Also
Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Unreliable cast of pointer

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2013b

3 Defects

3-726

https://www.securecoding.cert.org/confluence/x/VQBc
https://www.securecoding.cert.org/confluence/x/EoLu
https://wiki.sei.cmu.edu/confluence/x/49UxBQ

Unreliable cast of pointer
Pointer implicitly cast to different data type

Description
Unreliable cast of pointer occurs when a pointer is implicitly cast to a data type
different from its declaration type. Such an implicit casting can take place, for instance,
when a pointer to data type char is assigned the address of an integer.

This defect applies only if the code language for the project is C.

Examples

Unreliable cast of pointer error
 #include <string.h>

 void Copy_Integer_To_String()
 {
 int src[]={1,2,3,4,5,6,7,8,9,10};
 char buffer[]="Buffer_Text";
 strcpy(buffer,src);
 /* Defect: Implicit cast of (int*) to (char*) */
 }

src is declared as an int* pointer. The strcpy statement, while copying to buffer,
implicitly casts src to char*.

One possible correction is to declare the pointer src with the same data type as buffer.

 #include <string.h>
 void Copy_Integer_To_String()
 {
 /* Fix: Declare src with same type as buffer */
 char *src[10]={"1","2","3","4","5","6","7","8","9","10"};
 char *buffer[10];

 Unreliable cast of pointer

3-727

 for(int i=0;i<10;i++)
 buffer[i]="Buffer_Text";

 for(int i=0;i<10;i++)
 buffer[i]= src[i];
 }

Check Information
Group: Static memory
Language: C
Default: On
Command-Line Syntax: PTR_CAST
Impact: Medium
CWE ID: 135, 704, 843
CERT C ID: EXP36-C, EXP39-C, MSC15-C, STR38-C
CERT C++ ID: EXP36-C, EXP39-C, STR38-C
ISO/IEC TS 17961 ID: alignconv, ptrcomp

See Also
Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Unreliable cast of function pointer

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2013b

3 Defects

3-728

https://cwe.mitre.org/data/definitions/135.html
https://cwe.mitre.org/data/definitions/704.html
https://cwe.mitre.org/data/definitions/843.html
https://www.securecoding.cert.org/confluence/x/tgAV
https://www.securecoding.cert.org/confluence/x/-QFqAQ
https://www.securecoding.cert.org/confluence/x/EoLu
https://www.securecoding.cert.org/confluence/x/FADAAQ
https://wiki.sei.cmu.edu/confluence/x/u9UxBQ
https://wiki.sei.cmu.edu/confluence/x/ptYxBQ
https://wiki.sei.cmu.edu/confluence/x/xtYxBQ

Unsafe call to a system function
Unsanitized command argument has exploitable vulnerabilities

Description
Unsafe call to a system function occurs when you use a function that invokes an
implementation-defined command processor. These functions include:

• The C standard system() function.
• The POSIX popen() function.
• The Windows _popen() and _wpopen() functions.

Risk
If the argument of a function that invokes a command processor is not sanitized, it can
cause exploitable vulnerabilities. An attacker can execute arbitrary commands or read
and modify data anywhere on the system.

Fix
Do not use a system-family function to invoke a command processor. Instead, use safer
functions such as POSIX execve() and WinAPI CreateProcess().

Examples

system() Called
include <string.h>
include <stdlib.h>
include <stdio.h>
include <unistd.h>

enum {
SIZE512=512,

 Unsafe call to a system function

3-729

SIZE3=3};

void func(char *arg)
{
 char buf[SIZE512];
 int retval=sprintf(buf, "/usr/bin/any_cmd %s", arg);

 if (retval<=0 || retval>SIZE512){
 /* Handle error */
 abort();
 }
 /* Use of system() to pass any_cmd with
 unsanitized argument to command processor */

 if (system(buf) == -1) {
 /* Handle error */
 }
}

In this example, system() passes its argument to the host environment for the command
processor to execute. This code is vulnerable to an attack by command-injection.

In the following code, the argument of any_cmd is sanitized, and then passed to
execve() for execution. exec-family functions are not vulnerable to command-injection
attacks.

include <string.h>
include <stdlib.h>
include <stdio.h>
include <unistd.h>

enum {
SIZE512=512,
SIZE3=3};

void func(char *arg)
{
 char *const args[SIZE3] = {"any_cmd", arg, NULL};
 char *const env[] = {NULL};

 /* Sanitize argument */

 /* Use execve() to execute any_cmd. */

3 Defects

3-730

 if (execve("/usr/bin/time", args, env) == -1) {
 /* Handle error */
 }
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: UNSAFE_SYSTEM_CALL
Impact: High
CWE ID: 78, 88
CERT C ID: ENV33-C
CERT C++ ID: ENV33-C
ISO/IEC TS 17961 ID: syscall

See Also
Command executed from externally controlled path | Execution of
externally controlled command

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2017b

 Unsafe call to a system function

3-731

https://cwe.mitre.org/data/definitions/78.html
https://cwe.mitre.org/data/definitions/88.html
https://www.securecoding.cert.org/confluence/x/1IAg
https://wiki.sei.cmu.edu/confluence/x/MdYxBQ

Unsafe conversion between pointer and
integer
Misaligned or invalid results from conversions between pointer and integer types

Description
Unsafe conversion between pointer and integer checks for pointer to integer and
integer to pointers conversions. If you convert between a pointer, intptr_t, or
uintprt_t and an integer type, such as enum, ptrdiff_t, or pid_t, Polyspace raises a
defect.

Risk
The mapping between pointers and integers is not always consistent with the addressing
structure of the environment.

Converting from pointers to integers can create:

• Truncated or out of range integer values.
• Invalid integer types.

Converting from integers to pointers can create:

• Misaligned pointers or misaligned objects.
• Invalid pointer addresses.

Fix
Where possible, avoid pointer-to-integer or integer-to-pointer conversions. If you want to
convert a void pointer to an integer, so that you do not change the value, use types:

• C99 — intptr_t or uintptr_t
• C90 — size_t or ssize_t

3 Defects

3-732

Examples

Integer to Pointer Conversions
unsigned int *badintptrcast(void)
{
 unsigned int *ptr0 = (unsigned int *)0xdeadbeef;
 char *ptr1 = (char *)0xdeadbeef;
 return (unsigned int *)(ptr0 - (unsigned int *)ptr1);
}

In this example, there are three conversions, two unsafe conversions and one safe
conversion. The first conversion of 0xdeadbeef to unsigned int* causes alignment
issues for the pointer. The second conversion of 0xdeadbeef to char * is safe because
there are no alignment issues for char. The third conversion in the return casts
ptrdiff_t to a pointer. This pointer might or might not point to an invalid address.

One possible correction is to use intptr_t types to store the pointer address
0xdeadbeef. Also, you can change the second pointer to an integer offset so that there is
no longer a conversion from ptrdiff_t to a pointer.

#include <stdint.h>

unsigned int *badintptrcast(void)
{
 intptr_t iptr0 = (intptr_t)0xdeadbeef;
 int offset = 0;
 return (unsigned int *)(iptr0 - offset);
}

Result Information
Group: Programming
Language: C | C++
Default: Off
Command-Line Syntax: BAD_INT_PTR_CAST
Impact: Medium
CWE ID: 465, 466, 587, 758
CERT C ID: INT36-C

 Unsafe conversion between pointer and integer

3-733

https://cwe.mitre.org/data/definitions/465.html
https://cwe.mitre.org/data/definitions/466.html
https://cwe.mitre.org/data/definitions/587.html
https://cwe.mitre.org/data/definitions/758.html
https://www.securecoding.cert.org/confluence/x/XAAV

CERT C++ ID: INT36-C
ISO/IEC TS 17961 ID: intptrconv

See Also

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2016b

3 Defects

3-734

https://wiki.sei.cmu.edu/confluence/x/0dUxBQ

Unsafe conversion from string to numerical
value
String to number conversion without validation checks

Description
Unsafe conversion from string to numerical value detects conversions from strings
to integer or floating-point values. If your conversion method does not include robust
error handling, a defect is raised.

Risk
Converting a string to numerical value can cause data loss or misinterpretation. Without
validation of the conversion or error handling, your program continues with invalid
values.

Fix
• Add additional checks to validate the numerical value.
• Use a more robust string-to-numeric conversion function such as strtol, strtoll,

strtoul, or strtoull.

Examples

Conversion With atoi
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

static int demo_check_string_not_empty(char *s)
{
 if (s != NULL)

 Unsafe conversion from string to numerical value

3-735

 return strlen(s) > 0; /* check string null-terminated and not empty */
 else
 return 0;
}

int unsafestrtonumeric(char* argv1)
{
 int s = 0;
 if (demo_check_string_not_empty(argv1))
 {
 s = atoi(argv1);
 }
 return s;
}

In this example, argv1 is converted to an integer with atoi. atoi does not provide
errors for an invalid integer string. The conversion can fail unexpectedly.

One possible correction is to use strtol to validate the input string and the converted
integer.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <limits.h>
#include <errno.h>

static int demo_check_string_not_empty(char *s)
{
 if (s != NULL)
 return strlen(s) > 0; /* check string null-terminated and not empty */
 else
 return 0;
}

int unsafestrtonumeric(char *argv1)
{
 char *c_str = argv1;
 char *end;
 long sl;

 if (demo_check_string_not_empty(c_str))
 {
 errno = 0; /* set errno for error check */

3 Defects

3-736

 sl = strtol(c_str, &end, 10);
 if (end == c_str)
 {
 (void)fprintf(stderr, "%s: not a decimal number\n", c_str);
 }
 else if ('\0' != *end)
 {
 (void)fprintf(stderr, "%s: extra characters: %s\n", c_str, end);
 }
 else if ((LONG_MIN == sl || LONG_MAX == sl) && ERANGE == errno)
 {
 (void)fprintf(stderr, "%s out of range of type long\n", c_str);
 }
 else if (sl > INT_MAX)
 {
 (void)fprintf(stderr, "%ld greater than INT_MAX\n", sl);
 }
 else if (sl < INT_MIN)
 {
 (void)fprintf(stderr, "%ld less than INT_MIN\n", sl);
 }
 else
 {
 return (int)sl;
 }
 }
 return 0;
}

Result Information
Group: Programming
Language: C | C++
Default: Off
Command-Line Syntax: UNSAFE_STR_TO_NUMERIC
Impact: Low
CWE ID: 20, 253, 676
CERT C ID: ERR34-C
CERT C++ ID: ERR34-C

 Unsafe conversion from string to numerical value

3-737

https://cwe.mitre.org/data/definitions/20.html
https://cwe.mitre.org/data/definitions/253.html
https://cwe.mitre.org/data/definitions/676.html
https://www.securecoding.cert.org/confluence/x/6AQ
https://wiki.sei.cmu.edu/confluence/x/C9cxBQ

See Also

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2016b

3 Defects

3-738

Unsafe standard encryption function
Function is not reentrant or uses a risky encryption algorithm

Description
Unsafe standard encryption function detects use of functions with a broken or weak
cryptographic algorithm. For example, crypt is not reentrant and is based on the risky
Data Encryption Standard (DES).

Risk
The use of a broken, weak, or nonstandard algorithm can expose sensitive information to
an attacker. A determined hacker can access the protected data using various techniques.

If the weak function is nonreentrant, when you use the function in concurrent programs,
there is an additional race condition risk.

Fix
Avoid functions that use these encryption algorithms. Instead, use a reentrant function
that uses a stronger encryption algorithm.

Note Some implementations of crypt support additional, possibly more secure,
encryption algorithms.

Examples

Decrypting Password Using crypt
#define _GNU_SOURCE
#include <pwd.h>
#include <string.h>
#include <crypt.h>

 Unsafe standard encryption function

3-739

volatile int rd = 1;

const char *salt = NULL;
struct crypt_data input, output;

int verif_pwd(const char *pwd, const char *cipher_pwd, int safe)
{
 int r = 0;
 char *decrypted_pwd = NULL;

 switch(safe)
 {
 case 1:
 decrypted_pwd = crypt_r(pwd, cipher_pwd, &output);
 break;

 case 2:
 decrypted_pwd = crypt_r(pwd, cipher_pwd, &output);
 break;

 default:
 decrypted_pwd = crypt(pwd, cipher_pwd);
 break;
 }

 r = (strcmp(cipher_pwd, decrypted_pwd) == 0);

 return r;
}

In this example, crypt_r and crypt decrypt a password. However, crypt is
nonreentrant and uses the unsafe Data Encryption Standard algorithm.

One possible correction is to replace crypt with crypt_r.

#define _GNU_SOURCE
#include <pwd.h>
#include <string.h>
#include <crypt.h>

volatile int rd = 1;

const char *salt = NULL;

3 Defects

3-740

struct crypt_data input, output;

int verif_pwd(const char *pwd, const char *cipher_pwd, int safe)
{
 int r = 0;
 char *decrypted_pwd = NULL;

 switch(safe)
 {
 case 1:
 decrypted_pwd = crypt_r(pwd, cipher_pwd, &output);
 break;

 case 2:
 decrypted_pwd = crypt_r(pwd, cipher_pwd, &output);
 break;

 default:
 decrypted_pwd = crypt_r(pwd, cipher_pwd, &output);
 break;
 }

 r = (strcmp(cipher_pwd, decrypted_pwd) == 0);

 return r;
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: UNSAFE_STD_CRYPT
Impact: Medium
CWE ID: 327, 522, 663
CERT C ID: MSC18-C

See Also
Deterministic random output from constant seed | Predictable random
output from predictable seed | Vulnerable pseudo-random number
generator

 Unsafe standard encryption function

3-741

https://cwe.mitre.org/data/definitions/327.html
https://cwe.mitre.org/data/definitions/522.html
https://cwe.mitre.org/data/definitions/663.html
https://www.securecoding.cert.org/confluence/x/vQFqAQ

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2015b

3 Defects

3-742

Unsafe standard function
Function unsafe for security-related purposes

Description
Unsafe standard function looks for functions that are unsafe and must not be used for
security-related programming. Functions can be unsafe for many reasons. Some functions
are unsafe because they are nonreentrant. Other functions change depending on the
target or platform, making some implementations unsafe.

Risk
Some unsafe functions are not reentrant, meaning that the contents of the function are
not locked during a call. So, an attacker can change the values midstream.

getlogin specifically can be unsafe depending on the implementation. Some
implementations of getlogin return only the first eight characters of a log-in name. An
attacker can use a different login with the same first eight characters to gain entry and
manipulate the program.

Fix
Avoid unsafe functions for security-related purposes. If you cannot avoid unsafe functions,
use a safer version of the function instead. For getlogin, use getlogin_r.

Examples

Using getlogin
#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
#include <pwd.h>
#include <string.h>

 Unsafe standard function

3-743

#include <stdlib.h>

volatile int rd = 1;

int login_name_check(char *user)
{
 int r = -2;
 char *name = getlogin();
 if (name != NULL)
 {
 if (strcmp(name, user) == 0)
 {
 r = 0;
 }
 else
 r = -1;
 }

 return r;
}

This example uses getlogin to compare the user name of the current user to the given
user name . However, getlogin can return something other than the current user name
because a parallel process can change the string.

One possible correction is to use getlogin_r instead of getlogin. getlogin_r is
reentrant, so you can trust the result.

#define _POSIX_C_SOURCE 199506L // use of getlogin_r
#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
#include <pwd.h>
#include <string.h>
#include <stdlib.h>

volatile int rd = 1;

enum { NAME_MAX_SIZE=64 };

int login_name_check(char *user)
{

3 Defects

3-744

 int r;
 char name[NAME_MAX_SIZE];

 if (getlogin_r(name, sizeof(name)) == 0)
 {
 if ((strlen(user) < sizeof(name)) &&
 (strncmp(name, user, strlen(user)) == 0))
 {
 r = 0;
 }
 else
 r = -1;
 }
 else
 r = -2;
 return r;
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: UNSAFE_STD_FUNC
Impact: Medium
CWE ID: 558, 663

See Also
Use of obsolete standard function | Use of dangerous standard function
| Invalid use of standard library string routine

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2015b

 Unsafe standard function

3-745

https://cwe.mitre.org/data/definitions/558.html
https://cwe.mitre.org/data/definitions/663.html

Unsigned integer constant overflow
Constant value falls outside range of unsigned integer data type

Description
Unsigned integer constant overflow occurs when you assign a compile-time constant
to a unsigned integer variable whose data type cannot accommodate the value. An n-bit
unsigned integer holds values in the range [0, 2n-1].

For instance, c is an 8-bit unsigned char variable that cannot hold the value 256.

unsigned char c = 256;

To determine the sizes of fundamental types, Bug Finder uses your specification for
Target processor type (-target).

Risk
The C standard states that overflowing unsigned integers must be wrapped around (see,
for instance, the C11 standard, section 6.2.5). However, the wrap-around behavior can be
unintended and cause unexpected results.

Fix
Check if the constant value is what you intended. If the value is correct, use a wider data
type for the variable.

Examples

Overflowing Constant from Macro Expansion
#define MAX_UNSIGNED_CHAR 255
#define MAX_UNSIGNED_SHORT 65535

void main() {

3 Defects

3-746

 unsigned char c1 = MAX_UNSIGNED_CHAR + 1;
 unsigned short c2 = MAX_UNSIGNED_SHORT + 1;
}

In this example, the defect appears on the macros because at least one use of the macro
causes an overflow.

One possible correction is to use a wider data type for the variables that overflow.

#define MAX_UNSIGNED_CHAR 255
#define MAX_UNSIGNED_SHORT 65535

void main() {
 unsigned short c1 = MAX_UNSIGNED_CHAR + 1;
 unsigned int c2 = MAX_UNSIGNED_SHORT + 1;
}

Result Information
Group: Numerical
Language: C | C++
Default: Off
Command-Line Syntax: UINT_CONSTANT_OVFL
Impact: Low
CWE ID: 128, 189, 190, 191
CERT C ID: INT18-C, INT30-C
CERT C++ ID: INT30-C

See Also
Integer constant overflow | Integer conversion overflow | Integer
overflow | Sign change integer conversion overflow | Unsigned integer
conversion overflow | Unsigned integer overflow

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2018b

 Unsigned integer constant overflow

3-747

https://cwe.mitre.org/data/definitions/128.html
https://cwe.mitre.org/data/definitions/189.html
https://cwe.mitre.org/data/definitions/190.html
https://cwe.mitre.org/data/definitions/191.html
https://wiki.sei.cmu.edu/confluence/x/I9cxBQ
https://wiki.sei.cmu.edu/confluence/x/bNYxBQ
https://wiki.sei.cmu.edu/confluence/x/bNYxBQ

Unsigned integer conversion overflow
Overflow when converting between unsigned integer types

Description
Unsigned integer conversion overflow occurs when converting an unsigned integer to
a smaller unsigned integer type. If the variable does not have enough bytes to represent
the original constant, the conversion overflows.

The exact storage allocation for different integer types depends on your processor. See
Target processor type (-target).

Examples

Converting from int to char
unsigned char convert(void) {
 unsigned int unum = 1000000U;

 return (unsigned char)unum;
}

In the return statement, the unsigned integer variable unum is converted to an unsigned
character type. However, the conversion overflows because 1000000 requires at least 20
bits. The C programming language standard does not view unsigned overflow as an error
because the program automatically reduces the result by modulo the maximum value plus
1. In this example, unum is reduced by modulo 2^8 because a character data type can
only represent 2^8-1.

One possible correction is to convert to a different integer type that can represent the
entire number. For example, long.

unsigned long convert(void) {
 unsigned int unum = 1000000U;

3 Defects

3-748

 return (unsigned long)unum;
}

Check Information
Group: Numerical
Language: C | C++
Default: On
Command-Line Syntax: UINT_CONV_OVFL
Impact: Low
CWE ID: 128, 131, 189, 190, 191, 192, 197
CERT C ID: FIO37-C, FLP34-C, INT02-C, INT18-C, INT31-C
CERT C++ ID: FIO37-C, FLP34-C, INT31-C

See Also
Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Float conversion overflow | Integer conversion overflow | Sign change
integer conversion overflow

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2013b

 Unsigned integer conversion overflow

3-749

https://cwe.mitre.org/data/definitions/128.html
https://cwe.mitre.org/data/definitions/131.html
https://cwe.mitre.org/data/definitions/189.html
https://cwe.mitre.org/data/definitions/190.html
https://cwe.mitre.org/data/definitions/191.html
https://cwe.mitre.org/data/definitions/192.html
https://cwe.mitre.org/data/definitions/197.html
https://wiki.sei.cmu.edu/confluence/x/JtcxBQ
https://wiki.sei.cmu.edu/confluence/x/xNUxBQ
https://wiki.sei.cmu.edu/confluence/x/TtYxBQ
https://wiki.sei.cmu.edu/confluence/x/I9cxBQ
https://wiki.sei.cmu.edu/confluence/x/U9YxBQ
https://wiki.sei.cmu.edu/confluence/x/JtcxBQ
https://wiki.sei.cmu.edu/confluence/x/xNUxBQ
https://wiki.sei.cmu.edu/confluence/x/U9YxBQ

Unsigned integer overflow
Overflow from operation between unsigned integers

Description
Unsigned integer overflow occurs when an operation on unsigned integer variables can
result in values that cannot be represented by the result data type. The data type of a
variable determines the number of bytes allocated for the variable storage and constrains
the range of allowed values.

The exact storage allocation for different integer types depends on your processor. See
Target processor type (-target).

Examples

Add One to Maximum Unsigned Integer
#include <limits.h>

unsigned int plusplus(void) {

 unsigned uvar = UINT_MAX;
 uvar++;
 return uvar;
}

In the third statement of this function, the variable uvar is increased by 1. However, the
value of uvar is the maximum unsigned integer value, so 1 plus the maximum integer
value cannot be represented by an unsigned int. The C programming language
standard does not view unsigned overflow as an error because the program automatically
reduces the result by modulo the maximum value plus 1. In this example, uvar is reduced
by modulo UINT_MAX. The result is uvar = 1.

3 Defects

3-750

One possible correction is to store the operation result in a larger data type. In this
example, by returning an unsigned long long instead of an unsigned int, the
overflow error is fixed.

#include <limits.h>

unsigned long long plusplus(void) {

 unsigned long long ullvar = UINT_MAX;
 ullvar++;
 return ullvar;
}

Check Information
Group: Numerical
Language: C | C++
Default: Off
Command-Line Syntax: UINT_OVFL
Impact: Low
CWE ID: 128, 131, 189, 190, 191, 192
CERT C ID: FIO37-C, INT18-C, INT30-C
CERT C++ ID: FIO37-C, INT30-C

See Also
Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Integer overflow | Float overflow

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2013b

 Unsigned integer overflow

3-751

https://cwe.mitre.org/data/definitions/128.html
https://cwe.mitre.org/data/definitions/131.html
https://cwe.mitre.org/data/definitions/189.html
https://cwe.mitre.org/data/definitions/190.html
https://cwe.mitre.org/data/definitions/191.html
https://cwe.mitre.org/data/definitions/192.html
https://wiki.sei.cmu.edu/confluence/x/JtcxBQ
https://wiki.sei.cmu.edu/confluence/x/I9cxBQ
https://wiki.sei.cmu.edu/confluence/x/bNYxBQ
https://wiki.sei.cmu.edu/confluence/x/JtcxBQ
https://wiki.sei.cmu.edu/confluence/x/bNYxBQ

Unused parameter
Function prototype has parameters not read or written in function body

Description
Unused parameter occurs when a function parameter is neither read nor written in the
function body.

Risk
Unused function parameters cause the following issues:

• Indicate that the code is possibly incomplete. The parameter is possibly intended for
an operation that you forgot to code.

• If the copied objects are large, redundant copies can slow down performance.

Fix
Determine if you intend to use the parameters. Otherwise, remove parameters that you
do not use in the function body.

You can intentionally have unused parameters. For instance, you have parameters that
you intend to use later when you add enhancements to the function. Add a code comment
indicating your intention for later use. The code comment helps you or a code reviewer
understand why your function has unused parameters.

Alternatively, add a statement such as (void)var; in the function body. var is the
unused parameter. You can define a macro that expands to this statement and add the
macro to the function body.

3 Defects

3-752

Examples

Unused Parameter
void func(int* xptr, int* yptr, int flag) {
 if(flag==1) {
 *xptr=0;
 }
 else {
 *xptr=1;
 }
}

int main() {
 int x,y;
 func(&x,&y,1);
 return 0;
}

In this example, the parameter yptr is not used in the body of func.

One possible correction is to check if you intended to use the parameter. Fix your code if
you intended to use the parameter.

void func(int* xptr, int* yptr, int flag) {
 if(flag==1) {
 *xptr=0;
 *yptr=1;
 }
 else {
 *xptr=1;
 *yptr=0;
 }
}

int main() {
 int x,y;
 func(&x,&y,1);
 return 0;
}

 Unused parameter

3-753

Another possible correction is to explicitly indicate that you are aware of the unused
parameter.

#define UNUSED(x) (void)x

void func(int* xptr, int* yptr, int flag) {
 UNUSED(yptr);
 if(flag==1) {
 *xptr=0;
 }
 else {
 *xptr=1;
 }
}

int main() {
 int x,y;
 func(&x,&y,1);
 return 0;
}

Result Information
Group: Good practice
Language: C | C++
Default: Off
Command-Line Syntax: UNUSED_PARAMETER
Impact: Low
CERT C ID: MSC13-C

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2015b

3 Defects

3-754

https://www.securecoding.cert.org/confluence/x/QYA5

Useless if
Unnecessary if conditional

Description
Useless if occurs on if-statements where the condition is always true. This defect occurs
only on if-statements that do not have an else-statement.

This defect shows unnecessary if-statements when there is no difference in code
execution if the if-statement is removed.

Examples

if with Enumerated Type
typedef enum _suit {UNKNOWN_SUIT, SPADES, HEARTS, DIAMONDS, CLUBS} suit;
suit nextcard(void);
void do_something(suit s);

void bridge(void)
{
 suit card = nextcard();
 if ((card < SPADES) || (card > CLUBS)){
 card = UNKNOWN_SUIT;
 }

 if (card < 7) {
 do_something(card);
 }
}

The type suit is enumerated with five options. However, the conditional expression card
< 7 always evaluates to true because card can be at most 5. The if statement is
unnecessary.

 Useless if

3-755

One possible correction is to change the if-condition in the code. In this correction, the 7
is changed to UNKNOWN_SUIT to relate directly to the type of card.

typedef enum _suit {UNKNOWN_SUIT, SPADES, HEARTS, DIAMONDS, CLUBS} suit;
suit nextcard(void);
void do_something(suit s);

void bridge(void)
{
 suit card = nextcard();
 if ((card < SPADES) || (card > CLUBS)){
 card = UNKNOWN_SUIT;
 }

 if (card > UNKNOWN_SUIT) {
 do_something(card);
 }
}

Another possible correction is to remove the if-condition in the code. Because the
condition is always true, you can remove the condition to simplify your code.

typedef enum _suit {UNKNOWN_SUIT, SPADES, HEARTS, DIAMONDS, CLUBS} suit;
suit nextcard(void);
void do_something(suit s);

void bridge(void)
{
 suit card = nextcard();
 if ((card < SPADES) || (card > CLUBS)){
 card = UNKNOWN_SUIT;
 }

 do_something(card);
}

Check Information
Group: Data flow
Language: C | C++
Default: On

3 Defects

3-756

Command-Line Syntax: USELESS_IF
Impact: Medium

See Also
Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Code deactivated by constant false condition | Dead code | Unreachable
code

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2013b

 Useless if

3-757

Use of automatic variable as putenv-family
function argument
putenv-family function argument not accessible outside its scope

Description
Use of automatic variable as putenv-family function argument occurs when the
argument of a putenv-family function is a local variable with automatic duration.

Risk
The function putenv(char *string) inserts a pointer to its supplied argument into the
environment array, instead of making a copy of the argument. If the argument is an
automatic variable, its memory can be overwritten after the function containing the
putenv() call returns. A subsequent call to getenv() from another function returns the
address of an out-of-scope variable that cannot be dereferenced legally. This out-of-scope
variable can cause environment variables to take on unexpected values, cause the
program to stop responding, or allow arbitrary code execution vulnerabilities.

Fix
Use setenv()/unsetenv() to set and unset environment variables. Alternatively, use
putenv-family function arguments with dynamically allocated memory, or, if your
application has no reentrancy requirements, arguments with static duration. For example,
a single thread execution with no recursion or interrupts does not require reentrancy. It
cannot be called (reentered) during its execution.

Examples

Automatic Variable as Argument of putenv()
#include <stdio.h>
#include <stdlib.h>

3 Defects

3-758

#include <string.h>

#define SIZE1024 1024

void func(int var)
{
 char env[SIZE1024];
 int retval = sprintf(env, "TEST=%s", var ? "1" : "0");
 if (retval <= 0) {
 /* Handle error */
 }
 /* Environment variable TEST is set using putenv().
 The argument passed to putenv is an automatic variable. */
 retval = putenv(env);
 if (retval != 0) {
 /* Handle error */
 }
}

In this example, sprintf() stores the character string TEST=var in env. The value of
the environment variable TEST is then set to var by using putenv(). Because env is an
automatic variable, the value of TEST can change once func() returns.

Declare env as a static-duration variable. The memory location of env is not overwritten
for the duration of the program, even after func() returns.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define SIZE1024 1024
void func(int var)
{
 /* static duration variable */
 static char env[SIZE1024];
 int retval = sprintf(env,"TEST=%s", var ? "1" : "0");
 if (retval <= 0) {
 /* Handle error */
 }

 /* Environment variable TEST is set using putenv() */
 retval=putenv(env);
 if (retval != 0) {

 Use of automatic variable as putenv-family function argument

3-759

 /* Handle error */
 }
}

To set the value of TEST to var, use setenv().

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define SIZE1024 1024

void func(int var)
{
 /* Environment variable TEST is set using setenv() */
 int retval = setenv("TEST", var ? "1" : "0", 1);

 if (retval != 0) {
 /* Handle error */
 }
}

Result Information
Group: Static memory
Language: C | C++
Default: On
Command-Line Syntax: PUTENV_AUTO_VAR
Impact: High
CWE ID: 562, 686, 825
CERT C ID: POS34-C
CERT C++ ID: POS34-C
ISO/IEC TS 17961 ID: addrescape

See Also
Pointer or reference to stack variable leaving scope

Topics
“Interpret Polyspace Bug Finder Results”

3 Defects

3-760

https://cwe.mitre.org/data/definitions/562.html
https://cwe.mitre.org/data/definitions/686.html
https://cwe.mitre.org/data/definitions/825.html
https://www.securecoding.cert.org/confluence/x/HoAg
https://wiki.sei.cmu.edu/confluence/x/y9YxBQ

“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2017b

 Use of automatic variable as putenv-family function argument

3-761

Use of dangerous standard function
Dangerous functions cause possible buffer overflow in destination buffer

Description
The Use of dangerous standard function check highlights uses of functions that are
inherently dangerous or potentially dangerous given certain circumstances. The following
table lists possibly dangerous functions, the risks of using each function, and what
function to use instead.

Dangerous
Function

Risk Level Safer Function

gets Inherently dangerous — You cannot
control the length of input from the
console.

fgets

cin Inherently dangerous — You cannot
control the length of input from the
console.

Avoid or prefaces calls to cin
with cin.width.

strcpy Possibly dangerous — If the source
length is greater than the
destination, buffer overflow can
occur.

strncpy

stpcpy Possibly dangerous — If the source
length is greater than the
destination, buffer overflow can
occur.

stpncpy

lstrcpy or
StrCpy

Possibly dangerous — If the source
length is greater than the
destination, buffer overflow can
occur.

StringCbCopy,
StringCchCopy, strncpy,
strcpy_s, or strlcpy

3 Defects

3-762

Dangerous
Function

Risk Level Safer Function

strcat Possibly dangerous — If the
concatenated result is greater than
the destination, buffer overflow can
occur.

strncat, strlcat, or
strcat_s

lstrcat or
StrCat

Possibly dangerous — If the
concatenated result is greater than
the destination, buffer overflow can
occur.

StringCbCat, StringCchCat,
strncay, strcat_s, or
strlcat

wcpcpy Possibly dangerous — If the source
length is greater than the
destination, buffer overflow can
occur.

wcpncpy

wcscat Possibly dangerous — If the
concatenated result is greater than
the destination, buffer overflow can
occur.

wcsncat, wcslcat, or
wcncat_s

wcscpy Possibly dangerous — If the source
length is greater than the
destination, buffer overflow can
occur.

wcsncpy

sprintf Possibly dangerous — If the output
length depends on unknown
lengths or values, buffer overflow
can occur.

snprintf

vsprintf Possibly dangerous — If the output
length depends on unknown
lengths or values, buffer overflow
can occur.

vsnprintf

Risk
These functions can cause buffer overflow, which attackers can use to infiltrate your
program.

 Use of dangerous standard function

3-763

Examples

Using sprintf
#include <stdio.h>
#include <string.h>
#include <iostream>

#define BUFF_SIZE 128

int dangerous_func(char *str)
{
 char dst[BUFF_SIZE];
 int r = 0;

 if (sprintf(dst, "%s", str) == 1)
 {
 r += 1;
 dst[BUFF_SIZE-1] = '\0';
 }

 return r;
}

This example function uses sprintf to copy the string str to dst. However, if str is
larger than the buffer, sprintf can cause buffer overflow.

One possible correction is to use snprintf instead and specify a buffer size.

#include <stdio.h>
#include <string.h>
#include <iostream>

#define BUFF_SIZE 128

int dangerous_func(char *str)
{
 char dst[BUFF_SIZE];
 int r = 0;

3 Defects

3-764

 if (snprintf(dst, sizeof(dst), "%s", str) == 1)
 {
 r += 1;
 dst[BUFF_SIZE-1] = '\0';
 }

 return r;
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: DANGEROUS_STD_FUNC
Impact: Low
CWE ID: 242, 676
CERT C ID: API02-C, ENV01-C, PRE09-C, STR07-C, STR31-C
CERT C++ ID: STR31-C, STR50-CPP
ISO/IEC TS 17961 ID: taintformatio

See Also
Use of obsolete standard function | Unsafe standard function | Invalid
use of standard library string routine

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2015b

 Use of dangerous standard function

3-765

https://cwe.mitre.org/data/definitions/242.html
https://cwe.mitre.org/data/definitions/676.html
https://wiki.sei.cmu.edu/confluence/x/otYxBQ
https://wiki.sei.cmu.edu/confluence/x/3NUxBQ
https://wiki.sei.cmu.edu/confluence/x/JtYxBQ
https://wiki.sei.cmu.edu/confluence/x/HdcxBQ
https://wiki.sei.cmu.edu/confluence/x/sNUxBQ
https://wiki.sei.cmu.edu/confluence/x/sNUxBQ
https://wiki.sei.cmu.edu/confluence/x/i3w-BQ

Use of externally controlled environment
variable
Value of environment variable from an unsecure source

Description
Use of externally controlled environment variable checks for functions that add or
change environment variables, such as putenv and setenv. If the new environment
variable value is from an unsecure source, Polyspace raises a defect on the function or
function pointer.

Risk
If the environment variable is tainted, an attacker can control your system settings. This
control can disrupt an application or service in potentially malicious ways.

Fix
Before using the new environment variable, check its value to avoid giving control to
external users.

Examples

Set Path in Environment
#define _XOPEN_SOURCE
#define _GNU_SOURCE
#include "stdlib.h"

void taintedenvvariable(char* path)
{
 putenv(path);
}

3 Defects

3-766

In this example, putenv changes an environment variable. The path path has not been
checked to make sure that it is the intended path.

One possible correction is to sanitize the path, checking that it matches what you expect.

#define _XOPEN_SOURCE
#define _GNU_SOURCE
#define SIZE128 128
#include "stdlib.h"
#include "string.h"

/* Function to sanitize a string */
int sanitize_str(char* str, size_t n) {
 int res = 0;

 if (str && n > 0 && n < SIZE128) {
 /* string is not NULL, with size between 1 and max */
 str[n-1] = '\0'; /* Add a null char at end of string */
 /* Tainted pointer detected above, used as "firewall" */
 res = 1;
 }
 return res;
}

void taintedenvvariable(char* path, size_t n)
{
 if (sanitize_str(path, n))
 {
 unsigned int n2 = strlen("PATH=")+strnlen(path, n);
 char *env_path = (char *)malloc(n2+1);
 if (env_path)
 {
 strcpy(env_path, "PATH=");
 strncat(env_path, path, n2);
 putenv(env_path);
 }
 }
}

Result Information
Group: Tainted Data

 Use of externally controlled environment variable

3-767

Language: C | C++
Default: Off
Command-Line Syntax: TAINTED_ENV_VARIABLE
Impact: Medium
CWE ID: 15
CERT C ID: API00-C

See Also
Execution of externally controlled command | Host change using
externally controlled elements | Command executed from externally
controlled path | Library loaded from externally controlled path

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2015b

3 Defects

3-768

https://cwe.mitre.org/data/definitions/15.html
https://www.securecoding.cert.org/confluence/x/egAV

Use of indeterminate string
Use of buffer from fgets-family function

Description
Use of indeterminate string occurs when you do not check the validity of the buffer
returned from fgets-family functions. The checker raises a defect when such a buffer is
used as:

• An argument in standard functions that print or manipulate strings or wide strings.
• A return value.
• An argument in external functions with parameter type const char * or const

wchar_t *.

Risk
If an fgets-family function fails, the content of its output buffer is indeterminate. Use of
such a buffer has undefined behavior and can result in a program that stops working or
other security vulnerabilities.

Fix
Reset the output buffer of an fgets-family function to a known string value when the
function fails.

Examples

Output of fgets() Passed to External Function
#include <stdio.h>
#include <wchar.h>
#include <string.h>
#include <stdlib.h>

 Use of indeterminate string

3-769

#define SIZE20 20

extern void display_text(const char *txt);

void func(void) {
 char buf[SIZE20];

 /* Check fgets() error */
 if (fgets (buf, sizeof (buf), stdin) == NULL)
 {
 /* 'buf' may contain an indeterminate string. */
 ;
 }
 /* 'buf passed to external function */
 display_text(buf);
}

In this example, the output buf is passed to the external function display_text(), but
its value is not reset if fgets() fails.

If fgets() fails, reset buf to a known value before you pass it to an external function.

#include <stdio.h>
#include <wchar.h>
#include <string.h>
#include <stdlib.h>

#define SIZE20 20

extern void display_text(const char *txt);

void func1(void) {
 char buf[SIZE20];
 /* Check fgets() error */
 if (fgets (buf, sizeof (buf), stdin) == NULL)
 {
 /* value of 'buf' reset after fgets() failure. */
 buf[0] = '\0';
 }
 /* 'buf' passed to external function */
 display_text(buf);
}

3 Defects

3-770

Result Information
Group: Programming
Language: C | C++
Default: Off
Command-Line Syntax: INDETERMINATE_STRING
Impact: Medium
CERT C ID: FIO40-C
CERT C++ ID: FIO40-C

See Also
Invalid use of standard library string routine | Returned value of a
sensitive function not checked | Use of dangerous standard function

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2017b

 Use of indeterminate string

3-771

https://www.securecoding.cert.org/confluence/x/ygA1
https://wiki.sei.cmu.edu/confluence/x/JdYxBQ

Use of memset with size argument zero
Size argument of function in memset family is zero

Description
Use of memset with size argument zero occurs when you call a function in the
memset family with size argument zero. Functions include memset, wmemset, bzero,
SecureZeroMemory, RtlSecureZeroMemory, and so on.

Risk
void *memset (void *ptr, int value, size_t num) fills the first num bytes of
the memory block that ptr points to with the specified value. A zero value of num
renders the call to memset redundant. The memory that ptr points to:

• Remains uninitialized, if not previously initialized.
• Is not cleared and can contain sensitive data, if previously initialized.

Fix
Determine if the zero size argument occurs because of a previous error in your code. Fix
the error.

Examples

Zero Size Argument of memset
#include <stdio.h>
#include <string.h>

void func (unsigned int size)
{
 char str[] = "Buffer to be filled.";
 memset (str,'-',size);

3 Defects

3-772

 puts (str);
}

void calling_func(void) {
 unsigned int buf_size=0;
 func(buf_size);
}

In this example, the argument size of memset is zero.

Result Information
Group: Programming
Language: C | C++
Default: Off
Command-Line Syntax: MEMSET_INVALID_SIZE
Impact: Medium
CWE ID: 665
CERT C ID: MSC12-C

See Also
Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Call to memset with unintended value

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2015b

 Use of memset with size argument zero

3-773

https://cwe.mitre.org/data/definitions/665.html
https://www.securecoding.cert.org/confluence/x/NYA5

Use of non-secure temporary file
Temporary generated file name not secure

Description
Use of non-secure temporary file looks for temporary file routines that are not secure.

Risk
If an attacker guesses the file name generated by a standard temporary file routine, the
attacker can:

• Cause a race condition when you generate the file name.
• Precreate a file of the same name, filled with malicious content. If your program reads

the file, the attacker’s file can inject the malicious code.
• Create a symbolic link to a file storing sensitive data. When your program writes to the

temporary file, the sensitive data is deleted.

Fix
To create temporary files, use a more secure standard temporary file routine, such as
mkstemp from POSIX.1-2001.

Also, when creating temporary files with routines that allow flags, such as mkostemp, use
the exclusion flag O_EXCL to avoid race conditions.

Examples

Temp File Created With tempnam
#define _BSD_SOURCE
#define _XOPEN_SOURCE
#define _GNU_SOURCE

3 Defects

3-774

#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>

int test_temp()
{
 char tpl[] = "abcXXXXXX";
 char suff_tpl[] = "abcXXXXXXsuff";
 char *filename = NULL;
 int fd;

 filename = tempnam("/var/tmp", "foo_");

 if (filename != NULL)
 {
 printf("generated tmp name (%s) in (%s:%s:%s)\n",
 filename, getenv("TMPDIR") ? getenv("TMPDIR") : "$TMPDIR",
 "/var/tmp", P_tmpdir);

 fd = open(filename, O_CREAT, S_IRWXU|S_IRUSR);
 if (fd != -1)
 {
 close(fd);
 unlink(filename);
 return 1;
 }
 }
 return 0;
}

In this example, Bug Finder flags open because it tries to use an unsecure temporary file.
The file is opened without exclusive privileges. An attacker can access the file causing
various risks on page 3-774.

One possible correction is to add the O_EXCL flag when you open the temporary file.

#define _BSD_SOURCE
#define _XOPEN_SOURCE
#define _GNU_SOURCE

#include <stdio.h>

 Use of non-secure temporary file

3-775

#include <stdlib.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>

int test_temp()
{
 char tpl[] = "abcXXXXXX";
 char suff_tpl[] = "abcXXXXXXsuff";
 char *filename = NULL;
 int fd;

 filename = tempnam("/var/tmp", "foo_");

 if (filename != NULL)
 {
 printf("generated tmp name (%s) in (%s:%s:%s)\n",
 filename, getenv("TMPDIR") ? getenv("TMPDIR") : "$TMPDIR",
 "/var/tmp", P_tmpdir);

 fd = open(filename, O_CREAT|O_EXCL, S_IRWXU|S_IRUSR);
 if (fd != -1)
 {
 close(fd);
 unlink(filename);
 return 1;
 }
 }
 return 0;
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: NON_SECURE_TEMP_FILE
Impact: High
CWE ID: 377, 922
CERT C ID: FIO03-C, FIO21-C

3 Defects

3-776

https://cwe.mitre.org/data/definitions/377.html
https://cwe.mitre.org/data/definitions/922.html
https://www.securecoding.cert.org/confluence/x/0gk
https://www.securecoding.cert.org/confluence/x/Tx

See Also
Data race

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2015b

 Use of non-secure temporary file

3-777

Use of obsolete standard function
Obsolete routines can cause security vulnerabilities and portability issues

Description
Use of obsolete standard function detects calls to standard function routines that are
considered legacy, removed, deprecated, or obsolete by C/C++ coding standards.

Obsolete Function Standards Risk Replacement
Function

asctime Deprecated in POSIX.1-2008 Not thread-safe. strftime or
asctime_s

asctime_r Deprecated in POSIX.1-2008 Implementation based
on unsafe function
sprintf.

strftime or
asctime_s

bcmp Deprecated in 4.3BSD

Marked as legacy in POSIX.
1-2001.

Returns from function
after finding the first
differing byte, making
it vulnerable to timing
attacks.

memcmp

bcopy Deprecated in 4.3BSD

Marked as legacy in POSIX.
1-2001.

Returns from function
after finding the first
differing byte, making
it vulnerable to timing
attacks.

memcpy or
memmove

brk and sbrk Marked as legacy in SUSv2 and
POSIX.1-2001.

 malloc

bsd_signal Removed in POSIX.1-2008 sigaction
bzero Marked as legacy in POSIX.

1-2001. Removed in POSIX.
1-2008.

 memset

ctime Deprecated in POSIX.1-2008 Not thread-safe. strftime or
asctime_s

3 Defects

3-778

Obsolete Function Standards Risk Replacement
Function

ctime_r Deprecated in POSIX.1-2008 Implementation based
on unsafe function
sprintf.

strftime or
asctime_s

cuserid Removed in POSIX.1-2001. Not reentrant. Precise
functionality not
standardized causing
portability issues.

getpwuid

ecvt and fcvt Marked as legacy in POSIX.
1-2001. Removed in POSIX.
1-2008

Not reentrant snprintf

ecvt_r and fcvt_r Marked as legacy in POSIX.
1-2001. Removed in POSIX.
1-2008

 snprintf

ftime Removed in POSIX.1-2008 time,
gettimeofday,
clock_gettime

gamma, gammaf,
gammal

Function not specified in any
standard because of historical
variations

Portability issues. tgamma, lgamma

gcvt Marked as legacy in POSIX.
1-2001. Removed in POSIX.
1-2008.

 snprintf

getcontext Removed in POSIX.1-2008. Portability issues. Use POSIX thread
instead.

getdtablesize BSD API function not included
in POSIX.1-2001

Portability issues. sysconf(_SC_OP
EN_MAX)

gethostbyaddr Removed in POSIX.1-2008 Not reentrant getaddrinfo
gethostbyname Removed in POSIX.1-2008 Not reentrant getnameinfo
getpagesize BSD API function not included

in POSIX.1-2001
Portability issues. sysconf(_SC_PA

GESIZE)
getpass Removed in POSIX.1-2001. Not reentrant. getpwuid
getw Not present in POSIX.1-2001. fread

 Use of obsolete standard function

3-779

Obsolete Function Standards Risk Replacement
Function

getwd Marked legacy in POSIX.
1-2001. Removed in POSIX.
1-2008.

 getcwd

index Marked as legacy in POSIX.
1-2001. Removed in POSIX.
1-2008.

 strchr

makecontext Removed in POSIX.1-2008. Portability issues. Use POSIX thread
instead.

memalign Appears in SunOS 4.1.3. Not in
4.4 BSD or POSIX.1-2001

 posix_memalign

mktemp Removed in POSIX.1-2008. Generated names are
predictable and can
cause a race condition.

mkstemp removes
race risk

pthread_attr_
getstackaddr and
pthread_attr_
setstackaddr

 Ambiguities in the
specification of the
stackaddr attribute
cause portability
issues

pthread_attr_
getstack and
pthread_attr_
setstack

putw Not present in POSIX.1-2001. Portability issues. fwrite
qecvt and qfcvt Marked as legacy in POSIX.

1-2001, removed in POSIX.
1-2008

 snprintf

qecvt_r and
qfcvt_r

Marked as legacy in POSIX.
1-2001, removed in POSIX.
1-2008

 snprintf

rand_r Marked as obsolete in POSIX.
1-2008

re_comp BSD API function Portability issues regcomp
re_exes BSD API function Portability issues regexec
rindex Marked as legacy in POSIX.

1-2001. Removed in POSIX.
1-2008.

 strrchr

3 Defects

3-780

Obsolete Function Standards Risk Replacement
Function

scalb Removed in POSIX.1-2008 scalbln,
scalblnf, or
scalblnl

sigblock 4.3BSD signal API whose origin
is unclear

 sigprocmask

sigmask 4.3BSD signal API whose origin
is unclear

 sigprocmask

sigsetmask 4.3BSD signal API whose origin
is unclear

 sigprocmask

sigstack Interface is obsolete and not
implemented on most
platforms.

Portability issues. sigaltstack

sigvec 4.3BSD signal API whose origin
is unclear

 sigaction

swapcontext Removed in POSIX.1-2008 Portability issues. Use POSIX threads.
tmpnam and
tmpnam_r

Marked as obsolete in POSIX.
1-2008.

This function
generates a different
string each time it is
called, up to
TMP_MAX times. If it
is called more than
TMP_MAX times, the
behavior is
implementation-
defined.

mkstemp, tmpfile

ttyslot Removed in POSIX.1-2001.
ualarm Marked as legacy in POSIX.

1-2001. Removed in POSIX.
1-2008.

Errors are under-
specified

setitimer or
POSIX
timer_create

usleep Removed in POSIX.1-2008. nanosleep
utime SVr4, POSIX.1-2001. POSIX.

1-2008 marks as obsolete.

 Use of obsolete standard function

3-781

Obsolete Function Standards Risk Replacement
Function

valloc Marked as obsolete in 4.3BSD.

Marked as legacy in SUSv2.

Removed from POSIX.1-2001

 posix_memalign

vfork Removed from POSIX.1-2008 Under-specified in
previous standards.

fork

wcswcs This function was not included
in the final ISO/IEC 9899:1990/
Amendment 1:1995 (E).

 wcsstr

WinExec WinAPI provides this function
only for 16-bit Windows
compatibility.

 CreateProcess

LoadModule WinAPI provides this function
only for 16-bit Windows
compatibility.

 CreateProcess

Examples

Printing Out Time
#include <stdio.h>
#include <time.h>

void timecheck_bad(int argc, char *argv[])
{
 time_t ticks;

 ticks = time(NULL);
 printf("%.24s\r\n", ctime(&ticks));
}

In this example, the function ctime formats the current time and prints it out. However,
ctime was removed after C99 because it does not work on multithreaded programs.

3 Defects

3-782

One possible correction is to use strftime instead because this function uses a set
buffer size.

#include <stdio.h>
#include <string.h>
#include <time.h>

void timecheck_good(int argc, char *argv[])
{
 char outBuff[1025];
 time_t ticks;
 struct tm * timeinfo;

 memset(outBuff, 0, sizeof(outBuff));

 ticks = time(NULL);
 timeinfo = localtime(&ticks);
 strftime(outBuff,sizeof(outBuff),"%I:%M%p.",timeinfo);
 fprintf(stdout, outBuff);
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: OBSOLETE_STD_FUNC
Impact: Low
CWE ID: 474, 477
CERT C ID: MSC24-C, MSC33-C, POS33-C, PRE09-C
CERT C++ ID: MSC33-C, POS33-C

See Also
Use of dangerous standard function | Unsafe standard function | Invalid
use of standard library string routine

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

 Use of obsolete standard function

3-783

https://cwe.mitre.org/data/definitions/474.html
https://cwe.mitre.org/data/definitions/477.html
https://www.securecoding.cert.org/confluence/x/LwDpAQ
https://www.securecoding.cert.org/confluence/x/CgCuAQ
https://www.securecoding.cert.org/confluence/x/EgAa
https://www.securecoding.cert.org/confluence/x/iwD3
https://wiki.sei.cmu.edu/confluence/x/yNYxBQ
https://wiki.sei.cmu.edu/confluence/x/yNYxBQ

Introduced in R2015b

3 Defects

3-784

Use of path manipulation function without
maximum sized buffer checking
Destination buffer of getwd or realpath is smaller than PATH_MAX bytes

Description
Use of path manipulation function without maximum-sized buffer checking occurs
when the destination argument of a path manipulation function such as realpath or
getwd has a buffer size less than PATH_MAX bytes.

Risk
A buffer smaller than PATH_MAX bytes can overflow but you cannot test the function
return value to determine if an overflow occurred. If an overflow occurs, following the
function call, the content of the buffer is undefined.

For instance, char *getwd(char *buf) copies an absolute path name of the current
folder to its argument. If the length of the absolute path name is greater than PATH_MAX
bytes, getwd returns NULL and the content of *buf is undefined. You can test the return
value of getwd for NULL to see if the function call succeeded.

However, if the allowed buffer for buf is less than PATH_MAX bytes, a failure can occur
for a smaller absolute path name. In this case, getwd does not return NULL even though a
failure occurred. Therefore, the allowed buffer for buf must be PATH_MAX bytes long.

Fix
Possible fixes are:

• Use a buffer size of PATH_MAX bytes. If you obtain the buffer from an unknown source,
before using the buffer as argument of getwd or realpath function, make sure that
the size is less than PATH_MAX bytes.

• Use a path manipulation function that allows you to specify a buffer size.

 Use of path manipulation function without maximum sized buffer checking

3-785

For instance, if you are using getwd to get the absolute path name of the current
folder, use char *getcwd(char *buf, size_t size); instead. The additional
argument size allows you to specify a size greater than or equal to PATH_MAX.

• Allow the function to allocate additional memory dynamically, if possible.

For instance, char *realpath(const char *path, char *resolved_path);
dynamically allocates memory if resolved_path is NULL. However, you have to
deallocate this memory later using the free function.

Examples

Possible Buffer Overflow in Use of getwd Function
#include <unistd.h>
#include <linux/limits.h>
#include <stdio.h>

void func(void) {
 char buf[PATH_MAX];
 if (getwd(buf+1)!= NULL) {
 printf("cwd is %s\n", buf);
 }
}

In this example, although the array buf has PATH_MAX bytes, the argument of getwd is
buf + 1, whose allowed buffer is less than PATH_MAX bytes.

One possible correction is to use an array argument with size equal to PATH_MAX bytes.

#include <unistd.h>
#include <linux/limits.h>
#include <stdio.h>

void func(void) {
 char buf[PATH_MAX];
 if (getwd(buf)!= NULL) {
 printf("cwd is %s\n", buf);
 }
}

3 Defects

3-786

Result Information
Group: Static memory
Language: C | C++
Default: Off
Command-Line Syntax: PATH_BUFFER_OVERFLOW
Impact: High
CWE ID: 785
ISO/IEC TS 17961 ID: libptr

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2015b

 Use of path manipulation function without maximum sized buffer checking

3-787

https://cwe.mitre.org/data/definitions/785.html

Use of plain char type for numerical value
Plain char variable in arithmetic operation without explicit signedness

Description
Use of plain char type for numerical value detects char variables without explicit
signedness that are being used in these ways:

• To store non-char constants
• In an arithmetic operation when the char is:

• A negative value.
• The result of a sign changing overflow.

• As a buffer offset.

char variables without a signed or unsigned qualifier can be either signed or unsigned
depending on your compiler.

Risk
Operations on a plain char can result in unexpected numerical values. If the char is used
as an offset, the char can cause buffer overflow or underflow.

Fix
When initializing a char variable, to avoid implementation-defined confusion, explicitly
state whether the char is signed or unsigned.

Examples
Divide by char Variable
#include <stdio.h>

3 Defects

3-788

void badplaincharuse(void)
{
 char c = 200;
 int i = 1000;
 (void)printf("i/c = %d\n", i/c);
}

In this example, the char variable c can be signed or unsigned depending on your
compiler. Assuming 8-bit, two's complement character types, the result is either i/c = 5
(unsigned char) or i/c = -17 (signed char). The correct result is unknown without
knowing the signedness of char.

One possible correction is to add a signed qualifier to char. This clarification makes the
operation defined.

#include <stdio.h>

void badplaincharuse(void)
{
 signed char c = -56;
 int i = 1000;
 (void)printf("i/c = %d\n", i/c);
}

Result Information
Group: Numerical
Language: C | C++
Default: Off
Command-Line Syntax: BAD_PLAIN_CHAR_USE
Impact: Medium
CWE ID: 682, 758
CERT C ID: INT07-C

See Also

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

 Use of plain char type for numerical value

3-789

https://cwe.mitre.org/data/definitions/682.html
https://cwe.mitre.org/data/definitions/758.html
https://www.securecoding.cert.org/confluence/x/-As

Introduced in R2016b

3 Defects

3-790

Use of previously closed resource
Function operates on a previously closed stream

Description
Use of previously closed resource occurs when a function operates on a stream that
you closed earlier in your code.

Risk
The standard states that the value of a FILE* pointer is indeterminate after you close the
stream associated with it. Operations using the FILE* pointer can produce unintended
results.

Fix
One possible fix is to close the stream only at the end of operations. Another fix is to
reopen the stream before using it again.

Examples

Use of FILE* Pointer After Closing Stream
#include <stdio.h>

void func(void) {
 FILE *fp;
 void *ptr;

 fp = fopen("tmp","w");
 if(fp != NULL) {
 fclose(fp);
 fprintf(fp,"text");
 }
}

 Use of previously closed resource

3-791

In this example, fclose closes the stream associated with fp. When you use fprintf on
fp after fclose, the Use of previously closed resource defect appears.

One possible correction is to reverse the order of the fprintf and fclose operations.

#include <stdio.h>

void func(void) {
 FILE *fp;
 void *ptr;

 fp = fopen("tmp","w");
 if(fp != NULL) {
 fprintf(fp,"text");
 fclose(fp);
 }
}

Result Information
Group: Resource management
Language: C | C++
Default: On
Command-Line Syntax: CLOSED_RESOURCE_USE
Impact: High
CWE ID: 672, 826, 910
CERT C ID: FIO46-C
CERT C++ ID: FIO46-C

See Also
Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
MISRA C:2012 Rule 22.6

Topics
“Interpret Polyspace Bug Finder Results”

3 Defects

3-792

https://cwe.mitre.org/data/definitions/672.html
https://cwe.mitre.org/data/definitions/826.html
https://cwe.mitre.org/data/definitions/910.html
https://www.securecoding.cert.org/confluence/x/KAGQBw
https://wiki.sei.cmu.edu/confluence/x/QdUxBQ

“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2015b

 Use of previously closed resource

3-793

Use of previously freed pointer
Memory accessed after deallocation

Description
Use of previously freed pointer occurs when a block of memory is accessed after it is
freed using the free function.

Examples
Use of Previously Freed Pointer Error
#include <stdlib.h>
#include <stdio.h>
 int increment_content_of_address(int base_val, int shift)
 {
 int j;
 int* pi = (int*)malloc(sizeof(int));
 if (pi == NULL) return 0;

 *pi = base_val;
 free(pi);

 j = *pi + shift;
 /* Defect: Reading a freed pointer */

 return j;
 }

The free statement releases the block of memory that pi refers to. Therefore,
dereferencingpi after the free statement is not valid.

One possible correction is to free the pointer pi only after the last instance where it is
accessed.

#include <stdlib.h>

3 Defects

3-794

int increment_content_of_address(int base_val, int shift)
{
 int j;
 int* pi = (int*)malloc(sizeof(int));
 if (pi == NULL) return 0;

 *pi = base_val;

 j = *pi + shift;
 *pi = 0;

 /* Fix: The pointer is freed after its last use */
 free(pi);
 return j;
}

Check Information
Group: Dynamic memory
Language: C | C++
Default: On
Command-Line Syntax: FREED_PTR
Impact: High
CWE ID: 416, 825
CERT C ID: MEM00-C, MEM30-C
CERT C++ ID: EXP54-CPP, MEM30-C, MEM50-CPP, MEM51-CPP
ISO/IEC TS 17961 ID: accfree, dblfree

See Also
Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Deallocation of previously deallocated pointer

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

 Use of previously freed pointer

3-795

https://cwe.mitre.org/data/definitions/416.html
https://cwe.mitre.org/data/definitions/825.html
https://www.securecoding.cert.org/confluence/x/twE
https://www.securecoding.cert.org/confluence/x/vAE
https://wiki.sei.cmu.edu/confluence/x/OXw-BQ
https://wiki.sei.cmu.edu/confluence/x/GdYxBQ
https://wiki.sei.cmu.edu/confluence/x/onw-BQ
https://wiki.sei.cmu.edu/confluence/x/Gns-BQ

Introduced in R2013b

3 Defects

3-796

Use of signal to kill thread
Uncaught signal kills entire process instead of specific thread

Description
Use of signal to kill thread occurs when you use an uncaught signal to kill a thread.
For instance, you use the POSIX function pthread_kill and send the signal SIGTERM to
kill a thread.

Risk
Sending a signal kills the entire process instead of just the thread that you intend to kill.

For instance, the pthread_kill specifications state that if the disposition of a signal is
to terminate, this action affects the entire process.

Fix
Use other mechanisms that are intended to kill specific threads.

For instance, use the POSIX function pthread_cancel to terminate a specific thread.

Examples

Use of pthread_kill to Terminate Threads
#include <signal.h>
#include <pthread.h>

void* func(void *foo) {
 /* Execution of thread */
}

int main(void) {
 int result;

 Use of signal to kill thread

3-797

http://man7.org/linux/man-pages/man3/pthread_kill.3.html

 pthread_t thread;

 if ((result = pthread_create(&thread, NULL, func, 0)) != 0) {
 }
 if ((result = pthread_kill(thread, SIGTERM)) != 0) {
 }

 /* This point is not reached because the process terminates in pthread_kill() */

 return 0;
}

In this example, the pthread_kill function sends the signal SIGTERM to kill a thread.
The signal kills the entire process instead of the thread previously created with
pthread_create.

One possible correction is to use the pthread_cancel function. The pthread_cancel
terminates a thread specified by its first argument at a specific cancellation point or
immediately, depending on the thread's cancellation type.

#include <signal.h>
#include <pthread.h>

void* func(void *foo) {
 /* Execution of thread */
}

int main(void) {
 int result;
 pthread_t thread;

 if ((result = pthread_create(&thread, NULL, func, 0)) != 0) {
 /* Handle Error */
 }
 if ((result = pthread_cancel(thread)) != 0) {
 /* Handle Error */
 }

 /* Continue executing */

 return 0;
}

See also:

3 Defects

3-798

• pthread_cancel for more information on cancellation types.
• Pthreads for functions that are allowed to be cancellation points.

Result Information
Group: Concurrency
Language: C | C++
Default: Off
Command-Line Syntax: THREAD_KILLED_WITH_SIGNAL
Impact: Low
CERT C ID: POS44-C
CERT C++ ID: POS44-C

See Also
Signal call in multithreaded program

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2018b

 Use of signal to kill thread

3-799

http://man7.org/linux/man-pages/man3/pthread_cancel.3.html
http://man7.org/linux/man-pages/man7/pthreads.7.html
https://wiki.sei.cmu.edu/confluence/x/otUxBQ
https://wiki.sei.cmu.edu/confluence/x/w9YxBQ

Use of setjmp/longjmp
setjmp and longjmp cause deviation from normal control flow

Description
Use of setjmp/longjmp occurs when you use a combination of setjmp and longjmp or
sigsetjmp and siglongjmp to deviate from normal control flow and perform non-local
jumps in your code.

Risk
Using setjmp and longjmp, or sigsetjmp and siglongjmp has the following risks:

• Nonlocal jumps are vulnerable to attacks that exploit common errors such as buffer
overflows. Attackers can redirect the control flow and potentially execute arbitrary
code.

• Resources such as dynamically allocated memory and open files might not be closed,
causing resource leaks.

• If you use setjmp and longjmp in combination with a signal handler, unexpected
control flow can occur. POSIX does not specify whether setjmp saves the signal mask.

• Using setjmp and longjmp or sigsetjmp and siglongjmp makes your program
difficult to understand and maintain.

Fix
Perform nonlocal jumps in your code using setjmp/longjmp or sigsetjmp/
siglongjmp only in contexts where such jumps can be performed securely. Alternatively,
use POSIX threads if possible.

In C++, to simulate throwing and catching exceptions, use standard idioms such as
throw expressions and catch statements.

3 Defects

3-800

Examples

Use of setjmp and longjmp
#include <setjmp.h>
#include <signal.h>

extern int update(int);
extern void print_int(int);

static jmp_buf env;
void sighandler(int signum) {
 longjmp(env, signum);
}
void func_main(int i) {
 signal(SIGINT, sighandler);
 if (setjmp(env)==0) {
 while(1) {
 /* Main loop of program, iterates until SIGINT signal catch */
 i = update(i);
 }
 } else {
 /* Managing longjmp return */
 i = -update(i);
 }

 print_int(i);
 return;
}

In this example, the initial return value of setjmp is 0. The update function is called in
an infinite while loop until the user interrupts it through a signal.

In the signal handling function, the longjmp statement causes a jump back to main and
the return value of setjmp is now 1. Therefore, the else branch is executed.

To emulate the same behavior more securely, use a volatile global variable instead of a
combination of setjmp and longjmp.

#include <setjmp.h>
#include <signal.h>

 Use of setjmp/longjmp

3-801

extern int update(int);
extern void print_int(int);

volatile sig_atomic_t eflag = 0;

void sighandler(int signum) {
 eflag = signum; /* Fix: using global variable */
}

void func_main(int i) {
 /* Fix: Better design to avoid use of setjmp/longjmp */
 signal(SIGINT, sighandler);
 while(!eflag) { /* Fix: using global variable */
 /* Main loop of program, iterates until eflag is changed */
 i = update(i);
 }

 print_int(i);
 return;
}

Result Information
Group: Good practice
Language: C | C++
Default: Off
Command-Line Syntax: SETJMP_LONGJMP_USE
Impact: Low
CWE ID: 691
CERT C ID: MSC22-C
CERT C++ ID: ERR52-CPP

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

3 Defects

3-802

https://cwe.mitre.org/data/definitions/691.html
https://www.securecoding.cert.org/confluence/x/rgCMAg
https://wiki.sei.cmu.edu/confluence/x/nHs-BQ

External Websites
Linux man page for setjmp

Introduced in R2015b

 Use of setjmp/longjmp

3-803

http://man7.org/linux/man-pages/man3/setjmp.3.html

Use of tainted pointer
Pointer from an unsecure source may be NULL or point to unknown memory

Description
Use of tainted pointer defect is raised when:

• Tainted NULL pointer — the pointer is not validated against NULL.
• Tainted size pointer — the size of the memory zone that a pointer points to is not

validated.

Note On a single pointer, your code can have instances of Use of tainted pointer,
Pointer dereference with tainted offset, and Tainted NULL or non-null-terminated
string. Bug Finder raises only the first tainted pointer defect that it finds.

Risk
An attacker can give your program a pointer that points to unexpected memory locations.
If the pointer is dereferenced to write, the attacker can:

• Modify the state variables of a critical program.
• Cause your program to crash.
• Execute unwanted code.

If the pointer is dereferenced to read, the attacker can:

• Read sensitive data.
• Cause your program to crash.
• Modify a program variable to an unexpected value.

3 Defects

3-804

Fix
If you expect a valid memory location, check that the pointer is not NULL. Also, check the
size of the memory location. This second check validates whether the size of the data the
pointer points to matches the size your program expects.

Examples

Function to Change Pointer
void taintedptr(int* p, int i) {
 *p = i;
}

In this example, the pointer *p is passed as an argument, and the value is changed. The
pointer can be null or point to unknown memory, which can be vulnerable.

One possible correction is to sanitize the pointer before using it. This example uses a
second function to check if the pointer is null and can be dereferenced.

#include <stdlib.h>

int* sanitize_ptr(int* p) {
 int* res = NULL;
 if (p && *p) { /* Tainted pointer detected here, used as "firewall" */
 /* Pointer is not null and dereference ok */
 res = p;
 }
 return res;
}
void taintedptr(int* p, int i) {
 p = sanitize_ptr(p);
 if (p) {
 *p = i;
 }
}

 Use of tainted pointer

3-805

Result Information
Group: Tainted Data
Language: C | C++
Default: Off
Command-Line Syntax: TAINTED_PTR
Impact: Low
CWE ID: 690, 822
CERT C ID: API00-C, API02-C, ARR30-C, ARR38-C, EXP34-C, MEM10-C, MSC15-C
CERT C++ ID: ARR30-C, ARR38-C, CTR50-CPP, EXP34-C, STR53-CPP
ISO/IEC TS 17961 ID: invptr, nullref

See Also
Pointer dereference with tainted offset

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2015b

3 Defects

3-806

https://cwe.mitre.org/data/definitions/690.html
https://cwe.mitre.org/data/definitions/822.html
https://www.securecoding.cert.org/confluence/x/egAV
https://www.securecoding.cert.org/confluence/x/oIAzAg
https://www.securecoding.cert.org/confluence/x/DYDXAg
https://www.securecoding.cert.org/confluence/x/EYCGB
https://www.securecoding.cert.org/confluence/x/PAw
https://www.securecoding.cert.org/confluence/x/jgEOAQ
https://www.securecoding.cert.org/confluence/x/EoLu
https://wiki.sei.cmu.edu/confluence/x/wtYxBQ
https://wiki.sei.cmu.edu/confluence/x/W9UxBQ
https://wiki.sei.cmu.edu/confluence/x/cHw-BQ
https://wiki.sei.cmu.edu/confluence/x/QdcxBQ
https://wiki.sei.cmu.edu/confluence/x/h3s-BQ

Variable length array with nonpositive size
Size of variable-length array is zero or negative

Description
Variable length array with non-positive size occurs when size of a variable-length
array is zero or negative.

Risk
If the size of a variable-length array is zero or negative, unexpected behavior can occur,
such as stack overflow.

Fix
When you declare a variable-length array as a local variable in a function:

• If you use a function parameter as the array size, check that the parameter is positive.
• If you use the result of a computation on a function parameter as the array size, check

that the result is positive.

You can place a test for positive value either before the function call or the array
declaration in the function body.

Examples

Nonpositive Array Size
int input(void);

void add_scalar(int n, int m) {
 int r=0;
 int arr[m][n];
 for (int i=0; i<m; i++) {

 Variable length array with nonpositive size

3-807

 for (int j=0; j<n; j++) {
 arr[i][j] = input();
 r += arr[i][j];
 }
 }
}

void main() {
 add_scalar(2,2);
 add_scalar(-1,2);
 add_scalar(2,0);
}

In this example, the second and third calls to add_scalar result in a negative and zero
size of arr.

One possible correction is fix or remove calls that result in a nonpositive array size.

Result Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: NON_POSITIVE_VLA_SIZE
Impact: High
CWE ID: 687
CERT C ID: MEM04-C, MEM05-C

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2015b

3 Defects

3-808

https://cwe.mitre.org/data/definitions/687.html
https://www.securecoding.cert.org/confluence/x/GQI
https://www.securecoding.cert.org/confluence/x/bAAV

Variable shadowing
Variable hides another variable of same name with nested scope

Description
Variable shadowing occurs when a variable hides another variable of the same name
with nested scope.

Examples

Variable Shadowing Error
#include <stdio.h>

int fact[5]={1,2,6,24,120};

int factorial(int n)
 {
 int fact=1;
 /*Defect: Local variable hides global array with same name */

 for(int i=1;i<=n;i++)
 fact*=i;

 return(fact);
 }

Inside the factorial function, the integer variable fact hides the global integer array
fact.

One possible correction is to change the name of one of the variables, preferably the one
with more local scope.

#include <stdio.h>

int fact[5]={1,2,6,24,120};

 Variable shadowing

3-809

int factorial(int n)
 {
 /* Fix: Change name of local variable */
 int f=1;

 for(int i=1;i<=n;i++)
 f*=i;

 return(f);
 }

Check Information
Group: Data flow
Language: C | C++
Default: On for handwritten code, off for generated code
Command-Line Syntax: VAR_SHADOWING
Impact: Low
CERT C ID: DCL01-C

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2013b

3 Defects

3-810

https://www.securecoding.cert.org/confluence/x/VwE

Vulnerable path manipulation
Path argument with /../, /abs/path/, or other unsecure elements

Description
Vulnerable path manipulation detects relative or absolute path traversals. If the path
traversal contains a tainted source, or you use the path to open/create files, Bug Finder
raises a defect.

Risk
Relative path elements, such as ".." can resolve to locations outside the intended folder.
Absolute path elements, such as "/abs/path" can also resolve to locations outside the
intended folder.

An attacker can use these types of path traversal elements to traverse to the rest of the
file system and access other files or folders.

Fix
Avoid vulnerable path traversal elements such as /../ and /abs/path/. Use fixed file
names and locations wherever possible.

Examples
Relative Path Traversal
include <stdio.h>
include <string.h>
include <wchar.h>
include <sys/types.h>
include <sys/stat.h>
include <fcntl.h>
include <unistd.h>
include <stdlib.h>

 Vulnerable path manipulation

3-811

define BASEPATH "/tmp/"
define FILENAME_MAX 512

static void Relative_Path_Traversal(void)
{
 char * data;
 char data_buf[FILENAME_MAX] = BASEPATH;
 char sub_buf[FILENAME_MAX];

 if (fgets(sub_buf, FILENAME_MAX, stdin) == NULL) exit (1);
 data = data_buf;
 strcat(data, sub_buf);

 FILE *file = NULL;
 file = fopen(data, "wb+");
 if (file != NULL) fclose(file);
}

int path_call(void){
 Relative_Path_Traversal();
}

This example opens a file from "/tmp/", but uses a relative path to the file. An external
user can manipulate this relative path when fopen opens the file.

One possible correction is to use a fixed file name instead of a relative path. This example
uses file.txt.

include <stdio.h>
include <string.h>
include <wchar.h>
include <sys/types.h>
include <sys/stat.h>
include <fcntl.h>
include <unistd.h>
include <stdlib.h>
define BASEPATH "/tmp/"
define FILENAME_MAX 512

static void Relative_Path_Traversal(void)
{
 char * data;
 char data_buf[FILENAME_MAX] = BASEPATH;
 data = data_buf;

3 Defects

3-812

 /* FIX: Use a fixed file name */
 strcat(data, "file.txt");
 FILE *file = NULL;
 file = fopen(data, "wb+");
 if (file != NULL) fclose(file);
}

int path_call(void){
 Relative_Path_Traversal();
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: PATH_TRAVERSAL
Impact: Low
CWE ID: 22, 23, 36
CERT C ID: FIO02-C

See Also
Use of path manipulation function without maximum sized buffer
checking

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2015b

 Vulnerable path manipulation

3-813

https://cwe.mitre.org/data/definitions/22.html
https://cwe.mitre.org/data/definitions/23.html
https://cwe.mitre.org/data/definitions/36.html
https://www.securecoding.cert.org/confluence/x/EAY

Vulnerable permission assignments
Argument gives read/write/search permissions to external users

Description
Vulnerable permission assignments looks at functions that can change file
permissions, such as chmod, umask, creat, or open. If the specified permissions allow
unintended actors to modify or read the resource, Bug Finder flags the functions as a
defect.

Risk
If you give outside users or outside groups a wider range or permissions than required,
you potentially expose your sensitive information and your modifications. This defect is
especially dangerous for permissions related to:

• Program configurations
• Program executions
• Sensitive user data

Fix
Set your permissions so that the user (u) has more permissions than the group (g), and so
the group has more permissions than other users (o), or u >= g >= o.

Examples

Create File with Other Permissions
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

3 Defects

3-814

void bug_dangerouspermissions(const char * log_path) {
 mode_t mode = S_IROTH | S_IXOTH | S_IWOTH;
 int fd = creat(log_path, mode);

 if (fd) {
 write(fd, "Hello\n", 6);
 }
 close(fd);
 unlink(log_path);
}

In this example, the log_path file is created with more rights for the other outside users,
than the current user. The permissions are ---------rwx.

One possible correction is to modify the user permissions for the file. In this correction,
the user has read/write/execute permissions, but other users do not.

#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

void corrected_dangerouspermissions(const char * log_path) {
 mode_t mode = S_IRUSR | S_IXUSR | S_IWUSR;
 int fd = creat(log_path, mode);

 if (fd) {
 write(fd, "Hello\n", 6);
 }
 close(fd);
 unlink(log_path);
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: DANGEROUS_PERMISSIONS
Impact: Medium
CWE ID: 732, 922

 Vulnerable permission assignments

3-815

https://cwe.mitre.org/data/definitions/732.html
https://cwe.mitre.org/data/definitions/922.html

CERT C ID: FIO06-C

See Also
Umask used with chmod-style arguments

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2015b

3 Defects

3-816

https://www.securecoding.cert.org/confluence/x/KQU

Vulnerable pseudo-random number
generator
Using a cryptographically weak pseudo-random number generator

Description
The Vulnerable pseudo-random number generator identifies uses of
cryptographically weak pseudo-random number generator (PRNG) routines.

The list of cryptographically weak routines flagged by this checker include:

• rand, random
• drand48, lrand48, mrand48, erand48, nrand48, jrand48, and their _r equivalents

such as drand48_r
• RAND_pseudo_bytes

Risk
These cryptographically weak routines are predictable and must not be used for security
purposes. When a predictable random value controls the execution flow, your program is
vulnerable to malicious attacks.

Fix
Use more cryptographically sound random number generators, such as CryptGenRandom
(Windows), OpenSSL/RAND_bytes(Linux/UNIX).

Examples

Random Loop Numbers

#include <stdio.h>

 Vulnerable pseudo-random number generator

3-817

#include <stdlib.h>

volatile int rd = 1;
int main(int argc, char *argv[])
{
 int j, r, nloops;
 struct random_data buf;
 int i = 0;

 nloops = rand();

 for (j = 0; j < nloops; j++) {
 if (random_r(&buf, &i))
 exit(1);
 printf("random_r: %ld\n", (long)i);
 }
 return 0;
}

This example uses rand and random_r to generate random numbers. If you use these
functions for security purposes, these PRNGs can be the source of malicious attacks.

One possible correction is to replace the vulnerable PRNG with a stronger random
number generator.

#include <stdio.h>
#include <stdlib.h>
#include <openssl/rand.h>

volatile int rd = 1;
int main(int argc, char* argv[])
{
 int j, r, nloops;
 unsigned char buf;
 unsigned int seed;
 int i = 0;

 if (argc != 3)
 {
 fprintf(stderr, "Usage: %s <seed> <nloops>\n", argv[0]);
 exit(EXIT_FAILURE);
 }

3 Defects

3-818

 seed = atoi(argv[1]);
 nloops = atoi(argv[2]);

 for (j = 0; j < nloops; j++) {
 if (RAND_bytes(&buf, i) != 1)
 exit(1);
 printf("RAND_bytes: %u\n", (unsigned)buf);
 }
 return 0;
}

Result Information
Group: Security
Language: C | C++
Default: Off
Command-Line Syntax: VULNERABLE_PRNG
Impact: Medium
CWE ID: 330, 338
CERT C ID: MSC30-C
CERT C++ ID: MSC30-C, MSC50-CPP

See Also
Deterministic random output from constant seed | Predictable random
output from predictable seed | Unsafe standard encryption function

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2015b

 Vulnerable pseudo-random number generator

3-819

https://cwe.mitre.org/data/definitions/330.html
https://cwe.mitre.org/data/definitions/338.html
https://www.securecoding.cert.org/confluence/x/qw4
https://wiki.sei.cmu.edu/confluence/x/UNcxBQ
https://wiki.sei.cmu.edu/confluence/x/2ns-BQ

Weak cipher algorithm
Encryption algorithm associated with the cipher context is weak

Description
Weak cipher algorithm occurs when you associate a weak encryption algorithm with
the cipher context.

Risk
Some encryption algorithms have known flaws. Though the OpenSSL library still supports
the algorithms, you must avoid using them.

If your cipher algorithm is weak, an attacker can decrypt your data by exploiting a known
flaw or brute force attacks.

Fix
Use algorithms that are well-studied and widely acknowledged as secure.

For instance, the Advanced Encryption Standard (AES) is a widely accepted cipher
algorithm.

Examples

Use of DES Algorithm

#include <openssl/evp.h>
#include <stdlib.h>

void func(unsigned char *key, unsigned char *iv) {
 EVP_CIPHER_CTX *ctx = EVP_CIPHER_CTX_new();
 EVP_CIPHER_CTX_init(ctx);

3 Defects

3-820

 const EVP_CIPHER * ciph = EVP_des_cbc();
 EVP_EncryptInit_ex(ctx, ciph, NULL, key, iv);
}

In this example, the routine EVP_des_cbc() invokes the Data Encryption Standard
(DES) algorithm, which is now considered as non-secure and relatively slow.

One possible correction is to use the faster and more secure Advanced Encryption
Standard (AES) algorithm instead.

#include <openssl/evp.h>
#include <stdlib.h>

void func(unsigned char *key, unsigned char *iv) {
 EVP_CIPHER_CTX *ctx = EVP_CIPHER_CTX_new();
 EVP_CIPHER_CTX_init(ctx);
 const EVP_CIPHER * ciph = EVP_aes_128_cbc();
 EVP_EncryptInit_ex(ctx, ciph, NULL, key, iv);
}

Result Information
Group: Cryptography
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_CIPHER_WEAK_CIPHER
Impact: Medium
CWE ID: 310, 326, 327

See Also

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2017a

 Weak cipher algorithm

3-821

https://cwe.mitre.org/data/definitions/310.html
https://cwe.mitre.org/data/definitions/326.html
https://cwe.mitre.org/data/definitions/327.html

Weak cipher mode
Encryption mode associated with the cipher context is weak

Description
Weak cipher mode occurs when you associate a weak block cipher mode with the cipher
context.

The cipher mode that is especially flagged by this defect is the Electronic Code Book
(ECB) mode.

Risk
The ECB mode does not support protection against dictionary attacks.

An attacker can decrypt your data even using brute force attacks.

Fix
Use a cipher mode more secure than ECB.

For instance, the Cipher Block Chaining (CBC) mode protects against dictionary attacks
by:

• XOR-ing each block of data with the encrypted output from the previous block.
• XOR-ing the first block of data with a random initialization vector (IV).

Examples

Use of ECB Mode

#include <openssl/evp.h>

3 Defects

3-822

#include <stdlib.h>

void func(unsigned char *key, unsigned char *iv) {
 EVP_CIPHER_CTX *ctx = EVP_CIPHER_CTX_new();
 EVP_CIPHER_CTX_init(ctx);
 const EVP_CIPHER * ciph = EVP_aes_128_ecb();
 EVP_EncryptInit_ex(ctx, ciph, NULL, key, iv);
}

In this example, the routine EVP_aes_128_ecb() invokes the Advanced Encryption
Standard (AES) algorithm in the Electronic Code Book (ECB) mode. The ECB mode does
not support protection against dictionary attacks.

One possible correction is to use the Cipher Block Chaining (CBC) mode instead.

#include <openssl/evp.h>
#include <stdlib.h>

void func(unsigned char *key, unsigned char *iv) {
 EVP_CIPHER_CTX *ctx = EVP_CIPHER_CTX_new();
 EVP_CIPHER_CTX_init(ctx);
 const EVP_CIPHER * ciph = EVP_aes_128_cbc();
 EVP_EncryptInit_ex(ctx, ciph, NULL, key, iv);
}

Result Information
Group: Cryptography
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_CIPHER_WEAK_MODE
Impact: Medium
CWE ID: 310, 326, 327

See Also
Topics
“Interpret Polyspace Bug Finder Results”

 Weak cipher mode

3-823

https://cwe.mitre.org/data/definitions/310.html
https://cwe.mitre.org/data/definitions/326.html
https://cwe.mitre.org/data/definitions/327.html

“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2017a

3 Defects

3-824

Weak padding for RSA algorithm
Context used in encryption or signing operation is associated with insecure padding type

Description
Weak padding for RSA algorithm occurs when you perform RSA encryption or
signature by using a context object that was previously associated with a weak padding
scheme.

For instance, you perform encryption by using a context object that is associated with the
PKCS#1v1.5 padding scheme. The scheme is considered insecure and has already been
broken.

ret = EVP_PKEY_CTX_set_rsa_padding(ctx, RSA_PKCS1_PADDING);
...
ret = EVP_PKEY_encrypt(ctx, out, &out_len, in, in_len)

Risk
Padding schemes remove determinism from the RSA algorithm and protect RSA
operations from certain kinds of attacks. Padding schemes such as PKCS#1v1.5, ANSI
X9.31, and SSLv23 are known to be vulnerable. Do not use these padding schemes for
encryption or signature operations.

Fix
Before performing an RSA operation, associate the context object with a strong padding
scheme.

• Encryption: Use the OAEP padding scheme.

For instance, use the EVP_PKEY_CTX_set_rsa_padding function with the argument
RSA_PKCS1_OAEP_PADDING or the RSA_padding_add_PKCS1_OAEP function.

ret = EVP_PKEY_CTX_set_rsa_padding(ctx, RSA_PKCS1_OAEP_PADDING);

You can then use functions such as EVP_PKEY_encrypt / EVP_PKEY_decrypt or
RSA_public_encrypt / RSA_private_decrypt on the context.

 Weak padding for RSA algorithm

3-825

• Signature: Use the RSA-PSS padding scheme.

For instance, use the EVP_PKEY_CTX_set_rsa_padding function with the argument
RSA_PKCS1_PSS_PADDING.

ret = EVP_PKEY_CTX_set_rsa_padding(ctx, RSA_PKCS1_PSS_PADDING);

You can then use functions such as the EVP_PKEY_sign-EVP_PKEY_verify pair or
the RSA_private_encrypt-RSA_public_decrypt pair on the context.

Examples

Encryption with PKCS#1v1.5 Padding

#include <stddef.h>
#include <openssl/rsa.h>
#include <openssl/evp.h>

#define fatal_error() exit(-1)

int ret;
unsigned char *out_buf;

int func(unsigned char *src, size_t len, RSA* rsa){
 if (rsa == NULL) fatal_error();

 return RSA_public_encrypt(len, src, out_buf, rsa, RSA_PKCS1_PADDING);
}

In this example, the PKCS#1v1.5 padding scheme is used in the encryption step.

Use the OAEP padding scheme for stronger encryption.

#include <stddef.h>
#include <openssl/rsa.h>
#include <openssl/evp.h>

#define fatal_error() exit(-1)

3 Defects

3-826

int ret;
unsigned char *out_buf;

int func(unsigned char *src, size_t len, RSA* rsa){
 if (rsa == NULL) fatal_error();

 return RSA_public_encrypt(len, src, out_buf, rsa, RSA_PKCS1_OAEP_PADDING);
}

Result Information
Group: Cryptography
Language: C | C++
Default: Off
Command-Line Syntax: CRYPTO_RSA_WEAK_PADDING
Impact: Medium
CWE ID: 310, 326, 327, 780

See Also
Incompatible padding for RSA algorithm operation | Missing blinding
for RSA algorithm | Missing padding for RSA algorithm | Nonsecure RSA
public exponent

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2018a

 Weak padding for RSA algorithm

3-827

https://cwe.mitre.org/data/definitions/310.html
https://cwe.mitre.org/data/definitions/326.html
https://cwe.mitre.org/data/definitions/327.html
https://cwe.mitre.org/data/definitions/780.html

Write without a further read
Variable never read after assignment

Description
Write without a further read occurs when a value assigned to a variable is never read.

For instance, you write a value to a variable and then write a second value before reading
the previous value. The first write operation is redundant.

Risk
Redundant write operations often indicate programming errors. For instance, you forgot
to read the variable between two successive write operations or unintentionally read a
different variable.

Fix
Identify the reason why you write to the variable but do not read it later. Look for
common programming errors such as accidentally reading a different variable with a
similar name.

If you determine that the write operation is redundant, remove the operation.

Examples

Write Without Further Read Error
void sensor_amplification(void)
{
 extern int getsensor(void);
 int level;

 level = 4 * getsensor();
 /* Defect: Useless write */

3 Defects

3-828

}

After the variable level gets assigned the value 4 * getsensor(), it is not read.

One possible correction is to use the variable level after the assignment.

#include <stdio.h>

void sensor_amplification(void)
{
 extern int getsensor(void);
 int level;

 level = 4 * getsensor();

 /* Fix: Use level after assignment */
 printf("The value is %d", level);

}

The variable level is printed, reading the new value.

Check Information
Group: Data flow
Language: C | C++
Default: On for handwritten code, off for generated code
Command-Line Syntax: USELESS_WRITE
Impact: Low
CWE ID: 398
CERT C ID: DCL22-C, MSC13-C

See Also
Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
MISRA C:2012 Rule 2.2

 Write without a further read

3-829

https://cwe.mitre.org/data/definitions/398.html
https://www.securecoding.cert.org/confluence/x/OoEt
https://www.securecoding.cert.org/confluence/x/QYA5

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2013b

3 Defects

3-830

Writing to const qualified object
Object declared with a const qualifier is modified

Description
Writing to const qualified object occurs when you do one of the following:

• Use a const-qualified object as the destination of an assignment.
• Pass a const-qualified object to a function that modifies the argument.

For instance, the defect can occur in the following situations:

Situation Risk Fix
You pass a const-qualified
object as first argument of
one of the following
functions:

• mkstemp
• mkostemp
• mkostemps
• mkdtemp

These functions replace the
last six characters of their
first argument with a string.
Therefore, they expect a
modifiable char array as
their first argument.

Pass a non-const object as
first argument of the
function.

You pass a const-qualified
object as the destination
argument of one of the
following functions:

• strcpy
• strncpy
• strcat
• memset

These functions modify their
destination argument.
Therefore, they expect a
modifiable char array as
their destination argument.

Pass a non-const object as
destination argument of the
function.

 Writing to const qualified object

3-831

Situation Risk Fix
You perform a write
operation on a const-
qualified object.

The const qualifier implies
an agreement that the value
of the object will not be
modified. By writing to a
const-qualified object, you
break the agreement. The
result of the operation is
undefined.

Perform the write operation
on a non-const object.

Examples
Writing to const-Qualified Object
#include <string.h>

const char* buffer = "abcdeXXXXXXX";

void func(char* string) {
 char *ptr = (char*)strchr(buffer,'X');
 if(ptr)
 strcpy(ptr,string);
}

In this example, because buffer is const-qualified, strchr(buffer,'X') returns a
const-qualified char* pointer. When this char* pointer is used as the destination
argument of strcpy, a Writing to const qualified object error appears.

One possible correction is to assign the constant string to a non-const object and use the
non-const object as destination argument of strchr.

#include <string.h>

char buffer[] = "abcdeXXXXXXX";

void func(char* string) {
 char *ptr = (char*)strchr(buffer,'X');
 if(ptr)
 strcpy(ptr,string);
}

3 Defects

3-832

Result Information
Group: Programming
Language: C | C++
Default: On
Command-Line Syntax: CONSTANT_OBJECT_WRITE
Impact: High
CWE ID: 227, 471, 686
CERT C ID: EXP40-C, MSC15-C, STR05-C, STR06-C, STR30-C
CERT C++ ID: EXP55-CPP, STR30-C
ISO/IEC TS 17961 ID: strmod

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2015b

 Writing to const qualified object

3-833

https://cwe.mitre.org/data/definitions/227.html
https://cwe.mitre.org/data/definitions/471.html
https://cwe.mitre.org/data/definitions/686.html
https://www.securecoding.cert.org/confluence/x/gAU
https://www.securecoding.cert.org/confluence/x/EoLu
https://www.securecoding.cert.org/confluence/x/mwAV
https://www.securecoding.cert.org/confluence/x/owAV
https://www.securecoding.cert.org/confluence/x/TQE
https://wiki.sei.cmu.edu/confluence/x/AHw-BQ
https://wiki.sei.cmu.edu/confluence/x/VtYxBQ

Writing to read-only resource
File initially opened as read only is modified

Description
Writing to read-only resource occurs when you attempt to write to a file that you have
opened earlier in read-only mode.

For instance, you open a file using fopen with the access mode argument r. You write to
that file with a function in the fprintf family.

Risk
Writing to a read-only file causes undefined behavior.

Fix
If you want to write to the file, open the file in a mode that is suitable for writing.

Examples

Writing to Read-Only File
#include <stdio.h>

void func(void) {
 FILE* fp ;

 fp = fopen("file.txt", "r");
 fprintf(fp, "Some data");
 fclose(fp);
}

3 Defects

3-834

In this example, the file file.txt is opened in read-only mode. When the FILE pointer
associated with file.txt is used as an argument of fprintf, a Writing to read-only
resource defect occurs.

One possible correction is to use the access specifier "a" instead of "r". file.txt is
now open for output at the end of the file.

#include <stdio.h>

void func(void) {
 FILE* fp ;

 fp = fopen("file.txt", "a");
 fprintf(fp, "Some data");
 fclose(fp);
}

Result Information
Group: Resource management
Language: C | C++
Default: On
Command-Line Syntax: READ_ONLY_RESOURCE_WRITE
Impact: High

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2015b

 Writing to read-only resource

3-835

Wrong allocated object size for cast
Allocated memory does not match destination pointer

Description
Wrong allocated object size for cast occurs during pointer conversion when the
pointer’s address is unaligned. If a pointer is converted to a different pointer type, the
size of the allocated memory must be a multiple of the size of the destination pointer.

Examples
Dynamic Allocation of Pointers
#include <stdlib.h>

void dyn_non_align(void){
 void *ptr = malloc(13);
 long *dest;

 dest = (long*)ptr; //defect
}

In this example, the software raises a defect on the conversion of ptr to a long* in line
5. The dynamically allocated memory of ptr, 13 bytes, is not a multiple of the size of
dest, 4 bytes. This misalignment causes the Wrong allocated object size for cast
defect.

One possible correction is to use a pointer size that is a multiple of the destination size. In
this example, resolve the defect by changing the allocated memory to 12 instead of 13.

#include <stdlib.h>

void dyn_non_align(void){
 void *ptr = malloc(12);
 long *dest;

3 Defects

3-836

 dest = (long*)ptr;
}

Static Allocation of Pointers
void static_non_align(void){
 char arr[13], *ptr;
 int *dest;

 ptr = &arr[0];
 dest = (int*)ptr; //defect
}

In this example, the software raises a defect on the conversion of ptr to an int* in line
6. ptr has a memory size of 13 bytes because the array arr has a size of 13 bytes. The
size of dest is 4 bytes, which is not a multiple of 13. This misalignment causes the
Wrong allocated object size for cast defect.

One possible correction is to use a pointer size that is a multiple of the destination size. In
this example, resolve the defect by changing the size of the array arr to a multiple of 4.

void static_non_align(void){
 char arr[12], *ptr;
 int *dest;

 ptr = &arr[0];
 dest = (int*)ptr;
}

Allocation with a Function
#include <stdlib.h>

void *my_alloc(int size) {
 void *ptr_func = malloc(size);
 if(ptr_func == NULL) exit(-1);
 return ptr_func;
}

void fun_non_align(void){
 int *dest1;
 char *dest2;

 Wrong allocated object size for cast

3-837

 dest1 = (int*)my_alloc(13); //defect
 dest2 = (char*)my_alloc(13); //not a defect
}

In this example, the software raises a defect on the conversion of the pointer returned by
my_alloc(13) to an int* in line 11. my_alloc(13) returns a pointer with a
dynamically allocated size of 13 bytes. The size of dest1 is 4 bytes, which is not a divisor
of 13. This misalignment causes the Wrong allocated object size for cast defect. In line
12, the same function call, my_alloc(13), does not call a defect for the conversion to
dest2 because the size of char*, 1 byte, a divisor of 13.

One possible correction is to use a pointer size that is a multiple of the destination size. In
this example, resolve the defect by changing the argument for my_alloc to a multiple of
4.

#include <stdlib.h>

void *my_alloc(int size) {
 void *ptr_func = malloc(size);
 if(ptr_func == NULL) exit(-1);
 return ptr_func;
}

void fun_non_align(void){
 int *dest1;
 char *dest2;

 dest1 = (int*)my_alloc(12);
 dest2 = (char*)my_alloc(13);
}

Check Information
Group: Static Memory
Language: C | C++
Default: Off
Command-Line Syntax: OBJECT_SIZE_MISMATCH
Impact: High
CWE ID: 704
CERT C ID: EXP36-C, MEM02-C, STR38-C

3 Defects

3-838

https://cwe.mitre.org/data/definitions/704.html
https://www.securecoding.cert.org/confluence/x/tgAV
https://www.securecoding.cert.org/confluence/x/gwg
https://www.securecoding.cert.org/confluence/x/FADAAQ

CERT C++ ID: EXP36-C, STR38-C
ISO/IEC TS 17961 ID: ALIGNCONV, INSUFMEM

See Also
Polyspace Analysis Options
Find defects (-checkers)

Polyspace Results
Unreliable cast of pointer

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2013b

 Wrong allocated object size for cast

3-839

https://wiki.sei.cmu.edu/confluence/x/u9UxBQ
https://wiki.sei.cmu.edu/confluence/x/xtYxBQ

Wrong type used in sizeof
sizeof argument does not match pointed type

Description
Wrong type used in sizeof occurs when both of the following conditions hold:

• You assign the address of a block of memory to a pointer, or transfer data between two
blocks of memory. The assignment or copy uses the sizeof operator.

For instance, you initialize a pointer using malloc(sizeof(type)) or copy data
between two addresses using memcpy(destination_ptr, source_ptr,
sizeof(type)).

• You use an incorrect type as argument of the sizeof operator. You use the pointer
type instead of the type that the pointer points to.

For instance, to initialize a type* pointer, you use malloc(sizeof(type*)) instead
of malloc(sizeof(type)).

Rationale
Irrespective of what type stands for, the expression sizeof(type*) always returns a
fixed size. The size returned is the pointer size on your platform in bytes. The appearance
of sizeof(type*) often indicates an unintended usage. The error can cause allocation
of a memory block that is much smaller than what you need and lead to weaknesses such
as buffer overflows.

For instance, assume that structType is a structure with ten int variables. If you
initialize a structType* pointer using malloc(sizeof(structType*)) on a 32-bit
platform, the pointer is assigned a memory block of four bytes. However, to be allocated
completely for one structType variable, the structType* pointer must point to a
memory block of sizeof(structType) = 10 * sizeof(int) bytes. The required
size is much greater than the actual allocated size of four bytes.

3 Defects

3-840

Fix
To initialize a type* pointer, replace sizeof(type*) in your pointer initialization
expression with sizeof(type).

Examples

Allocate a Char Array With sizeof
#include <stdlib.h>

void test_case_1(void) {
 char* str;

 str = (char*)malloc(sizeof(char*) * 5);
 free(str);

}

In this example, memory is allocated for the character pointer str using a malloc of five
char pointers. However, str is a pointer to a character, not a pointer to a character
pointer. Therefore the sizeof argument, char*, is incorrect.

One possible correction is to match the argument to the pointer type. In this example,
str is a character pointer, therefore the argument must also be a character.

#include <stdlib.h>

void test_case_1(void) {
 char* str;

 str = (char*)malloc(sizeof(char) * 5);
 free(str);

}

Check Information
Group: Programming

 Wrong type used in sizeof

3-841

Language: C | C++
Default: On for handwritten code, off for generated code
Command-Line Syntax: PTR_SIZEOF_MISMATCH
Impact: High
CWE ID: 467
CERT C ID: ARR00-C, ARR01-C, MEM02-C, MEM35-C
CERT C++ ID: MEM35-C
ISO/IEC TS 17961 ID: insufmem

See Also
Find defects (-checkers)

Topics
“Interpret Polyspace Bug Finder Results”
“Address Polyspace Results Through Bug Fixes or Comments”

Introduced in R2013b

3 Defects

3-842

https://cwe.mitre.org/data/definitions/467.html
https://www.securecoding.cert.org/confluence/x/FgH3
https://www.securecoding.cert.org/confluence/x/6wE
https://www.securecoding.cert.org/confluence/x/gwg
https://www.securecoding.cert.org/confluence/x/2wE
https://wiki.sei.cmu.edu/confluence/x/ANYxBQ

Functions, Properties, Classes, and
Apps

4

pslinkfun
Manage model analysis at the command line

Syntax
pslinkfun('annotations','type',typeValue,'kind',kindValue,
Name,Value)

pslinkfun('openresults',systemName)

pslinkfun('settemplate',psprjFile)
prjTemplate = pslinkfun('gettemplate')

pslinkfun('advancedoptions')
pslinkfun('enablebacktomodel')
pslinkfun('help')
pslinkfun('metrics')
pslinkfun('jobmonitor')
pslinkfun('stop')

Description
pslinkfun('annotations','type',typeValue,'kind',kindValue,
Name,Value) adds an annotation of type typeValue and kind kindValue to the
selected block in the model. You can specify a different block using a Name,Value pair
argument. You can also add notes about a severity classification, an action status, or other
comments using Name,Value pairs.

In the generated code associated with the annotated block, Polyspace adds code
comments before and after the lines of code. Polyspace reads these comments and marks
Polyspace results of the specified kind with the annotated information.

Syntax limitations:

• You can have only one annotation per block. If a block produces both a rule violation
and an error, you can annotate only one type.

4 Functions, Properties, Classes, and Apps

4-2

• Even though you apply annotations to individual blocks, the scope of the annotation
can be larger. The generated code from one block can overlap with another, causing
the annotation to also overlap.

For example, consider this model. The first summation block has a Polyspace
annotation, but the second does not.

However, the associated generated code adds all three inputs in one line of code.

/* polyspace:begin<RTE:OVFL:Medium:To Fix>*/
annotate_y.Out1=(annotate_u.In1+annotate_U.In2)+annotate_U.In3;
/* polyspace:end<RTE:OVFL:Medium:To Fix> */

Therefore, the annotation justifies both summations.

pslinkfun('openresults',systemName) opens the Polyspace results associated with
the model or subsystem systemName in the Polyspace environment.

pslinkfun('settemplate',psprjFile) sets the configuration file for new
verifications.

prjTemplate = pslinkfun('gettemplate') returns the template configuration file
used for new analyses.

pslinkfun('advancedoptions') opens the advanced verification options window to
configure additional options for the current model.

pslinkfun('enablebacktomodel') enables the back-to-model feature of the Simulink
plug-in. If your Polyspace results do not properly link to back to the model blocks, run this
command.

pslinkfun('help') opens the Polyspace documentation in a separate window. Use this
option for only pre-R2013b versions of MATLAB.

pslinkfun('metrics') opens the Polyspace Metrics interface.

 pslinkfun

4-3

pslinkfun('jobmonitor') opens the Polyspace Job Monitor to display remote
verifications in the queue.

pslinkfun('stop') kills the code analysis that is currently running. Use this option for
local analyses only.

Examples

Annotate a Block and Run a Polyspace Bug Finder Analysis

Use the Polyspace annotation function to annotate a block and see the annotation in the
analysis results.

In the example model WhereAreTheErrors, add an annotation to the switch block for
MISRA C rule 13.7 violations with a comment, a severity, and a status.

model = 'WhereAreTheErrors';
open(model)
pslinkfun('annotations','type','Misra-C', 'kind', '13.7','block',...
 'WhereAreTheErrors/Switch1','status','to fix','comment','must fix')

In the open model, you can see a Polyspace annotation added to the Switch block.

Generate code for the model and run an analysis. After the analysis is finished, open the
results in the Polyspace environment:

slbuild(model)
opts = pslinkoptions(model);
opts.VerificationMode = 'BugFinder';
opts.VerificationSettings = 'PrjConfigAndMisra';
pslinkrun(model,opts)
pslinkfun('openresults',model)

The five MISRA C 13.7 rule violations are annotated with the information you added to
the switch block. The annotations appear in the Status and Comment columns.

Add Batch Options to Default Configuration Template

Change advanced Polyspace options and set the new configuration as a template.

4 Functions, Properties, Classes, and Apps

4-4

Load the model WhereAreTheErrors and open the advanced options window.

model = 'WhereAreTheErrors';
load_system(model)
pslinkfun('advancedoptions')

In the Run Settings pane, select the options Run Bug Finder analysis on a remote
cluster and Upload results to Polyspace Metrics.

Set the configuration template for new Polyspace analyses to have these options.

pslinkfun('settemplate',fullfile(cd,'pslink_config',...
 'WhereAreTheErrors_config.psprj'))

View the current Polyspace template.

template = pslinkfun('gettemplate')

template =
C:\ModelLinkDemo\pslink_config\WhereAreTheErrors_config.psprj

View Polyspace Queue and Metrics

Run a remote analysis, view the analysis in the queue, and review the metrics.

Before performing this example, check that your Polyspace configuration is set up for
remote analysis and Polyspace Metrics.

Build the model WhereAreTheErrors, create a Polyspace options object, set the
verification mode, and open the advanced options window.

model = 'WhereAreTheErrors';
load_system(model)
slbuild(model)
opts = pslinkoptions(model);
opts.VerificationMode = 'BugFinder';
pslinkfun('advancedoptions')

In the Run Settings pane, select the options Run Bug Finder analysis on a remote
cluster and Upload results to Polyspace Metrics.

Run Polyspace, then open the Job Monitor to monitor your remote job.

 pslinkfun

4-5

pslinkrun(model,opts)
pslinkfun('jobmonitor')

After your job is finished, open the metrics server to see your job in the repository.

pslinkfun('metrics')

Input Arguments
typeValue — type of result
'DEFECT' | 'MISRA-C' | 'MISRA-AC-AGC' | 'MISRA-CPP' | 'JSF'

The type of result with which to annotate the block, specified as:

• 'DEFECT' for defects.
• 'MISRA-C' for MISRA C coding rule violations (C code only).
• 'MISRA-AC-AGC' for MISRA C coding rule violations (C code only).
• 'MISRA-CPP' for MISRA C++ coding rule violations (C++ code only).
• 'JSF' for JSF C++ coding rule violations (C++ code only).

Example: 'type','MISRA-C'

kindValue — specific check or coding rule
check acronym | rule number

The specific check or coding rule specified by the acronym of the check or the coding rule
number. For the specific input for each type of annotation, see the following table.

type Value kind Values
'DEFECT' Use the abbreviation associated with the type of defect that you

want to annotate. For example, 'int_ovfl' – Integer overflow.

For the list of possible checks, see: “Polyspace Bug Finder
Results”.

4 Functions, Properties, Classes, and Apps

4-6

type Value kind Values
'MISRA-C' Use the rule number that you want to annotate. For example,

'2.2'.

For the list of supported MISRA C rules and their numbers, see
“MISRA C:2004 and MISRA AC AGC Coding Rules”.

'MISRA-AC-AGC' Use the rule number that you want to annotate. For example,
'2.2'.

For the list of supported MISRA C rules and their numbers, see
“MISRA C:2004 and MISRA AC AGC Coding Rules”.

'MISRA-CPP' Use the rule number that you want to annotate. For example,
'0-1-1'.

For the list of supported MISRA C++ rules and their numbers,
see “MISRA C++:2008 Rules”.

'JSF' Use the rule number that you want to annotate. For example,
'3'.

For the list of supported JSF C++ rules and their numbers, see
“JSF C++ Coding Rules”.

Example: pslinkfun('annotations','type','MISRA-CPP','kind','1-2-3')
Data Types: char

systemName — Simulink model
system | subsystem

Simulink model specified by the system or subsystem name.
Example: pslinkfun('openresults','WhereAreTheErrors')

psprjFile — Polyspace project file
standard Polyspace template (default) | absolute path to .psprj file

Polyspace project file specified as the absolute path to the .psprj project file. If
psprjFile is empty, Polyspace uses the standard Polyspace template file. New Polyspace
projects start with this project configuration.

 pslinkfun

4-7

Example: pslinkfun('settemplate', fullfile(matlabroot, 'polyspace',
'examples', 'cxx', 'Bug_Finder_Example',
'Bug_Finder_Example.bf.psprj'));

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'block','MyModel\Sum', 'status','to fix'

block — block to be annotated
gcb (default) | block name

The block you want to annotate specified by the block name. If you do not use this option,
the block returned by the function gcb is annotated.
Example: 'block','MyModel\Sum'

class — severity of the check
'high' | 'medium' | 'low' | 'unset'

Severity of the check specified as high, medium, low, or unset.
Example: 'class','high'

status — action status
'unreviewed' | 'to investigate' | 'to fix' | 'justified' | 'no action
planned' | 'not a defect' | 'other'

Action status of the check specified as unreviewed, to investigate, to fix,
justified, no action planned, not a defect, or other.
Example: 'status','no action planned'

comment — additional comments
character vector

Additional comments specified as a character vector. The comments provide more
information about why the results are justified.
Example: 'comment','defensive code'

4 Functions, Properties, Classes, and Apps

4-8

See Also
pslinkrun | pslinkoptions | gcb

Introduced in R2014a

 pslinkfun

4-9

pslinkoptions
Create options object to customize Polyspace runs from MATLAB command line

Syntax
opts = pslinkoptions(codegen)
opts = pslinkoptions(model)
opts = pslinkoptions(sfunc)

Description
opts = pslinkoptions(codegen) returns an options object with the configuration
options for code generated by codegen.

opts = pslinkoptions(model) returns an options object with the configuration
options for the Simulink model.

opts = pslinkoptions(sfunc) returns an options object with the configuration
options for the S-Function.

Examples

Use a Simulink model to create and edit an options objects

Load psdemo_model_link_sl and create a Polyspace® options object from the model:

load_system('psdemo_model_link_sl');
model_opt = pslinkoptions('psdemo_model_link_sl')

model_opt =

 ResultDir: 'results_$ModelName$'
 VerificationSettings: 'PrjConfig'
 OpenProjectManager: 1

4 Functions, Properties, Classes, and Apps

4-10

 AddSuffixToResultDir: 0
 EnableAdditionalFileList: 0
 AdditionalFileList: {}
 VerificationMode: 'CodeProver'
 EnablePrjConfigFile: 0
 PrjConfigFile: ''
 AddToSimulinkProject: 0
 InputRangeMode: 'DesignMinMax'
 ParamRangeMode: 'None'
 OutputRangeMode: 'None'
 ModelRefVerifDepth: 'All'
 ModelRefByModelRefVerif: 0
 AutoStubLUT: 0
 CxxVerificationSettings: 'PrjConfig'
 CheckConfigBeforeAnalysis: 'OnWarn'

The model is already configured for Embedded Coder®, so only the Embedded Coder
configuration options appear.

Change the results folder name option and set OpenProjectManager to true.

model_opt.ResultDir = 'results_v1_$ModelName$';
model_opt.OpenProjectManager = true

model_opt =

 ResultDir: 'results_v1_$ModelName$'
 VerificationSettings: 'PrjConfig'
 OpenProjectManager: 1
 AddSuffixToResultDir: 0
 EnableAdditionalFileList: 0
 AdditionalFileList: {}
 VerificationMode: 'CodeProver'
 EnablePrjConfigFile: 0
 PrjConfigFile: ''
 AddToSimulinkProject: 0
 InputRangeMode: 'DesignMinMax'
 ParamRangeMode: 'None'
 OutputRangeMode: 'None'
 ModelRefVerifDepth: 'All'
 ModelRefByModelRefVerif: 0
 AutoStubLUT: 0

 pslinkoptions

4-11

 CxxVerificationSettings: 'PrjConfig'
 CheckConfigBeforeAnalysis: 'OnWarn'

Create and edit an options object for Embedded Coder at the command line

Create a Polyspace® options object called new_opt with Embedded Coder® parameters:

new_opt = pslinkoptions('ec')

new_opt =

 ResultDir: 'results_$ModelName$'
 VerificationSettings: 'PrjConfig'
 OpenProjectManager: 0
 AddSuffixToResultDir: 0
 EnableAdditionalFileList: 0
 AdditionalFileList: {}
 VerificationMode: 'CodeProver'
 EnablePrjConfigFile: 0
 PrjConfigFile: ''
 AddToSimulinkProject: 0
 InputRangeMode: 'DesignMinMax'
 ParamRangeMode: 'None'
 OutputRangeMode: 'None'
 ModelRefVerifDepth: 'Current model only'
 ModelRefByModelRefVerif: 0
 AutoStubLUT: 1
 CxxVerificationSettings: 'PrjConfig'
 CheckConfigBeforeAnalysis: 'OnWarn'

To Follow the progress in the Polyspace interface, set the OpenProjectManager option
to true. Change the configuration to check for both checks and MISRA C® 2012 coding
rule violations:

new_opt.OpenProjectManager = true;
new_opt.VerificationSettings = 'PrjConfigAndMisraC2012'

new_opt =

 ResultDir: 'results_$ModelName$'
 VerificationSettings: 'PrjConfigAndMisraC2012'
 OpenProjectManager: 1
 AddSuffixToResultDir: 0

4 Functions, Properties, Classes, and Apps

4-12

 EnableAdditionalFileList: 0
 AdditionalFileList: {}
 VerificationMode: 'CodeProver'
 EnablePrjConfigFile: 0
 PrjConfigFile: ''
 AddToSimulinkProject: 0
 InputRangeMode: 'DesignMinMax'
 ParamRangeMode: 'None'
 OutputRangeMode: 'None'
 ModelRefVerifDepth: 'Current model only'
 ModelRefByModelRefVerif: 0
 AutoStubLUT: 1
 CxxVerificationSettings: 'PrjConfig'
 CheckConfigBeforeAnalysis: 'OnWarn'

Create and edit an options object for TargetLink at the command line

Create a Polyspace® options object called new_opt with TargetLink® parameters:

new_opt = pslinkoptions('tl')

new_opt =

 ResultDir: 'results_$ModelName$'
 VerificationSettings: 'PrjConfig'
 OpenProjectManager: 0
 AddSuffixToResultDir: 0
 EnableAdditionalFileList: 0
 AdditionalFileList: {}
 VerificationMode: 'CodeProver'
 EnablePrjConfigFile: 0
 PrjConfigFile: ''
 AddToSimulinkProject: 0
 InputRangeMode: 'DesignMinMax'
 ParamRangeMode: 'None'
 OutputRangeMode: 'None'
 AutoStubLUT: 1

Set the OpenProjectManager option to true to follow the progress in the Polyspace
interface. Also change the configuration to check for both run-time errors and MISRA C®
coding rule violations:

 pslinkoptions

4-13

new_opt.OpenProjectManager = true;
new_opt.VerificationSettings = 'PrjConfigAndMisra'

new_opt =

 ResultDir: 'results_$ModelName$'
 VerificationSettings: 'PrjConfigAndMisra'
 OpenProjectManager: 1
 AddSuffixToResultDir: 0
 EnableAdditionalFileList: 0
 AdditionalFileList: {}
 VerificationMode: 'CodeProver'
 EnablePrjConfigFile: 0
 PrjConfigFile: ''
 AddToSimulinkProject: 0
 InputRangeMode: 'DesignMinMax'
 ParamRangeMode: 'None'
 OutputRangeMode: 'None'
 AutoStubLUT: 1

Input Arguments
codegen — Code generator
'ec' | 'tl'

Code generator, specified as either 'ec' for Embedded Coder® or 'tl' for TargetLink®.
Each argument creates a Polyspace options object with properties specific to that code
generator.

For a description of all configuration options and their values, see pslinkoptions.
Example: ec_opt = pslinkoptions('ec')
Example: tl_opt = pslinkoptions('tl')
Data Types: char

model — Simulink model name
model name

Simulink model, specified by the model name. Creates a Polyspace options object with the
configuration options of that model. If you have not set any options, the object has the

4 Functions, Properties, Classes, and Apps

4-14

default configuration options. If you have set a code generator, the object has the default
options for that code generator.

For a description of all configuration options and their values, see pslinkoptions.
Example: model_opt = pslinkoptions('my_model')
Data Types: char

sfunc — path to S-Function
character vector

Path to S-Function, specified as a character vector. Creates a Polyspace options object
with the configuration options for the S-function. If you have not set any options, the
object has the default configuration options.

For a description of all configuration options and their values, see pslinkoptions.
Example: sfunc_opt = pslinkoptions('path/to/sfunction')
Data Types: char

Output Arguments
opts — Polyspace configuration options
options object

Polyspace configuration options, returned as an options object. The object is used with
pslinkrun to run Polyspace from the MATLAB command line.

For the list of object properties, see pslinkoptions.
Example: opts= pslinkoptions('ec')
opts.VerificationSettings = 'Misra'

See Also
pslinkfun | pslinkrun

Topics
pslinkoptions

 pslinkoptions

4-15

Introduced in R2012a

4 Functions, Properties, Classes, and Apps

4-16

pslinkrun
Run Polyspace analysis on model, system, or S-Function

Syntax
[polyspaceFolder, resultsFolder] = pslinkrun
[polyspaceFolder, resultsFolder]= pslinkrun(target)
[polyspaceFolder, resultsFolder] = pslinkrun(target,opts)
[polyspaceFolder, resultsFolder] = pslinkrun(target,opts,asModelRef)
[polyspaceFolder, resultsFolder] = pslinkrun('-codegenfolder',
codegenFolder, opts)

Description
[polyspaceFolder, resultsFolder] = pslinkrun analyzes code generated from
the current system using the configuration options associated with the current system. It
returns the location of the results folder. The current system is the system returned by the
command bdroot.

[polyspaceFolder, resultsFolder]= pslinkrun(target) analyzes target with
the configuration options associated with the model containing target. Before you run
an analysis, you must:

• Generate code for models and subsystems.
• Compile S-Functions.

[polyspaceFolder, resultsFolder] = pslinkrun(target,opts) analyzes
target with the configuration options from the options object opts. It returns the
location of the results folder.

[polyspaceFolder, resultsFolder] = pslinkrun(target,opts,asModelRef)
uses asModelRef to specify which type of generated code to analyze—standalone code or
model reference code. This option is useful when you want to analyze only a referenced
model instead of an entire model hierarchy.

 pslinkrun

4-17

[polyspaceFolder, resultsFolder] = pslinkrun('-codegenfolder',
codegenFolder, opts) runs Polyspace on C/C++ code generated from MATLAB code
and stored in codegenFolder.

Examples

Analyze Generated Code
Use a Simulink model to generate code, set configuration options, and then run an
analysis from the command line.

% Generate code from the model WhereAreTheErrors.
model = 'WhereAreTheErrors';
load_system(model);
slbuild(model);

% Create a Polyspace options object from the model.
opts = pslinkoptions(model);

% Set properties that define the Polyspace analysis.
opts.VerificationMode = 'CodeProver';
opts.VerificationSettings = 'PrjConfigAndMisraC2012';

% Run Polyspace using the options object.
[polyspaceFolder, resultsFolder] = pslinkrun(model,opts);
bdclose(model);

The results and the corresponding Polyspace project are saved to the
results_WhereAreTheErrors folder, listed in the polyspaceFolder variable. The full
path to the results folder is in the resultsFolder variable.

Analyze Referenced Model Code
Use a Simulink model to generate model reference code, set configuration options, and
then run an analysis from the command line.

% Generate code from the model WhereAreTheErrors.
% Treat WhereAreTheErrors as if referenced by another model.

4 Functions, Properties, Classes, and Apps

4-18

model = 'WhereAreTheErrors';
load_system(model);
slbuild(model,'ModelReferenceRTWTargetOnly');

% Create a Polyspace options object from the model.
opts = pslinkoptions(model);

% Set properties that define the Polyspace analysis.
opts.VerificationMode = 'CodeProver';
opts.VerificationSettings = 'PrjConfigAndMisraC2012';

% Run Polyspace with the options object.
[polyspaceFolder, resultsFolder] = pslinkrun(model,opts,true);
bdclose(model);

The results and corresponding Polyspace project are saved to the
results_mr_WhereAreTheErrors folder, listed in the polyspaceFolder variable. The
full path to the results folder is in the resultsFolder variable.

Reuse Analysis Options for Multiple Models
This example shows how to reuse a subset of options for Polyspace analysis of multiple
models. Create a generic options object and specify properties that describe the common
options. Associate the generic options object with a model-specific options object.
Optionally, set some model-specific options and run the Polyspace analysis.

% Generate code from the model WhereAreTheErrors.
model = 'psdemo_model_link_sl';
load_system(model);
slbuild(model);

% Create a generic options object to use for multiple model analyses.
opts = polyspace.ModelLinkOptions();
opts.CodingRulesCodeMetrics.EnableMisraC3 = true;
opts.CodingRulesCodeMetrics.MisraC3Subset = 'all';
opts.MergedReporting.ReportOutputFormat = 'PDF';
opts.MergedReporting.EnableReportGeneration = true;

% Create a model-specific options object.
mlopts = pslinkoptions(model);

% Create a project from the generic options object.

 pslinkrun

4-19

% Associate the project with the model-specific options object.
prjfile = opts.generateProject('model_link_opts');
mlopts.EnablePrjConfigFile = true;
mlopts.PrjConfigFile = prjfile;
mlopts.VerificationMode = 'BugFinder';

% Run Polyspace with the model-specific options object.
[polyspaceFolder, resultsFolder] = pslinkrun(model,mlopts);
bdclose(model);

After the analysis completes, results open automatically in the Polyspace interface.

Analyze C/C++ Code Generated from MATLAB Code
This example shows how to analyze C/C++ code generated from MATLAB code.

% Copy demo files into a temporary folder
coderdemo_setup('coderdemo_averaging_filter');

% Generate code
codeName = 'averaging_filter';
codegenFolder = fullfile(pwd, 'codegenFolder');
codegen(codeName, '-config:lib', '-c', '-args', ...
 {zeros(1,100,'double')}, '-d', codegenFolder);

% Configure Polyspace analysis
opts = pslinkoptions('ec');
opts.ResultDir = ['results_',codeName];
opts.OpenProjectManager = 1;

% Run Polyspace
pslinkrun('-codegenfolder', codegenFolder, opts);

After the analysis completes, results open automatically in the Polyspace interface.

Input Arguments
target — Target of the analysis
bdroot (default) | model or system name | path to S-Function block

4 Functions, Properties, Classes, and Apps

4-20

Target of the analysis specified as a character vector, with the model, system, or S-
function in single quotes. The default value is the system returned by bdroot.
Example: [polyspaceFolder, resultsFolder] = pslinkrun('demo') where
demo is the name of a model.
Example: [polyspaceFolder, resultsFolder] = pslinkrun('path/to/
sfunction')

Data Types: char

opts — Configuration options
options associated with target (default) | options object

Configuration options for the analysis, specified as a Polyspace options object. The
function pslinkoptions creates an options object. You can customize the options object
by changing the pslinkoption properties.
Example: pslinkrun('demo', opts_demo) where demo is the name of a model and
opts_demo is an options object.

asModelRef — Indicator for model reference analysis
false (default) | true

Indicator for model reference analysis, specified as true or false.

• If asModelRef is false (default), Polyspace analyzes code that is generated as
standalone code. This option is equivalent to choosing Verify Code Generated For >
Model in the Simulink Polyspace options.

• If asModelRef is true, Polyspace analyzes code that is generated as model referenced
code. This option is equivalent to choosing Verify Code Generated For >
Referenced Model in the Simulink Polyspace options. Specifying model reference
code indicates that Polyspace must look for the generated code in a different location
from the location for standalone code.

Data Types: logical

codegenFolder — Folder containing generated C/C++ code
character vector

Folder containing C/C++ code generated from MATLAB code, specified as a character
vector. You specify this folder with the codegen command using the flag -d.

 pslinkrun

4-21

Output Arguments
polyspaceFolder — Folder containing Polyspace project and results
character vector

Name of the folder containing Polyspace project and results, specified as a character
vector. The default value of this variable is results_$ModelName$.

To change this value, see “Output folder” on page 10-18.

resultsFolder — Full path to subfolder containing Polyspace results
character vector

Full path to subfolder containing Polyspace results, specified as a character vector.

The folder results_$ModelName$ contains your Polyspace project and a subfolder
$ModelName$ with the analysis results. This variable gives you the full path to the
subfolder. You can use this path with the polyspace.BugFinderResults class.

To change the parent folder results_$ModelName$, see “Output folder” on page 10-
18.

See Also
pslinkfun | pslinkoptions | pslinkoptions

Topics
“Analyze S-Function Code”
“Recommended Model Configuration Parameters for Polyspace Analysis”

Introduced in R2012a

4 Functions, Properties, Classes, and Apps

4-22

polyspaceBugFinder
Run Polyspace Bug Finder analysis from MATLAB

Note For easier scripting, run Polyspace® analysis using a polyspace.Project object.

Syntax
polyspaceBugFinder
polyspaceBugFinder(projectFile)

polyspaceBugFinder(optsObject)
polyspaceBugFinder(projectFile, '-nodesktop')

polyspaceBugFinder(resultsFile)
polyspaceBugFinder('-results-dir',resultsFolder)

polyspaceBugFinder('-help')

polyspaceBugFinder('-sources',sourceFiles)
polyspaceBugFinder('-sources',sourceFiles,Name,Value)

Description
polyspaceBugFinder opens Polyspace Bug Finder.

polyspaceBugFinder(projectFile) opens a Polyspace project file in Polyspace Bug
Finder.

polyspaceBugFinder(optsObject) runs an analysis on the Polyspace options object
in MATLAB.

polyspaceBugFinder(projectFile, '-nodesktop') runs an analysis on the
Polyspace project file in MATLAB.

Alternatively, you can use the function polyspaceBugFinderNoDesktop with the syntax
polyspaceBugFinderNoDesktop(projectfile).

 polyspaceBugFinder

4-23

polyspaceBugFinder(resultsFile) opens a Polyspace results file in Polyspace Bug
Finder.

polyspaceBugFinder('-results-dir',resultsFolder) opens a Polyspace results
file from resultsFolder in Polyspace Bug Finder.

polyspaceBugFinder('-help') displays options that can be supplied to the
polyspaceBugFinder command to run a Polyspace Bug Finder analysis.

polyspaceBugFinder('-sources',sourceFiles) runs a Polyspace Bug Finder
analysis on the source files specified in sourceFiles.

polyspaceBugFinder('-sources',sourceFiles,Name,Value) runs a Polyspace
Bug Finder analysis on the source files with additional options specified by one or more
Name,Value pair arguments.

Examples

Open Polyspace Projects from MATLAB

This example shows how to open a Polyspace project file with extension .psprj from
MATLAB. In this example, you open the project file Bug_Finder_Example.psprj from
the folder matlabroot\polyspace\examples\cxx\Bug_Finder_Example.

Open the project Bug_Finder_Example.psprj in the Polyspace interface.

prjFile = fullfile(matlabroot, 'polyspace', 'examples', 'cxx', ...
 'Bug_Finder_Example', 'Bug_Finder_Example.psprj');
polyspaceBugFinder(prjFile);

Open Polyspace Results from MATLAB

This example shows how to open a Polyspace results file from MATLAB. In this example,
you open the results file from the folder matlabroot\polyspace\examples\cxx
\Bug_Finder_Example\Results.

Open the results of resFolder.

4 Functions, Properties, Classes, and Apps

4-24

resFolder = fullfile(matlabroot, 'polyspace', 'examples', ...
 'cxx', 'Bug_Finder_Example', 'Results');
polyspaceBugFinder('-results-dir',resFolder)

Run Polyspace Analysis with Options Object

This example shows how to run a Polyspace analysis from the MATLAB command-line. For
this example:

• Save a C source file, source.c, in the folder C:\Polyspace_Sources.
• Save an include file in the folder C:\Polyspace_Includes.

Create an options object and add the source file and include folder to the properties.

opts = polyspace.BugFinderOptions;
opts.Sources = {'C:\Polyspace_Sources\source.c'};
opts.EnvironmentSettings.IncludeFolders = {'C:\Polyspace_Includes'};
opts.ResultsDir = 'C:\Polyspace_Results';

Polyspace runs on the file C:\Polyspace_Sources\source.c and stores the result in
C:\Polyspace_Results.

Run the analysis and view the results.

polyspaceBugFinder(opts);
polyspaceBugFinder('-results-dir',opts.ResultsDir)

Run Polyspace Analysis from MATLAB with DOS/UNIX Options

This example shows how to run a Polyspace analysis in MATLAB. For this example:

• Save a C source file, source.c, in the folder C:\Polyspace_Sources.
• Save an include file in the folder C:\Polyspace_Includes.

To analyze C:\Polyspace_Sources\source.c, run the following command.

polyspaceBugFinder('-sources','C:\Polyspace_Sources\source.c', ...
 '-I','C:\Polyspace_Includes', ...
 '-results-dir','C:\Polyspace_Results')

 polyspaceBugFinder

4-25

To view the results, enter:

polyspaceBugFinder('-results-dir','C:\')

Run Polyspace Analysis with Coding Rules Checking

This example shows two different ways to customize an analysis in MATLAB. You can
customize as many additional options as you want by changing properties in an options
object or by using Name-Value pairs. Here you specify checking of MISRA C 2012 coding
rules.

Create variables to save the source file path and results folder path. You can use these
variables for either analysis method.

sourceFileName = fullfile(matlabroot, 'polyspace','examples', 'cxx', ...
 'Bug_Finder_Example','sources','dataflow.c');
resFolder1 = fullfile('Polyspace_Results_1');
resFolder2 = fullfile('Polyspace_Results_2');

Analyze coding rules with an options object.

opts = polyspace.BugFinderOptions();
opts.Sources = {sourceFileName};
opts.ResultsDir = resFolder1;
opts.CodingRulesCodeMetrics.MisraC3Subset = 'all';
opts.CodingRulesCodeMetrics.EnableMisraC3 = true;
polyspaceBugFinder(opts);
polyspaceBugFinder('-results-dir',resFolder1);

Analyze coding rules with DOS/UNIX options.

polyspaceBugFinder('-sources',sourceFileName,'-results-dir',resFolder2,...
 '-misra3','all');
polyspaceBugFinder('-results-dir',resFolder2);

Input Arguments
optsObject — Polyspace options object name
object handle

Polyspace options object name, specified as the object handle.

4 Functions, Properties, Classes, and Apps

4-26

To create an options object, use one of the Polyspace options classes.
Example: opts

projectFile — Name of .psprj file
character vector

Name of project file with extension .psprj, specified as a character vector.

If the file is not in the current folder, projectFile must include a full or relative path.
Example: 'C:\Polyspace_Projects\myProject.psprj'
Data Types: char

resultsFile — Name of .psbf file
character vector

Name of results file with extension .psbf, specified as a character vector.

If the file is not in the current folder, resultsFile must include a full or relative path.
Example: 'myResults.psbf'
Data Types: char

resultsFolder — Name of result folder
character vector

Name of result folder, specified as a character vector. The folder must contain the results
file with extension .psbf. If the results file resides in a subfolder of the specified folder,
this command does not open the results file.

If the folder is not in the current folder, resultsFolder must include a full or relative
path.
Example: 'C:\Polyspace\Results\'
Data Types: char

sourceFiles — Comma-separated names of C or C++ files
character vector

Comma-separated C or C++ source file names, specified as a single character vector.

If the files are not in the current folder, sourceFiles must include a full or relative path.

 polyspaceBugFinder

4-27

Example: 'myFile.c', 'C:\mySources\myFile1.c,C:\mySources\myFile2.c'

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: '-target','i386','-compiler','gnu4.6' specifies that the source code
is intended for a i386 target and contains non-ANSI C syntax for GCC 4.6.

For option names and values, see the Command-Line Information section in “Analysis
Options”.

See Also
polyspace.BugFinderOptions | polyspace.ModelLinkBugFinderOptions

Topics
“Run Polyspace Analysis by Using MATLAB Scripts”

Introduced in R2013b

4 Functions, Properties, Classes, and Apps

4-28

polyspaceConfigure
Create Polyspace project from your build system at the MATLAB command line

Syntax
polyspaceConfigure buildCommand

polyspaceConfigure -option value buildCommand

Description
polyspaceConfigure buildCommand traces your build system and creates a
Polyspace project with information gathered from your build system.

polyspaceConfigure -option value buildCommand traces your build system and
uses -option value to modify the default operation of polyspaceConfigure. Specify
the modifiers before buildCommand, otherwise they are considered as options in the
build command itself.

Examples

Create Polyspace Project from Makefile

This example shows how to create a Polyspace project if you use the command make
targetName buildOptions to build your source code.

Create a Polyspace project specifying a unique project name. Use the -B or -W
makefileName option with make so that the all prerequisite targets in the makefile are
remade.

polyspaceConfigure -prog myProject ...
 make -B targetName buildOptions

Open the Polyspace project in the Project Browser.

 polyspaceConfigure

4-29

polyspaceBugFinder('myProject.psprj')

Create Projects That Have Different Source Files from Same Build Trace

This example shows how to create different Polyspace projects from the same trace of
your build system. You can specify which source files to include for each project.

Trace your build system without creating a Polyspace project by specifying the option -
no-project. To ensure that all the prerequisite targets in your makefile are remade, use
the appropriate make build command option, for instance -B.

polyspaceConfigure -no-project make -B;

polyspace-configure stores the cache information and the build trace in default
locations inside the current folder. To store the cache information and build trace in a
different location, specify the options -cache-path and -build-trace.

Generate Polyspace projects by using the build trace information from the previous step.
Specify a project name and use the -include-sources or -exclude-sources option
to select which files to include for each project.

polyspaceConfigure -no-build -prog myProject ...
-include-sources "glob_pattern";

glob_pattern is a glob pattern that corresponds to folders or files you filter in or out of
your project. To ensure the shell does not expand the glob patterns you pass to
polysapce-configure, enclose them in double quotes.For more information on the
supported syntax for glob patterns, see “polyspace-configure Source Files Selection
Syntax”.

If you specified the options -build-trace and -cache-path in the previous step,
specify them again.

Delete the trace file and cache folder.

rmdir('polyspace_configure_cache', 's');
delete polyspace_configure_built_trace;

If you used the options -build-trace and -cache-path, use the paths and file names
from those options.

4 Functions, Properties, Classes, and Apps

4-30

Run Command-Line Polyspace Analysis from Makefile

This example shows how to run Polyspace analysis if you use the command make
targetName buildOptions to build your source code. In this example, you use
polyspaceConfigure to trace your build system but do not create a Polyspace project.
Instead you create an options file that you can use to run Polyspace analysis from
command-line.

Create a Polyspace options file specifying the -output-options-file command. Use
the -B or -W makefileName option with make so that all prerequisite targets in the
makefile are remade.

polyspaceConfigure -output-options-file ...
 myOptions make -B targetName buildOptions

Use the options file that you created to run a Polyspace analysis at the command line:

polyspaceBugFinder -options-file myOptions

Input Arguments
buildCommand — Command for building source code
build command

Build command specified exactly as you use to build your source code.
Example: make -B, make -W makefileName

-option value — Options for changing default operation of
polyspaceConfigure
single option starting with -, followed by argument | multiple space-separated option-
argument pairs

Basic Options

 polyspaceConfigure

4-31

Option Argument Description
-prog Project name Project name that appears in the Polyspace user

interface. The default is polyspace.

If you do not use the option -output-project,
the -prog argument also sets the project name.

Example: -prog myProject creates a project
that has the name myProject in the user
interface. If you do not use the option -
output-project, the project name is also
myProject.psrprj.

-author Author name Name of project author.

Example: -author jsmith
-output-project Path Project file name and location for saving

project. The default is the file
polyspace.psprj in the current folder.

Example: -output-project ../
myProjects/project1 creates a project
project1.psprj in the folder with the relative
path ../myProjects/.

-output-options-file File name Option to create a Polyspace analysis options
file. Use this file for command-line analysis
using polyspace-bug-finder-nodesktop.

-allow-build-error None Option to create a Polyspace project even if an
error occurs in the build process.

If an error occurs, the build trace log shows the
following message:

polyspace-configure ERROR: build command
 command_name fail [status=status_value]

command_name is the build command name
that you use and status_value is the non-zero
exit status or error level that indicates which
error occurred in your build process.

4 Functions, Properties, Classes, and Apps

4-32

Option Argument Description
-allow-overwrite None Option to overwrite a project with the same

name, if it exists.

By default, polyspace-configure throws an
error if a project with the same name already
exists in the output folder. Use this option to
overwrite the project.

-silent (default)

-verbose

None Option to suppress or display additional
messages from running polyspace-
configure.

-help None Option to display the full list of polyspace-
configure commands

-debug None Option used by MathWorks technical support

Options to Create Multiple Modules

Option Argument Description
-module None Option to create a separate options file for each

binary created in build system.

You can only create separate options files for
different binaries. You cannot create multiple
modules in a Polyspace project (for running in
the Polyspace user interface).

Use this option only for build systems that use
GNU and Visual C++ compilers.

See also “Modularize Polyspace Analysis by
Using Build Command”.

-output-options-path Path name Location where generated options files are
saved. Use this option together with the option
-module.

The options files are named after the binaries
created in the build system.

Advanced Options

 polyspaceConfigure

4-33

Option Argument Description
-compiler-config Path and file name Location and name of compiler configuration

file.

The file must be in a specific format. For
guidance, see the existing configuration files in
matlabroot\polyspace\configure\
compiler_configuration\. For information
on the contents of the file, see “Compiler Not
Supported for Project Creation from Build
Systems”.

Example: -compiler-configuration
myCompiler.xml

-no-project None Option to trace your build system without
creating a Polyspace project and save the build
trace information.

Use this option to save your build trace
information for a later run of polyspace-
configure with the -no-build option.

-no-build None Option to create a Polyspace project using
previously saved build trace information.

To use this option, you must have the build
trace information saved from an earlier run of
polyspace-configure with the -no-
project option.

If you use this option, you do not need to specify
the buildCommand argument.

4 Functions, Properties, Classes, and Apps

4-34

Option Argument Description
-no-sources None Option to create a Polyspace options file that

does not contain the source file specifications.

Use this option when you intend to specify the
source files by other means. For instance, you
can use this option when:

• Running Polyspace on AUTOSAR-specific
code.

You want to create an options file that traces
your build command for the compiler
options:

-output-options-file options.txt -no-sources

You later append this options file when
extracting source file names from ARXML
specifications and running the subsequent
Code Prover analysis with the polyspace-
autosar Command or polyspaceAutosar
function:

-extra-options-file options.txt

See also “Run Polyspace on AUTOSAR Code
Using Build Command” (Polyspace Code
Prover).

• Running Polyspace in Eclipse™.

Your source files are already specified in
your Eclipse project. When running a
Polyspace analysis, you want to specify an
options file that has the compilation options
only.

 polyspaceConfigure

4-35

Option Argument Description
-extra-project-options Options to use for

subsequent
Polyspace analysis.
For instance, "-
stubbed-
pointers-are-
unsafe".

Options that are used for subsequent Polyspace
analysis.

Once a Polyspace project is created, you can
change some of the default options in the
project. Alternatively, you can pass these
options when tracing your build command. The
flag -extra-project-options allows you to
pass additional options.

Specify multiple options in a space separated
list, for instance "-allow-negative-
operand-in-shift -stubbed-pointers-
are-unsafe".

Suppose you have to set the option -stubbed-
pointers-are-unsafe for every Polyspace
project created. Instead of opening each project
and setting the option, you can use this flag
when creating the Polyspace project:

-extra-project-options "-stubbed-pointers-are-unsafe"

For the list of options available, see:

• “Analysis Options”

If you are creating an options file instead of a
Polyspace project from your build command, do
not use this flag.

-tmp-path Path Location of folder where temporary files are
stored.

-build-trace Path and file name Location and name of file where build
information is stored. The default is ./
polyspace_configure_build_trace.log.

Example: -build-trace ../build_info/
trace.log

4 Functions, Properties, Classes, and Apps

4-36

Option Argument Description
-include-sources

-exclude-sources

Glob pattern Option to specify which source files
polyspace-configure includes in, or
excludes from, the generated project. You can
combine both options together.

A source file is included if the file path matches
the glob pattern that you pass to -include-
sources.

A source file is excluded if the file path matches
the glob pattern that you pass to -exclude-
sources.

-print-included-sources

-print-excluded-sources

None Option to print the list of source files that
polyspace-configure includes in, or
excludes from, the generated project. You can
combine both options together. The output
displays the full path of each file on a separate
line.

Use this option to troubleshoot the glob
patterns that you pass to -include-sources
or -exclude-sources. You can see which files
match the pattern that you pass to -include-
sources or -exclude-sources.

Cache Control Options

Option Argument Description
-no-cache

-cache-sources (default)

-cache-all-files

None Option to perform one of the following:

• Not create a cache
• Cache only source and header files.
• Cache all files including binaries.

-cache-path Path Location of folder where cache information is
stored.

Example: -cache-path ../cache

 polyspaceConfigure

4-37

Option Argument Description
-keep-cache

-no-keep-cache (default)

None Option to preserve or clean up cache
information after polyspace-configure
completes execution.

If polyspace-configure fails, you can
provide this cache information to technical
support for debugging purposes.

See Also

Topics
“Modularize Polyspace Analysis by Using Build Command”
“Requirements for Project Creation from Build Systems”
“Compiler Not Supported for Project Creation from Build Systems”

Introduced in R2013b

4 Functions, Properties, Classes, and Apps

4-38

polyspaceJobsManager
Manage Polyspace jobs on a MATLAB Distributed Computing Server cluster

Syntax
polyspaceJobsManager('listjobs')
polyspaceJobsManager('cancel','-job',jobNumber)
polyspaceJobsManager('remove','-job',jobNumber)
polyspaceJobsManager('getlog','-job',jobNumber)
polyspaceJobsManager('wait','-job',jobNumber)
polyspaceJobsManager('promote','-job',jobNumber)
polyspaceJobsManager('demote','-job',jobNumber)

polyspaceJobsManager('download','-job',jobNumber)
polyspaceJobsManager('download','-job',jobNumber,'-results-folder',
resultsFolder)

polyspaceJobsManager(___ ,'-scheduler',scheduler)

Description
polyspaceJobsManager('listjobs') lists all Polyspace jobs in your cluster.

polyspaceJobsManager('cancel','-job',jobNumber) cancels the specified job.
The job appears in your queue as cancelled.

polyspaceJobsManager('remove','-job',jobNumber) removes the specified job
from your cluster.

polyspaceJobsManager('getlog','-job',jobNumber) displays the log for the
specified job.

polyspaceJobsManager('wait','-job',jobNumber) pauses until the specified job
is done.

polyspaceJobsManager('promote','-job',jobNumber) moves the specified job up
in the MATLAB job scheduler queue.

 polyspaceJobsManager

4-39

polyspaceJobsManager('demote','-job',jobNumber) moves the specified job
down in the MATLAB job scheduler queue.

polyspaceJobsManager('download','-job',jobNumber) downloads the results
from the specified job. The results are downloaded to the folder you specified when
starting analysis, using the -results-dir on page 2-42 option.

polyspaceJobsManager('download','-job',jobNumber,'-results-folder',
resultsFolder) downloads the results from the specified job to resultsFolder.

polyspaceJobsManager(___ ,'-scheduler',scheduler) performs the specified
action on the job scheduler specified. If you do not specify a server with any of the
previous syntaxes, Polyspace uses the server stored in your Polyspace preferences.

Examples

Manipulate Two Jobs in the Cluster

In this example, use a MJS scheduler to run Polyspace remotely and monitor your jobs
through the queue.

Before performing this example, set up an MJS and Polyspace Metrics. This example uses
the myMJS@myCompany.com scheduler. When you perform this example, replace this
scheduler with your own cluster name.

Set up your source files.

mkdir 'C:\psdemo\src'
demo = fullfile(matlabroot,'polyspace','examples','cxx',...
'Bug_Finder_Example','sources');
copyfile(demo,'C:\psdemo\src\')

Submit two jobs to your scheduler.

polyspaceBugFinder -batch -scheduler myMJS@myCompany.com
 -sources C:\psdemo\src*.c'
 -results-dir 'C:\psdemo\res1'
polyspaceBugFinder -batch -scheduler myMJS@myCompany.com
 -sources 'C:\psdemo\src\numeric.c'
 -results-dir 'C:\psdemo\res2'

4 Functions, Properties, Classes, and Apps

4-40

 -add-to-results-repository
polyspaceJobsManager('listjobs','-scheduler','myMJS@myCompany.com')

If your jobs have not started running, promote the second job to run before the first job.

polyspaceJobsManager('promote','-job','20','-scheduler',...
 'myMJS@myCompany.com')

Job 20 starts running before job 19.

Cancel job 19.

polyspaceJobsManager('cancel','-job','19','-scheduler',...
 'myMJS@myCompany.com')
polyspaceJobsManager('listjobs','-scheduler','myMJS@myCompany.com')

Remove job 19.

polyspaceJobsManager('remove','-job','19','-scheduler',...
 'myMJS@myCompany.com')
polyspaceJobsManager('listjobs','-scheduler','myMJS@myCompany.com')

Get the log for job 20.

polyspaceJobsManager('getlog','-job','20','-scheduler',...
 'myMJS@myCompany.com')

Download the information from job 20.

polyspaceJobsManager('download','-job','20','-results-folder', ...
 'C:\psdemo\res3','-scheduler','myCluster')

Input Arguments
jobNumber — Queued job number
character vector of job number

Number of the queued job that you want to manage, specified as a character vector in
single quotes.
Example: '-job','10'

resultsFolder — Path to results folder
character vector

 polyspaceJobsManager

4-41

Path to results folder specified as a character vector in single quotes. This folder stores
the downloaded results files.
Example: '-results-folder','C:\psdemo\myresults'

scheduler — job scheduler
head node of your cluster | job scheduler name | cluster profile

Job scheduler for remote verifications specified as one of the following:

• Name of the computer that hosts the head node of your MATLAB Distributed
Computing Server cluster (NodeHost).

• Name of the MJS on the head node host (MJSName@NodeHost).
• Name of a MATLAB cluster profile (ClusterProfile).

Example: '-scheduler','myscheduler@mycompany.com'

See Also
polyspaceBugFinder

Topics
“Discover Clusters and Use Cluster Profiles” (Parallel Computing Toolbox)
“Run Polyspace Analysis on Remote Clusters Using Scripts” (Polyspace Code Prover)

Introduced in R2013b

4 Functions, Properties, Classes, and Apps

4-42

polyspace-configure
(DOS/UNIX) Create Polyspace project from your build system at the DOS or UNIX
command line

Syntax
polyspace-configure buildCommand

polyspace-configure [OPTIONS] buildCommand

Description
polyspace-configure buildCommand traces your build system and creates a
Polyspace project with information gathered from your build system.

polyspace-configure [OPTIONS] buildCommand traces your build system and
uses -option value to modify the default operation of polyspace-configure.
Specify the modifiers before buildCommand, otherwise they are considered as options in
the build command itself.

Examples

Create Polyspace Project from Makefile

This example shows how to create a Polyspace project if you use the command make
targetName buildOptions to build your source code.

Create a Polyspace project specifying a unique project name. Use the -B or -W
makefileName option with make so that the all prerequisite targets in the makefile are
remade.

polyspace-configure -prog myProject \
make -B targetName buildOptions

 polyspace-configure

4-43

Open the Polyspace project in the Polyspace user interface.

Create Projects That Have Different Source Files from Same Build Trace

This example shows how to create different Polyspace projects from the same trace of
your build system. You can specify which source files to include for each project.

Trace your build system without creating a Polyspace project by specifying the option -
no-project. To ensure that all the prerequisite targets in your makefile are remade, use
the appropriate make build command option, for instance -B.

polyspace-configure -no-project make -B

polyspace-configure stores the cache information and the build trace in default
locations inside the current folder. To store the cache information and build trace in a
different location, specify the options -cache-path and -build-trace.

Generate Polyspace projects by using the build trace information from the previous step.
Specify a project name and use the -include-sources or -exclude-sources option
to select which files to include for each project.

polyspace-configure -no-build -prog myProject \
-include-sources "glob_pattern"

glob_pattern is a glob pattern that corresponds to folders or files you filter in or out of
your project. To ensure the shell does not expand the glob patterns you pass to
polyspace-configure, enclose them in double quotes. For more information on the
supported syntax for glob patterns, see “polyspace-configure Source Files Selection
Syntax”.

If you specified the options -build-trace and -cache-path in the previous step,
specify them again.

Delete the trace file and cache folder.

rm -r polyspace_configure_cache polyspace_configure_built_trace

If you used the options -build-trace and -cache-path, use the paths and file names
from those options.

4 Functions, Properties, Classes, and Apps

4-44

Run Command-Line Polyspace Analysis from Makefile

This example shows how to run Polyspace analysis if you use the command make
targetName buildOptions to build your source code. In this example, you use
polyspace-configure to trace your build system but do not create a Polyspace project.
Instead you create an options file that you can use to run Polyspace analysis from
command-line.

Create a Polyspace options file specifying the -output-options-file command. Use
the -B or -W makefileName option with make so that all prerequisite targets in the
makefile are remade.

polyspace-configure -output-options-file\
 myOptions make -B targetName buildOptions

Use the options file that you created to run a Polyspace analysis at the command line:

polyspace-bug-finder-nodesktop -options-file myOptions

Input Arguments
buildCommand — Command for building source code
build command

Build command specified exactly as you use to build your source code.
Example: make -B, make -W makefileName

[OPTIONS] — Options for changing default operation of polyspace-configure
single option starting with -, followed by argument | multiple space-separated option-
argument pairs

Basic Options

 polyspace-configure

4-45

Option Argument Description
-prog Project name Project name that appears in the Polyspace user

interface. The default is polyspace.

If you do not use the option -output-project,
the -prog argument also sets the project name.

Example: -prog myProject creates a project
that has the name myProject in the user
interface. If you do not use the option -
output-project, the project name is also
myProject.psrprj.

-author Author name Name of project author.

Example: -author jsmith
-output-project Path Project file name and location for saving

project. The default is the file
polyspace.psprj in the current folder.

Example: -output-project ../
myProjects/project1 creates a project
project1.psprj in the folder with the relative
path ../myProjects/.

-output-options-file File name Option to create a Polyspace analysis options
file. Use this file for command-line analysis
using polyspace-bug-finder-nodesktop.

-allow-build-error None Option to create a Polyspace project even if an
error occurs in the build process.

If an error occurs, the build trace log shows the
following message:

polyspace-configure ERROR: build command
 command_name fail [status=status_value]

command_name is the build command name
that you use and status_value is the non-zero
exit status or error level that indicates which
error occurred in your build process.

4 Functions, Properties, Classes, and Apps

4-46

Option Argument Description
-allow-overwrite None Option to overwrite a project with the same

name, if it exists.

By default, polyspace-configure throws an
error if a project with the same name already
exists in the output folder. Use this option to
overwrite the project.

-silent (default)

-verbose

None Option to suppress or display additional
messages from running polyspace-
configure.

-help None Option to display the full list of polyspace-
configure commands

-debug None Option used by MathWorks technical support

Options to Create Multiple Modules

Option Argument Description
-module None Option to create a separate options file for each

binary created in build system.

You can only create separate options files for
different binaries. You cannot create multiple
modules in a Polyspace project (for running in
the Polyspace user interface).

Use this option only for build systems that use
GNU and Visual C++ compilers.

See also “Modularize Polyspace Analysis by
Using Build Command”.

-output-options-path Path name Location where generated options files are
saved. Use this option together with the option
-module.

The options files are named after the binaries
created in the build system.

Advanced Options

 polyspace-configure

4-47

Option Argument Description
-compiler-config Path and file name Location and name of compiler configuration

file.

The file must be in a specific format. For
guidance, see the existing configuration files in
matlabroot\polyspace\configure\
compiler_configuration\. For information
on the contents of the file, see “Compiler Not
Supported for Project Creation from Build
Systems”.

Example: -compiler-configuration
myCompiler.xml

-no-project None Option to trace your build system without
creating a Polyspace project and save the build
trace information.

Use this option to save your build trace
information for a later run of polyspace-
configure with the -no-build option.

-no-build None Option to create a Polyspace project using
previously saved build trace information.

To use this option, you must have the build
trace information saved from an earlier run of
polyspace-configure with the -no-
project option.

If you use this option, you do not need to specify
the buildCommand argument.

4 Functions, Properties, Classes, and Apps

4-48

Option Argument Description
-no-sources None Option to create a Polyspace options file that

does not contain the source file specifications.

Use this option when you intend to specify the
source files by other means. For instance, you
can use this option when:

• Running Polyspace on AUTOSAR-specific
code.

You want to create an options file that traces
your build command for the compiler
options:

-output-options-file options.txt -no-sources

You later append this options file when
extracting source file names from ARXML
specifications and running the subsequent
Code Prover analysis with the polyspace-
autosar Command or polyspaceAutosar
function:

-extra-options-file options.txt

See also “Run Polyspace on AUTOSAR Code
Using Build Command” (Polyspace Code
Prover).

• Running Polyspace in Eclipse.

Your source files are already specified in
your Eclipse project. When running a
Polyspace analysis, you want to specify an
options file that has the compilation options
only.

 polyspace-configure

4-49

Option Argument Description
-extra-project-options Options to use for

subsequent
Polyspace analysis.
For instance, "-
stubbed-
pointers-are-
unsafe".

Options that are used for subsequent Polyspace
analysis.

Once a Polyspace project is created, you can
change some of the default options in the
project. Alternatively, you can pass these
options when tracing your build command. The
flag -extra-project-options allows you to
pass additional options.

Specify multiple options in a space separated
list, for instance "-allow-negative-
operand-in-shift -stubbed-pointers-
are-unsafe".

Suppose you have to set the option -stubbed-
pointers-are-unsafe for every Polyspace
project created. Instead of opening each project
and setting the option, you can use this flag
when creating the Polyspace project:

-extra-project-options "-stubbed-pointers-are-unsafe"

For the list of options available, see:

• “Analysis Options”

If you are creating an options file instead of a
Polyspace project from your build command, do
not use this flag.

-tmp-path Path Location of folder where temporary files are
stored.

-build-trace Path and file name Location and name of file where build
information is stored. The default is ./
polyspace_configure_build_trace.log.

Example: -build-trace ../build_info/
trace.log

4 Functions, Properties, Classes, and Apps

4-50

Option Argument Description
-include-sources

-exclude-sources

Glob pattern Option to specify which source files
polyspace-configure includes in, or
excludes from, the generated project. You can
combine both options together.

A source file is included if the file path matches
the glob pattern that you pass to -include-
sources.

A source file is excluded if the file path matches
the glob pattern that you pass to -exclude-
sources.

-print-included-sources

-print-excluded-sources

None Option to print the list of source files that
polyspace-configure includes in, or
excludes from, the generated project. You can
combine both options together. The output
displays the full path of each file on a separate
line.

Use this option to troubleshoot the glob
patterns that you pass to -include-sources
or -exclude-sources. You can see which files
match the pattern that you pass to -include-
sources or -exclude-sources.

Cache Control Options

Option Argument Description
-no-cache

-cache-sources (default)

-cache-all-files

None Option to perform one of the following:

• Not create a cache
• Cache only source and header files.
• Cache all files including binaries.

-cache-path Path Location of folder where cache information is
stored.

Example: -cache-path ../cache

 polyspace-configure

4-51

Option Argument Description
-keep-cache

-no-keep-cache (default)

None Option to preserve or clean up cache
information after polyspace-configure
completes execution.

If polyspace-configure fails, you can
provide this cache information to technical
support for debugging purposes.

See Also

Topics
“Modularize Polyspace Analysis by Using Build Command”
“Requirements for Project Creation from Build Systems”
“Compiler Not Supported for Project Creation from Build Systems”

Introduced in R2013b

4 Functions, Properties, Classes, and Apps

4-52

polyspace-bug-finder-nodesktop
(DOS/UNIX) Run a Bug Finder analysis from the DOS or UNIX command line

Syntax
polyspace-bug-finder-nodesktop
polyspace-bug-finder-nodesktop -sources sourceFiles [OPTIONS]

polyspace-bug-finder-nodesktop -sources-list-file listOfSources
[OPTIONS]

polyspace-bug-finder-nodesktop -options-file optFile

polyspace-bug-finder-nodesktop -h[elp]

Description
polyspace-bug-finder-nodesktop [OPTIONS] runs a Bug Finder analysis if your
current folder contains a sources subfolder with source files (.c or .cxx files). The
analysis considers files in sources and all subfolders under sources.

polyspace-bug-finder-nodesktop -sources sourceFiles [OPTIONS] runs a
Bug Finder analysis on the source file or files sourceFiles. You can customize the
analysis with additional options.

polyspace-bug-finder-nodesktop -sources-list-file listOfSources
[OPTIONS] runs a Bug Finder analysis on the source files listed in the text file
listOfSources. You can customize the analysis with additional options. Using a sources
list file is recommended when you have many source files. By keeping the list of sources
in a text file, the command is shorter and updates to the list are easier.

polyspace-bug-finder-nodesktop -options-file optFile runs a Bug Finder
analysis with the options specified in the option file. When you have many analysis
options, an options file makes it easier to run the same analysis again.

polyspace-bug-finder-nodesktop -h[elp] lists a summary of possible analysis
options.

 polyspace-bug-finder-nodesktop

4-53

Examples

Run Analysis by Directly Specifying Options

Run a local Bug Finder analysis by specifying analysis options in the command itself. This
example uses source files from the Polyspace Bug Finder example. To run this example,
replace matlabroot with the path to your MATLAB installation, for example C:
\Program Files\MATLAB\R2017a.

Run an analysis on numerical.c and programming.c, checking for MISRA C:2012
mandatory rules, programming and numerical defects, and using GNU 4.7 compiler
settings. This example command is split by ^ characters for readability. In practice, you
can put all commands on one line.

matlabroot\polyspace\bin\polyspace-bug-finder-nodesktop^
 -sources ^
matlabroot\polyspace\examples\cxx\Bug_Finder_Example\sources\numerical.c,^
matlabroot\polyspace\examples\cxx\Bug_Finder_Example\sources\programming.c ^
-compiler gnu4.7 -misra3 mandatory -checkers numerical,programming ^
-author jlittle -prog myProject -results-dir C:\Polyspace_Workspace\Results\

Open the results.

matlabroot\polyspace\bin\polyspace C:\Polyspace_Workspace\Results\^
ps_results.psbf

To rerun the analysis, you must rerun it from the command line.

Run Local Analysis with Options File

Run a local Bug Finder analysis by specifying analysis options in the command itself. This
example uses source files from the Polyspace Bug Finder example. To run this example,
replace matlabroot with the path to your MATLAB installation, for example C:
\Program Files\MATLAB\R2017a.

Save this text to a text file called myOptionsFile.txt.

Options for analyzing numerical.c and programming.c
-sources matlabroot\polyspace\examples\cxx\Bug_Finder_Example\sources\numerical.c
-sources matlabroot\polyspace\examples\cxx\Bug_Finder_Example\sources\programming.c

4 Functions, Properties, Classes, and Apps

4-54

-compiler gnu4.7
-misra3 mandatory
-checkers numerical,programming
-author jlittle
-prog myProject
-results-dir C:\Polyspace_Workspace\Results\

Run the analysis with the options specified in the text file.

matlabroot\polyspace\bin\polyspace-bug-finder-nodesktop -options-file myOptionsFile.txt

Open the results.

matlabroot\polyspace\bin\polyspace C:\Polyspace_Workspace\Results\^
ps_results.psbf

To rerun the analysis, you must rerun it from the command line.

Input Arguments
sourceFiles — Comma-separated names of C or C++ files to analyze
-sources string

Comma-separated C or C++ source file names, specified as -sources followed by a
string. If the files are not in the current folder (pwd), sourceFiles must include a full or
relative path. For more information, see -sources.

If your current folder contains a sources subfolder with the source files, you can omit
the -sources flag. The analysis considers files in sources and all subfolders under
sources.
Example: -sources myFile.c, -sources C:\mySources\myFile1.c,C:
\mySources\myFile2.c

listOfSources — Text file listing names of C or C++ files to analyze
-sources-list-file file

Text file which lists the name of C or C++ files, specified as -sources-list-file
followed by the file. If the files are not in the current folder (pwd), listOfSources must
include a full or relative path. For more information, see -sources-list-file.
Example: -sources-list-file filename.txt, -sources-list-file "C:
\ps_analysis\source_files.txt"

 polyspace-bug-finder-nodesktop

4-55

[OPTIONS] — Analysis option and corresponding value
option syntax

Analysis options and their corresponding values, specified by the option name and if
applicable value. For syntax specifications, see the individual analysis option reference
pages.
Example: -lang C-CPP -compiler diab

optFile — Text file listing analysis options and values
-options-file file

Text file listing analysis options and values, specified as -options-file followed by the
file. For more information, see -options-file.
Example: -options-file opts.txt, -options-file "C:\ps_analysis
\options.txt"

See Also
polyspaceBugFinder

Topics
“Run Polyspace Analysis from Command Line”
“Run Polyspace Analysis on Remote Clusters Using Scripts”
“Analysis Options”

Introduced in R2013b

4 Functions, Properties, Classes, and Apps

4-56

polyspace-report-generator
(DOS/UNIX) Generate reports for Polyspace analysis results stored locally

Syntax
polyspace-report-generator -template <template> [OPTIONS]
polyspace-report-generator -generate-results-list-file [-results-dir
<FOLDER>] [-set-language-english]
polyspace-report-generator -generate-variable-access-file [-results-
dir <FOLDER>] [-set-language-english]

Description
polyspace-report-generator -template <template> [OPTIONS] generates a
report by using TEMPLATE for the local analysis results that you specify with OPTIONS.

By default, reports for results from project-name are stored as project-
name_report-name in the PathToFolder\Polyspace-Doc folder. PathToFolder is
the results folder of project-name.

polyspace-report-generator -generate-results-list-file [-results-dir
<FOLDER>] [-set-language-english]exports the analysis results stored locally in
FOLDER to a tab-delimited text file. The file contains the result information available on
the Results List pane in the user interface. For more information on the exported results
list, see “View Exported Results” .

By default, the results file for results from project-name is stored in the PathToFolder
\Polyspace-Doc folder. PathToFolder is the results folder of project-name.

polyspace-report-generator -generate-variable-access-file [-results-
dir <FOLDER>] [-set-language-english]exports the list of global variables in your
code from the Code Prover analysis stored locally in FOLDER to a tab-delimited text file.
The file contains the information available on the Variable Access pane in the user
interface. For more information on the exported variables list, see “View Exported
Variable List” (Polyspace Code Prover).

 polyspace-report-generator

4-57

By default, the variables file for results from project-name is stored in the
PathToFolder\Polyspace-Doc folder. PathToFolder is the results folder of
project-name.

Input Arguments
template — path to report template file
string

Path to the report template that you use to generate an analysis report. To generate
multiple reports, specify a comma-separated list of report template paths (do not put a
space after the commas). The templates are available in matlabroot\toolbox
\polyspace\psrptgen\templates\ as .rpt files. Here, matlabroot is the MATLAB
installation folder. For more information on the available templates, see Bug Finder
and Code Prover report (-report-template).

This option is not compatible with -generate-variable-access-file and -
generate-results-list-file.
Example: C:\Program Files\MATLAB\R2018a\toolbox\polyspace\psrptgen
\templates\Developer.rpt

Example: TEMPLATE_PATH\BugFinder.rpt,TEMPLATE_PATH\CodeMetrics.rpt

FOLDER — Analysis results folder path
string

Path to the folder containing analysis results for which you generate a report, or analysis
results from which you export a list of results or global variables (Code Prover). To
generate a report for multiple verifications, specify a comma-separated list of folder paths
(do not put a space after the commas). If you do not specify a folder path, the command
generates a report for analysis results in the current folder.
Example: C:\Polyspace_Workspace\My_project\Module_1\results
Example: C:\Polyspace_Workspace\My_project\Module_2\results,C:
\Polyspace_Workspace\My_project\Module_3\other_results

OPTIONS — Options for generated report
string

4 Functions, Properties, Classes, and Apps

4-58

Option Description
-format HTML | PDF | WORD File format of the report that you generate.

By default, the command generates a
WORD document.

To generate reports in multiple formats,
specify a comma-separated list of formats.
(Do not put a space after the commas). For
instance, -format PDF,HTML.

This option is not compatible with -
generate-variable-access-file and
-generate-results-list-file.

-output-name outputName Name of the generated report or folder
name if you generate multiple reports.

The command stores outputName on the
path from which you call the command. To
store the generated files in a different
folder, specify the full path of the folder, for
instance -outptut-name C:\PathTo
\OtherFolder.

-results-dir
FOLDER_1,...,FOLDER_N

Path to the locally stored results folder. To
generate reports for multiple analyses,
specify a comma-separated list of folder
path. (Do not put a space after the
commas). For example:

-results-dir folderPath1,folderPath2

-set-language-english Generate the report in English. Use this
option if your display language is set to
another language.

-h Display the help information.

Examples

 polyspace-report-generator

4-59

Generate PDF Reports for Analysis Results Stored Locally

You can generate multiple reports for analysis results that you store locally.

Create a variable template_path to store the path to the report templates and create a
variable report_templates to store a comma-separated list of templates to use.

SET template_path="C:\Program Files"\MATLAB\R2018a\toolbox\polyspace^
\psrptgen\templates\bug_finder
SET report_templates=%template_path%\BugFinder.rpt,^
%template_path%\CodingRules.rpt

Generate the reports from the templates that you specified in report_templates for
analysis results of Polyspace project myProject.

 polyspace-report-generator -template %report_templates% ^
-results-dir C:\Polyspace_Workspace\myProject\Module_1\BF_Result ^
-format PDF

The command generates two PDF reports, myProject_BugFinder.PDF and
myProject_CodingRules.PDF. The reports are stored in C:\Polyspace_Workspace
\myProject\Module_1\BF_Result\Polyspace-Doc. For more information on the
content of the reports, see Bug Finder and Code Prover report (-report-
template).

See Also

4 Functions, Properties, Classes, and Apps

4-60

polyspace-results-repository
(DOS/UNIX) Upload, download and otherwise interact with results in the Polyspace
Metrics repository

Syntax
polyspace-results-repository -upload resultsFolder -product
productName -prog projectName -verif-version runNumber [OPTIONS]

polyspace-results-repository -download resultsFolder -product
productName -prog projectName -verif-version versionNumber [OPTIONS]

polyspace-results-repository -get-projects-list -product productName
polyspace-results-repository -get-versions-list -product productName
-prog projectName
polyspace-results-repository -get-run-numbers-list -product
productName -prog projectName -verif-version versionNumber
polyspace-results-repository -get-files-list -product productName -
prog projectName -verif-version versionNumber [OPTIONS]

polyspace-results-repository -get-sqo-id -product productName -prog
projectName -verif-version versionNumber [OPTIONS]
polyspace-results-repository -set-sqo-id SQOLevel -product
productName -prog projectName -verif-version versionNumber [OPTIONS]

polyspace-results-repository -delete -product productName -prog
projectName -verif-version versionNumber [OPTIONS]
polyspace-results-repository -rename -product productName -new-prog
newProjectName -new-verif-version newVersionNumber -prog projectName
-verif-version versionNumber [OPTIONS]

Description
polyspace-results-repository -upload resultsFolder -product
productName -prog projectName -verif-version runNumber [OPTIONS]
uploads Polyspace results in resultsFolder to the Polyspace Metrics web repository.

 polyspace-results-repository

4-61

You can customize the default upload with additional options.

polyspace-results-repository -download resultsFolder -product
productName -prog projectName -verif-version versionNumber [OPTIONS]
downloads Polyspace results from the Polyspace Metrics web repository to
resultsFolder.

You can customize the default download with additional options.

polyspace-results-repository -get-projects-list -product productName
displays the Bug Finder or Code Prover projects currently in the Polyspace Metrics web
repository.

polyspace-results-repository -get-versions-list -product productName
-prog projectName displays the versions of a project currently in the Polyspace
Metrics web repository. If the project involves file-by-file verification in Code Prover, add
the -unit-by-unit option.

polyspace-results-repository -get-run-numbers-list -product
productName -prog projectName -verif-version versionNumber displays the
run numbers of a project version currently in the Polyspace Metrics web repository.

The option is useful only if multiple results with the same project name and version
number have been uploaded to Polyspace Metrics.

polyspace-results-repository -get-files-list -product productName -
prog projectName -verif-version versionNumber [OPTIONS] displays the files
involved in the results for a certain project and version.

polyspace-results-repository -get-sqo-id -product productName -prog
projectName -verif-version versionNumber [OPTIONS] displays the Software
Quality Objectives being applied to a certain project and version.

polyspace-results-repository -set-sqo-id SQOLevel -product
productName -prog projectName -verif-version versionNumber [OPTIONS]
applies Software Quality Objectives specified by SQOLevel to a certain project and
version.

polyspace-results-repository -delete -product productName -prog
projectName -verif-version versionNumber [OPTIONS] deletes a certain
project version from the Polyspace Metrics web repository.

4 Functions, Properties, Classes, and Apps

4-62

polyspace-results-repository -rename -product productName -new-prog
newProjectName -new-verif-version newVersionNumber -prog projectName
-verif-version versionNumber [OPTIONS] renames a certain project version to
another project and version.

Examples

Upload Results to Polyspace Metrics

Suppose you want to upload Code Prover results from the folder C:\My_Results to the
Polyspace Metrics server localhost:12427. You want the project name to appear as
Polyspace_Project and the version number 1.0.

Upload the results using this information.

polyspace-results-repository -upload "C:\My_Results" \
 -prog "Polyspace_Project" \
 -verif-version "1.0" \
 -server "localhost:12427" \
 -product "CodeProver"

Download Results from Polyspace Metrics

Suppose you want to download Bug Finder results in version 1.0 of the project
Polyspace_Project from the Polyspace Metrics server localhost:12427. You want
the results to be downloaded to the folder C:\My_Results.

Download the results using this information.

polyspace-results-repository -download "C:\My_Results" \
 -prog "Polyspace_Project" \
 -verif-version "1.0" \
 -server "localhost:12427" \
 -product "BugFinder"

 polyspace-results-repository

4-63

Upload Results of Multiple Modules to Polyspace Metrics

If a Polyspace project consists of multiple modules, you can upload the analysis results for
all modules to the Polyspace Metrics interface.

For instance, if you run polyspace-autosar, a separate module is created for each
AUTOSAR Software Component. You can write a shell script (.sh file) like this (or a
Windows .bat file) to collect result files in subfolders of the project folder and upload
them to Polyspace Metrics. Code Prover result files use extension .pscp.

#! /bin/bash
Upload all results from a polyspace-autosar run to a Metrics server.
MODULES_DIR=`find "$RESULTS_DIR" -name ps_results.pscp -printf '%h\n'`
IFS='
'
for module in $MODULES_DIR; do
 # extract module name from its path foo/bar/behavior_name
 module_name=${module#*AUTOSAR/}
 # transform it to foo.bar.behavior_name
 module_name=${module_name//\//.}
 polyspace-results-repository \
 -f \
 -server localhost \
 -upload “$module” \
 -prog APPLICATION_NAME \
 -module $module_name \
 -verif-version "$RESULTS_VERSION”
done

Input Arguments
resultsFolder — Folder containing Polyspace results
string

Folder name, specified as a string (in double quotes). The folder must contain a Bug
Finder result file (.psbf) or a Code Prover file (.pscp).
Example: "C:\Polyspace_Projects\Proj1\Module_1\BF_Result", "C:\AUTOSAR
\Demo\polyspace\AUTOSAR\pkg\tst002\swc002\bhv\verification"

projectName — Name of Polyspace project
string

4 Functions, Properties, Classes, and Apps

4-64

Name of Polyspace project, as it appears on Polyspace metrics.

Example: "Polyspace_project"

newProjectName — Name of Polyspace project
string

New name of Polyspace project, as it appears on Polyspace metrics.
Example: "Polyspace_project_1"

versionNumber — Version number of Polyspace project
string

Version number of Polyspace project, as it appears on the Runs tab of Polyspace metrics.

Example: "1.0"

newVersionNumber — Version number of Polyspace project
string

New version number of Polyspace project, as it appears on the Runs tab of Polyspace
metrics.
Example: "1.1"

productName — Name of product used for analysis
"CodeProver" (default) | "BugFinder"

 polyspace-results-repository

4-65

Name of product used for producing the results, specified as "BugFinder" or
"CodeProver".

SQOLevel — SQO Level or BF-QO Level to be applied to analysis results
"SQO-1" | "SQO-2" | "SQO-3" | "SQO-4" | "SQO-5" | "SQO-6" | "BF-QO-1" | "BF-
QO-2" | "BF-QO-3" | "BF-QO-4" | "BF-QO-5" | "BF-QO-6" | "Exhaustive"

Quality levels applied to analysis results. The quality levels consist of a set of criteria
based on which the analysis results are assigned a status of PASS or FAIL. Use the SQO
levels for Code Prover results and BF-QO level for Bug Finder results.

See:

• “Software Quality Objectives” (Polyspace Code Prover)
• “Bug Finder Quality Objective Levels”

[OPTIONS] — Options to customize upload or download
option name

Option Description
-server serverName:portNumber Explicitly specify a server name and port

number for upload or download, for
instance, "localhost:12427".

By default, results are uploaded to or
downloaded from the server that you
configured in Polyspace preferences. See
“Set Up Polyspace Metrics”.

-f Use this option in scripts so that the
polyspace-results-repository
command does not require user interaction.

By default, the command asks for
confirmation before transferring results
from your local folder to Polyspace Metrics
or vice versa.

-password password_value Specify the password for uploading or
download a password-protected result in
Polyspace Metrics.

4 Functions, Properties, Classes, and Apps

4-66

Option Description
-module module_name Specify that the result belongs to a module

in the current Polyspace project. Specify a
module name.

Use this option to upload results from a
project with multiple modules. In Polyspace
Metrics, all modules with the same -prog
value appear under the same project.

When you upload the results of multiple
modules in the same project, they appear as
separate modules in Polyspace Metrics.
When you download the result of a specific
module, the result appears in a subfolder of
the download folder.

-run-number If you uploaded multiple results with the
same project name and version number,
they appear as separate runs in Polyspace
metrics. Use this option to upload or
download the results for a specific run.

-integration or -unit-by-unit If you run a file-by-file verification, use -
unit-by-unit to upload or download all
results together. Otherwise, use -
integration. For more information on
file-by-file verification, see Verify files
independently (-unit-by-unit).

By default, the command assumes one
result for each upload or download.

Introduced in R2013b

 polyspace-results-repository

4-67

Polyspace Bug Finder
Identify software defects via static analysis

Description
The Polyspace Bug Finder app uses static analysis to quickly find run-time errors, data
flow problems, and other defects in C and C++ code.

You can also add check compliance with MISRA C, MISRA C++, JSF++, and custom
coding rules.

Open the Polyspace Bug Finder App
• MATLAB Toolstrip: On the Apps tab, under Code Verification, click the app icon.
• MATLAB command prompt: Enter polyspaceBugFinder.

Examples
• “Run Polyspace Bug Finder on C/C++ Code”
• “Run Polyspace Analysis from Command Line”

Programmatic Use
polyspaceBugFinder

See Also
Apps
Polyspace Code Prover

4 Functions, Properties, Classes, and Apps

4-68

Functions
polyspaceBugFinder | polyspaceConfigure

Topics
“Run Polyspace Bug Finder on C/C++ Code”
“Run Polyspace Analysis from Command Line”
“Polyspace Bug Finder”

Introduced in R2013b

 Polyspace Bug Finder

4-69

polyspace.Project class
Package: polyspace

Run Polyspace analysis on C and C++ code and read results

Description
Run a Polyspace analysis on C and C++ source files by using this MATLAB object.

• To specify source files and customize analysis options, use the Configuration
property.

• To run the analysis, use the run method.
• To read results after analysis, use the Results property.

Construction
proj = polyspace.Project creates an object that you can use to configure and run a
Polyspace analysis, and then read the analysis results.

Properties
Configuration — Analysis options
polyspace.Options object

Options for running Polyspace analysis, implemented as a polyspace.Options object.
The object has properties corresponding to the analysis options. For more information on
those properties, see polyspace.Options.

You can retain the default options or change them in one of these ways:

• Set the source code language to 'C', 'CPP', or 'C-CPP' (default). Some analysis options
might not be available depending on the language setting of the object.

proj=polyspace.Project;
proj.Configuration=polyspace.Options('C');

4 Functions, Properties, Classes, and Apps

4-70

• Modify the properties directly.

proj = polyspace.Project;
proj.Configuration.TargetCompiler.Compiler = 'gnu4.9';

• Obtain the options from another polyspace.Project object.

proj1 = polyspace.Project;
proj1.Configuration.TargetCompiler.Compiler = 'gnu4.9';

proj2 = proj1;

To use common analysis options across multiple projects, follow this approach. For
instance, you want to reuse all options and change only the source files.

• Obtain the options from a project created in the user interface (.psprj file).

proj = polyspace.Project;
projectLocation = fullfile(matlabroot, 'polyspace', ...
 'examples', 'cxx', 'Bug_Finder_Example', 'Bug_Finder_Example.psprj')
proj.Configuration = polyspace.loadProject(projectLocation);

To determine the optimal set of options, set your options in the user interface and then
import them to a polyspace.Project object. In the user interface, you can access
help from features such as the Compilation Assistant and get tooltip help on options.

• Obtain the options from a Simulink model. Before obtaining the options, generate code
from the model.

modelName = 'sldemo_bounce';
load_system(modelName);

% Set parameters for Embedded Coder target
set_param(modelName, 'SystemTargetFile', 'ert.tlc');
set_param('sldemo_bounce','Solver','FixedStepAuto');
set_param('sldemo_bounce','SupportContinuousTime','on')

% Generate code
rtwbuild(modelName);

% Obtain configuration from model
proj = polyspace.Project;
proj.Configuration = polyspace.ModelLinkOptions(modelName);

Use the options to analyze the code generated from the model.

 polyspace.Project class

4-71

Results — Analysis results
polyspace.BugFinderResults or polyspace.CodeProverResults object

Results of Polyspace analysis. When you create a polyspace.Project object, this
property is initially empty. The property is populated only after you execute the run
method of the object. Depending on the argument to the run method, 'bugFinder' or
'codeProver', the property is implemented as a polyspace.BugFinderResults or
polyspace.CodeProverResults object.

To read the results, use these methods of the polyspace.BugFinderResults or
polyspace.CodeProverResults object:

• getSummary: Obtain a summarized format of the results into a MATLAB table.

proj = polyspace.Project;
proj.Configuration.Sources = {fullfile(matlabroot, 'polyspace', 'examples',...
 'cxx', 'Code_Prover_Example', 'sources', 'single_file_analysis.c')};
proj.Configuration.ResultsDir = fullfile(pwd,'results');

proj.run('bugFinder');

resTable = proj.Results.getSummary('defects');

For more information, see polyspace.BugFinderResults.getSummary or
polyspace.CodeProverResults.getSummary.

• getResults: Obtain the full results or a more readable format into a MATLAB table.

proj = polyspace.Project;
proj.Configuration.Sources = {fullfile(matlabroot, 'polyspace', 'examples',...
 'cxx', 'Code_Prover_Example', 'sources', 'single_file_analysis.c')};
proj.Configuration.ResultsDir = fullfile(pwd,'results');

proj.run('bugFinder');

resTable = proj.Results.getResults('readable');

For more information, see polyspace.BugFinderResults.getResults or
polyspace.CodeProverResults.getResults.

4 Functions, Properties, Classes, and Apps

4-72

Methods
run Run a Polyspace analysis

Examples
Check for Bugs

Run a Polyspace Bug Finder analysis on the example file numerical.c. Configure these
options:

• Specify GCC 4.9 as your compiler.
• Save the results in a results subfolder of the current working folder.

proj = polyspace.Project

% Configure analysis
proj.Configuration.Sources = {fullfile(matlabroot, 'polyspace', ...
 'examples', 'cxx', 'Bug_Finder_Example', 'sources', 'numerical.c')};
proj.Configuration.TargetCompiler.Compiler = 'gnu4.9';
proj.Configuration.ResultsDir = fullfile(pwd,'results');

% Run analysis
bfStatus = proj.run('bugFinder');

% Read results
bfSummary = proj.Results.getSummary('defects');

Prove Absence of Run-Time Errors

Run a Polyspace Code Prover analysis on the example file single_file_analysis.c.
Configure these options:

• Specify GCC 4.9 as your compiler.
• Save the results in a results subfolder of the current working folder.
• Specify that a main function must be generated, if the function does not exist in the

source code.

proj = polyspace.Project

 polyspace.Project class

4-73

% Configure analysis
proj.Configuration.Sources = {fullfile(matlabroot, 'polyspace', 'examples',...
 'cxx', 'Code_Prover_Example', 'sources', 'single_file_analysis.c')};
proj.Configuration.TargetCompiler.Compiler = 'gnu4.9';
proj.Configuration.ResultsDir = fullfile(pwd,'results');
proj.Configuration.CodeProverVerification.MainGenerator = true;

% Run analysis
cpStatus = proj.run('codeProver');

% Read results
cpSummary = proj.Results.getSummary('runtime');

Check for Bugs and MISRA C:2012 Violations

Run a Polyspace Bug Finder analysis on the example file single_file_analysis.c.
Configure these options:

• Specify GCC 4.9 as your compiler.
• Save the results in a results subfolder of the current working folder.
• Enable checking of MISRA C:2012 rules. Check for the mandatory rules only.

proj = polyspace.Project

% Configure analysis
proj.Configuration.Sources = {fullfile(matlabroot, 'polyspace', ...
 'examples', 'cxx', 'Bug_Finder_Example', 'sources', 'numerical.c')};
proj.Configuration.TargetCompiler.Compiler = 'gnu4.9';
proj.Configuration.ResultsDir = fullfile(pwd,'results');
proj.Configuration.CodingRulesCodeMetrics.EnableMisraC3 = true;
proj.Configuration.CodingRulesCodeMetrics.MisraC3Subset = 'mandatory';

% Run analysis
bfStatus = proj.run('bugFinder');

% Read results

4 Functions, Properties, Classes, and Apps

4-74

defectsSummary = proj.Results.getSummary('defects');
misraSummary = proj.Results.getSummary('misraC2012');

See Also

Topics
“Run Polyspace Analysis by Using MATLAB Scripts”
“Generate MATLAB Scripts from Polyspace User Interface”
“Troubleshoot Polyspace Analysis from MATLAB”

Introduced in R2017b

 polyspace.Project class

4-75

polyspace.Options class
Package: polyspace

Create object for running Polyspace analysis on handwritten code

Note For easier scripting, specify the Polyspace® analysis options using the
Configuration property of a polyspace.Project object. Do not create a
polyspace.Options object directly.

Description
Run a Polyspace analysis from MATLAB by using an options object. To specify source files
and customize analysis options, change the object properties.

To analyze model-generated code, use polyspace.ModelLinkOptions instead.

Construction
opts = polyspace.Options creates an object whose properties correspond to options
for running a Polyspace analysis.

proj = polyspace.Project creates a polyspace.Project object. The object has a
property Configuration, which is a polyspace.Options object.

opts = polyspace.Options(lang) creates a Polyspace options object with options
that are applicable to the language lang.

opts = polyspace.loadProject(projectFile) creates a Polyspace options object
from an existing Polyspace project projectFile. You set the options in your project in
the Polyspace user interface and create the options object from that project for
programmatically running the analysis.

4 Functions, Properties, Classes, and Apps

4-76

Input Arguments
lang — Language of analysis
'C-CPP' (default) | 'C' | 'CPP'

The language of the analysis specified as 'C-CPP', 'C', or 'CPP'. This argument
determines the object properties.
Data Types: char

projectFile — Name of .psprj file
character vector

Name of Polyspace project file with extension .psprj, specified as a character vector.

If the file is not in the current folder, projectFile must include a full or relative path. To
identify the current folder, use pwd. To change the current folder, use cd.
Example: 'C:\projects\myProject.psprj'

Properties
The object properties correspond to the analysis options for Polyspace projects. The
properties are organized in the same categories as the Polyspace interface. The property
names are a shortened version of the DOS/UNIX command-line name. For syntax details,
see polyspace.Options.

Methods

copyTo Copy common settings between Polyspace options objects
generateProject Generate psprj project from options object
toScript Add Polyspace options object definition to a script

Examples

 polyspace.Options class

4-77

Customize and Run Analysis

Create a Polyspace analysis options object and customize the properties. Then, run an
analysis.

Create object and customize properties. In case you do not have write access to your
current folder, a temporary folder is being used for storing analysis results.

sources = fullfile(matlabroot, 'polyspace','examples','cxx','Bug_Finder_Example',...
 'sources','numerical.c');
opts = polyspace.Options();
opts.Prog = 'MyProject';
opts.Sources = {sources};
opts.TargetCompiler.Compiler = 'gnu4.7';
opts.ResultsDir = tempname;

Run a Bug Finder analysis. To run a Code Prover analysis, use polyspaceCodeProver
instead of polyspaceBugFinder.

results = polyspaceBugFinder(opts);

Open the results in the Polyspace user interface.

polyspaceBugFinder('-results-dir',opts.ResultsDir);

Run Polyspace by Generating a Project File

Create a Polyspace analysis options object and customize the properties. Then, run a Bug
Finder analysis.

Create object and customize properties.

sources = fullfile(matlabroot, 'polyspace','examples','cxx','Bug_Finder_Example',...
 'sources','numerical.c');
opts = polyspace.Options();
opts.Prog = 'MyProject';
opts.Sources = {sources};
opts.TargetCompiler.Compiler = 'gnu4.7';
opts.ResultsDir = tempname;

Generate a Polyspace project, name it using the Prog property, and open the project in
the Polyspace interface.

4 Functions, Properties, Classes, and Apps

4-78

psprj = opts.generateProject(opts.Prog);
polyspaceBugFinder(psprj);

You can also analyze the project from the command line. Run the analysis and open the
results in the Polyspace interface.

results = polyspaceBugFinder(psprj, '-nodesktop');
polyspaceBugFinder('-results-dir',opts.ResultsDir);

Alternatives
If you are analyzing code generated from a model, use polyspace.ModelLinkOptions
instead.

See Also
polyspace.ModelLinkOptions | polyspace.Project | polyspaceBugFinder

Topics
“Run Polyspace Analysis by Using MATLAB Scripts”
“Generate MATLAB Scripts from Polyspace User Interface”

Introduced in R2017a

 polyspace.Options class

4-79

polyspace.ModelLinkOptions class
Package: polyspace

Create object for running Polyspace analysis on generated code

Description
Run a Polyspace analysis from MATLAB by using an options object. To specify source files
and customize analysis options, change the object properties.

This class is intended for model-generated code. If you are analyzing handwritten code,
use polyspace.Options instead.

Construction
opts = polyspace.ModelLinkOptions creates an object whose properties
correspond to options for running a Polyspace analysis on generated code.

opts = polyspace.ModelLinkOptions(lang) creates a Polyspace options object
with options that are applicable to the language lang.

opts = polyspace.ModelLinkOptions(model) creates a Polyspace options object
with options that are applicable to model. Prior to extracting options from the model, you
must load the model and generate code.

Input Arguments
lang — Language of analysis
'C-CPP' (default) | 'C' | 'CPP'

The language of the analysis specified as 'C-CPP', 'C', or 'CPP'. This argument
determines the object properties.

model — Model or subsystem name
character vector

4 Functions, Properties, Classes, and Apps

4-80

Name or path to model or subsystem, specified as a character vector.

Prior to extracting options from the model, you must:

1 Load the model. Use load_system or open_system.
2 Generate code from the model. Use rtwbuild.

Example: 'psdemo_model_link_sl'

Properties
The object properties correspond to the analysis options for Polyspace projects. The
properties are organized in the same categories as the Polyspace interface. The property
names are a shortened version of the DOS command-line name. For syntax details, see
polyspace.ModelLinkOptions.

Methods
copyTo Copy common settings between Polyspace options objects
generateProject Generate psprj project from options object
toScript Add Polyspace options object definition to a script

Examples

Script Analysis of Model Generated Code

This example shows how to customize and run an analysis on code generated from a
model.

Generate code from the model sldemo_bounce. Before code generation, set a system
target file appropriate for code analysis. See also “Recommended Model Configuration
Parameters for Polyspace Analysis”.

modelName = 'sldemo_bounce';
load_system(modelName);

 polyspace.ModelLinkOptions class

4-81

% Set parameters for Embedded Coder target
set_param(modelName, 'SystemTargetFile', 'ert.tlc');
set_param('sldemo_bounce','Solver','FixedStepAuto');
set_param('sldemo_bounce','SupportContinuousTime','on')

if exist(fullfile(pwd,'sldemo_bounce_ert_rtw'), 'dir') == 0
 rtwbuild(modelName);
end

Associate a polyspace.ModelLinkOptions object with the model. A subset of the
object properties are set from the configuration parameters associated with the model.
The other properties take their default values. For details on the configuration
parameters, see “Polyspace Analysis in Simulink”.

opts = polyspace.ModelLinkOptions(modelName);

Change the property values if needed. For instance, you can specify that the analysis
must check for all MISRA C: 2012 violations and generate a PDF report of the results. You
can also specify a folder for the analysis results.

opts.CodingRulesCodeMetrics.EnableMisraC3 = true;
opts.CodingRulesCodeMetrics.MisraC3Subset = 'all';

opts.MergedReporting.EnableReportGeneration = true;
opts.MergedReporting.ReportOutputFormat = 'PDF';

opts.ResultsDir = 'newResfolder';

Create a polyspace.Project object. Associate the Configuration property of this
object to the options that you previously specified.

proj = polyspace.Project;
proj.Configuration = opts;

Run analysis and open results.

4 Functions, Properties, Classes, and Apps

4-82

cpStatus = proj.run('codeProver');
proj.Results.getResults('readable');

Alternatives
If you are analyzing handwritten code, use a polyspace.Projectpolyspace.Project
object directly. Alternatively, use a polyspace.Options object.

See Also
polyspace.Options | polyspace.Project | polyspaceBugFinder | pslinkrun

Topics
“Run Polyspace Analysis by Using MATLAB Scripts”

Introduced in R2017a

 polyspace.ModelLinkOptions class

4-83

polyspace.BugFinderOptions class
Package: polyspace

Create Polyspace Bug Finder object for handwritten code

Note This class is deprecated and will be removed in a future release. Use
polyspace.Options instead.

Description
Customize a Polyspace Bug Finder analysis from MATLAB by creating a Bug Finder
options object. To specify source files and customize analysis options, change the object
properties.

If you are analyzing model-generated code, use
polyspace.ModelLinkBugFinderOptions instead.

Construction
opts = polyspace.BugFinderOptions creates a Bug Finder options object with
available options.

opts = polyspace.BugFinderOptions(lang) creates a Bug Finder options object
with options that are applicable for the language lang.

Input Arguments
lang — Language of analysis
'C-CPP' (default) | 'C' | 'CPP'

The language of the analysis specified as 'C-CPP', 'C', or 'CPP'. This argument
determines which properties the object has.

4 Functions, Properties, Classes, and Apps

4-84

Properties
The object properties are the analysis options for Polyspace Bug Finder projects. The
properties are organized in the same categories as the Polyspace interface. The property
names are a shortened version of the DOS/UNIX command-line name. For syntax details,
see polyspace.Options.

Methods
copyTo Copy common settings between Polyspace options objects
generateProject Generate psprj project from options object
toScript Add Polyspace options object definition to a script

Examples

Customize and Run Analysis

Create a Bug Finder analysis options object and customize the properties. Then, run an
analysis.

Create object and customize properties.

sources = fullfile(matlabroot, 'polyspace','examples','cxx','Bug_Finder_Example',...
 'sources','numerical.c');
optsBF = polyspace.BugFinderOptions();
optsBF.Prog = 'MyProject';
optsBF.Sources = {sources};
optsBF.TargetCompiler.Compiler = 'gnu4.7';
optsBF.ResultsDir = tempname;

Run the analysis and open the results in the Polyspace interface.

results = polyspaceBugFinder(optsBF);
polyspaceBugFinder('-results-dir',optsBF.ResultsDir);

 polyspace.BugFinderOptions class

4-85

Run Polyspace by Generating a Project File

Create a Bug Finder analysis options object and customize the properties. Then, run an
analysis.

Create object and customize properties.

sources = fullfile(matlabroot, 'polyspace','examples','cxx','Bug_Finder_Example',...
 'sources','numerical.c');
optsBF = polyspace.BugFinderOptions();
optsBF.Prog = 'MyProject';
optsBF.Sources = {sources};
optsBF.TargetCompiler.Compiler = 'gnu4.7';
optsBF.ResultsDir = tempname;

Generate a Polyspace project, name it using the Prog property, and open the project in
the Polyspace interface.

psprj = generateProject(optsBF, optsBF.Prog);
polyspaceBugFinder(psprj);

Run the analysis and open the results in the Polyspace interface.

results = polyspaceBugFinder(psprj, '-nodesktop');
polyspaceBugFinder('-results-dir',optsBF.ResultsDir);

Alternatives
If you are analyzing code generated from a model, use
polyspace.ModelLinkBugFinderOptions instead.

See Also
polyspace.ModelLinkBugFinderOptions | polyspace.Options |
polyspaceBugFinder

Topics
“Run Polyspace Analysis by Using MATLAB Scripts”

Introduced in R2016b

4 Functions, Properties, Classes, and Apps

4-86

polyspace.ModelLinkBugFinderOptions class
Package: polyspace

Create Polyspace Bug Finder object for generated code

Note This class is deprecated and will be removed in a future release. Use
polyspace.ModelLinkOptions instead.

Description
Customize a Polyspace Bug Finder analysis from MATLAB by creating a Bug Finder
options object. To specify source files and customize analysis options, change the object
properties.

This class is intended for model-generated code. If you are analyzing handwritten code,
use polyspace.BugFinderOptions instead.

Construction
opts = polyspace.BugFinderOptions creates a Bug Finder options object for
generated code with available options for C/C++ generated code.

Properties
The object properties are the analysis options for Polyspace Bug Finder model link
projects. The properties are organized in the same categories as the Polyspace interface.
The property names are a shortened version of the DOS command-line name. For syntax
details, see polyspace.ModelLinkOptions.

 polyspace.ModelLinkBugFinderOptions class

4-87

Methods

copyTo Copy common settings between Polyspace options objects
generateProject Generate psprj project from options object
toScript Add Polyspace options object definition to a script

Examples

Script Analysis of Model Generated Code

This example shows how to customize and run an analysis on model generated code with
MATLAB functions and objects.

Create a custom configuration that checks MISRA C 2012 rules and generates a PDF
report.

opts = polyspace.ModelLinkBugFinderOptions();
opts.CodingRulesCodeMetrics.EnableMisraC3 = true;
opts.CodingRulesCodeMetrics.MisraC3Subset = 'all';
opts.MergedReporting.ReportOutputFormat = 'PDF';
opts.MergedReporting.EnableReportGeneration = true;

Generate code from psdemo_model_link_sl.

model = 'psdemo_model_link_sl';
load_system(model);
slbuild(model);

Add the configuration to pslinkoptions object.

prjfile = opts.generateProject('model_link_opts');
mlopts = pslinkoptions(model);
mlopts.EnablePrjConfigFile = true;
mlopts.PrjConfigFile = prjfile;
mlopts.VerificationMode = 'BugFinder';

Run analysis.

4 Functions, Properties, Classes, and Apps

4-88

[polyspaceFolder, resultsFolder] = pslinkrun(model);

Alternatives
If you are analyzing handwritten code, use polyspace.BugFinderOptions instead.

See Also
polyspace.BugFinderOptions | polyspace.ModelLinkOptions |
polyspaceBugFinder | pslinkrun

Topics
“Run Polyspace Analysis by Using MATLAB Scripts”

 polyspace.ModelLinkBugFinderOptions class

4-89

polyspace.DefectsOptions class
Package: polyspace

Create custom list of defects to check

Description
Create a custom list of defects to check. This object is useful if you want to check only a
custom subset of the Bug Finder defects. To use your custom list of defects in an analysis,
you must add it to a polyspace.BugFinderOptions or
polyspace.ModelLinkBugFinderOptions object. In your Bug Finder options object,
set the following properties:

• Add your defect options object to the BugFinderAnalysis.CheckersList property.
• Change the BugFinderAnalysis.CheckersPreset property to 'custom'.

Construction
defectList = polyspace.DefectsOptions creates the defect options object
defectList. You can customize the list of active defects by changing the properties.

Properties
An object is created with supported defects as properties. The defects are listed by their
command-line name, found on the individual defect reference pages.

By default, all defects are off. To turn on a defect, set the defect to true. For example:

defectList.FLOAT_ZERO_DIV = true

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects (MATLAB).

4 Functions, Properties, Classes, and Apps

4-90

Examples

Customize List of Defects to Check

Use a polyspace.DefectsOptions object to customize the list of defects checked during a
Polyspace Bug Finder analysis.

Create options objects.

defects = polyspace.DefectsOptions;
opts = polyspace.Options;

Set Bug Finder object properties to analyze with the customized defect list.

opts.BugFinderAnalysis.CheckersList = defects;
opts.BugFinderAnalysis.CheckersPreset = 'custom';

Activate the numerical defects.

defects.FLOAT_ZERO_DIV = true;
defects.INT_ZERO_DIV = true;
defects.FLOAT_ABSORPTION = true;
defects.BITWISE_NEG = true;
defects.FLOAT_CONV_OVFL = true;
defects.FLOAT_OVFL = true;
defects.INT_CONV_OVFL = true;
defects.INT_OVFL = true;
defects.FLOAT_STD_LIB = true;
defects.INT_STD_LIB = true;
defects.SHIFT_NEG = true;
defects.SHIFT_OVFL = true;
defects.SIGN_CHANGE = true;
defects.UINT_CONV_OVFL = true;
defects.UINT_OVFL = true;
defects.BAD_PLAIN_CHAR_USE = true;

See Also
polyspace.BugFinderOptions | polyspace.CodingRulesOptions |
polyspace.ModelLinkBugFinderOptions

 polyspace.DefectsOptions class

4-91

Topics
“Defects”

Introduced in R2016b

4 Functions, Properties, Classes, and Apps

4-92

polyspace.GenericTargetOptions class
Package: polyspace

Create a generic target configuration

Description
If your target processor does not match one of the preset targets on page 1-18, use this
object to create a custom generic target. To use your custom target in an analysis, you
must add it to a polyspace.BugFinderOptions or
polyspace.ModelLinkBugFinderOptions object. In your options object, add your
generic target options object to the TargetCompiler.Target property.

Construction
genericTarget = polyspace.GenericTargetOptions creates a generic target that
you can customize. To specify the size and alignment of types, change the properties of
the genericTarget object.

Properties
For more details about any of these properties, see Generic target options.

Alignment — Largest alignment of struct or array objects
32 (default) | 16 | 8

Largest alignment of struct or array objects, specified as 32, 16, or 8. Comparable with
the DOS/UNIX command-line option -align.
Example: target.Alignment = 8

CharNumBits — Define the number of bits for a char
8 (default) | 16

Define the number of bits for a char, specified as 8 or 16. Comparable with the DOS/
UNIX command-line option -char-is-16bits.

 polyspace.GenericTargetOptions class

4-93

Example: target.CharNumBits = 16

DoubleNumBits — Define the number of bits for a double
32 (default) | 64

Define the number of bits for a double, specified as 32 or 64. Comparable with the DOS/
UNIX command-line option -double-is-64bits.
Example: target.DoubleNumBits = 64

Endianness — Endianness of target architecture
little (default) | big

Endianness of target architecture, specified as little or big. Comparable with the
DOS/UNIX command-line options -little-endian or -big-endian.
Example: target.Endianess = 'big'

IntNumBits — Define the number of bits for an int
16 (default) | 32

Define the number of bits for an int, specified as 16 or 32. Comparable with the DOS/
UNIX command-line option -int-is-32bits.
Example: target.IntNumBits = 32

LongLongNumBits — Define the number of bits for a long long
32 (default) | 64

Define the number of bits for a long long, specified as 32 or 64. Comparable with the
DOS/UNIX command-line option -long-long-is-64bits.
Example: target.LongNumBits = 64

LongNumBits — Define the number of bits for a long
32 (default)

Define the number of bits for a long, specified as 32. Comparable with the DOS/UNIX
command-line option -long-is-32bits.
Example: target.LongNumBits = 32

PointerNumBits — Define the number of bits for a pointer
16 (default) | 24 | 32

4 Functions, Properties, Classes, and Apps

4-94

Define the number of bits for a pointer, specified as 16, 24, or 32. Comparable with the
DOS/UNIX command-line options -pointer-is-24bits and -pointer-is-32bits.
Example: target.PointerNumBits = 32

ShortNumBits — Define the number of bits for a short
16 (default) | 8

Define the number of bits for an int, specified as 16 or 8. Comparable with the DOS/
UNIX command-line option -short-is-8bits.
Example: target.ShortNumBits = 8

SignOfChar — Default sign of plain char
signed (default) | unsigned

Default sign of plain char, specified as signed or unsigned. Comparable with the DOS/
UNIX command-line option -default-sign-of-char.
Example: target.SignOfChar = 'unsigned'

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects (MATLAB).

Examples

Customize Generic Target Settings

Use a polyspace.GenericTargetOptions object to customize a generic target for your
analysis.

Create options objects.

target = polyspace.GenericTargetOptions;
opts = polyspace.Options;

Add the custom target to the Bug Finder options object.

opts.TargetCompiler.Target = target;

 polyspace.GenericTargetOptions class

4-95

Customize the generic target.

target.Endianess = 'big';
target.LongLongNumBits = 64;
target.ShortNumBits = 8;

See Also
Target processor type (-target) | polyspace.BugFinderOptions |
polyspace.ModelLinkBugFinderOptions

Introduced in R2016b

4 Functions, Properties, Classes, and Apps

4-96

polyspace.CodingRulesOptions class
Package: polyspace

Create custom list of coding rules to check

Description
Create a custom list of coding rules to check for one of the supported standard coding
rule sets. To use your custom target in an analysis, you must add it to a
polyspace.Options or polyspace.ModelLinkOptions object. In your options object:

• Add your coding rules options object to one of the
CodingRulesCodeMetrics.RULESETSubset properties.

• Activate your coding rule set with one of the
CodingRulesCodeMetrics.EnableRULESET properties.

Construction
ruleList = polyspace.CodingRulesOptions(RuleSet) creates the coding rules
object ruleList for the RuleSet coding rule set. Set the active rules in the coding rules
object.

Input Arguments
RuleSet — Standard coding rule set
misraC (default) | misraC2012 | misraAcAgc | misraCpp | jsf

Standard coding rule set specified as one of the coding rule acronyms.
Example: 'misraCpp'
Data Types: char

 polyspace.CodingRulesOptions class

4-97

Properties
For each coding rule set, an object is created with all supported rules for that rule set. By
default, all rules are on. To turn off a rule, set the rule to false. For example:

ruleList.rule_20_1 = false

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects (MATLAB).

Examples

Customize List of Coding Rules to Check

Customize the coding rules that are checked during your analysis by using a coding rules
options object.

Create options objects.

misraRules = polyspace.CodingRulesOptions('misraC2012');
opts = polyspace.Options;

Add the customized list of coding rules to the Bug Finder options object and activate
them.

opts.CodingRulesCodeMetrics.MisraC3Subset = misraRules;
opts.CodingRulesCodeMetrics.EnableMisraC3 = true;

Customize the coding rule list by turning off rules 2.1-2.7.

misraRules.rule_2_1 = false;
misraRules.rule_2_2 = false;
misraRules.rule_2_3 = false;
misraRules.rule_2_4 = false;
misraRules.rule_2_5 = false;
misraRules.rule_2_6 = false;
misraRules.rule_2_7 = false;

4 Functions, Properties, Classes, and Apps

4-98

See Also
polyspace.BugFinderOptions | polyspace.ModelLinkBugFinderOptions

Introduced in R2016b

 polyspace.CodingRulesOptions class

4-99

polyspace.BugFinderResults class
Package: polyspace

Read Polyspace Bug Finder results from MATLAB

Description
Read Polyspace Bug Finder analysis results to MATLAB tables by using this object.

You can obtain a high-level overview or read each individual result, for example, each
instance of a defect.

Construction
resObj = polyspace.BugFinderResults(resultsFolder) creates an object for
reading a specific set of Bug Finder results into MATLAB tables. Use the object methods
to read the results.

proj = polyspace.Project creates a polyspace.Project object. The object has a
property Results. If you run a Bug Finder analysis, this property is a
polyspace.BugFinderResults object.

Input Arguments
resultsFolder — Name of result folder
character vector

Name of result folder, specified as a character vector. The folder must contain the results
file with extension .psbf. Even if the results file resides in a subfolder of the specified
folder, it cannot be accessed.

If the folder is not in the current folder, resultsFolder must include a full or relative
path.
Example: 'C:\Polyspace\Results\'

4 Functions, Properties, Classes, and Apps

4-100

Methods
getSummary View number of defects organized by defect type
getResults Read Bug Finder results into MATLAB table

Examples

Copy Existing Results to MATLAB Tables

This example shows how to read Bug Finder analysis results from MATLAB.

Copy a demo result set to a temporary folder.

resPath = fullfile(matlabroot,'polyspace','examples','cxx','Bug_Finder_Example', ...
'Module_1','BF_Result');
userResPath = tempname;
copyfile(resPath,userResPath);

Create the results object.

resObj = polyspace.BugFinderResults(userResPath);

Read results to MATLAB tables using the object.

resSummary = getSummary (resObj);
resTable = getResults (resObj);

Run Analysis and Read Results to MATLAB Tables

Run a Polyspace Bug Finder analysis on the demo file numerical.c. Configure these
options:

• Specify GCC 4.9 as your compiler.
• Save the results in a results subfolder of the current working folder.

proj = polyspace.Project

% Configure analysis
proj.Configuration.Sources = {fullfile(matlabroot, 'polyspace', ...
 'examples', 'cxx', 'Bug_Finder_Example', 'sources', 'numerical.c')};

 polyspace.BugFinderResults class

4-101

proj.Configuration.TargetCompiler.Compiler = 'gnu4.9';
proj.Configuration.ResultsDir = fullfile(pwd,'results');

% Run analysis
bfStatus = proj.run('bugFinder');

% Read results
bfSummary = proj.Results.getResults('readable');

Alternatives
To read Code Prover results from MATLAB, use the class
polyspace.CodeProverResults.

Introduced in R2017a

4 Functions, Properties, Classes, and Apps

4-102

pslinkoptions Properties
Properties for the pslinkoptions object

Description
You can create a pslinkoptions object to customize your analysis at the command-line.
Use these properties to specify configuration options, where and how to store results,
additional files to include, and data range modes.

Properties
Configuration Options

VerificationSettings — Coding rule and configuration settings for C code
'PrjConfig' (default) | 'PrjConfigAndMisraAGC' | 'PrjConfigAndMisra' |
'PrjConfigAndMisraC2012' | 'MisraAGC' | 'Misra' | 'MisraC2012'

Coding rule and configuration settings for C code specified as:

• 'PrjConfig' – Inherit options from the project configuration.
• 'PrjConfigAndMisraAGC' – Inherit options from the project configuration and

enable MISRA AC AGC rule checking.
• 'PrjConfigAndMisra' – Inherit options from the project configuration and enable

MISRA C:2004 rule checking.
• 'PrjConfigAndMisraC2012' – Inherit options from the project configuration and

enable MISRA C:2012 guideline checking.
• 'MisraAGC' – Enable MISRA AC AGC rule checking. This option runs only

compilation and rule checking.
• 'Misra' – Enable MISRA C:2004 rule checking. This option runs only compilation and

rule checking.
• 'MisraC2012' – Enable MISRA C:2012 rule checking. This option runs only

compilation and guideline checking.

Example: opt.VerificationSettings = 'PrjConfigAndMisraC2012'

 pslinkoptions Properties

4-103

VerificationMode — Polyspace mode
'BugFinder' (default) | 'CodeProver'

Polyspace mode specified as 'BugFinder', for a Bug Finder analysis, or 'CodeProver',
for a Code Prover verification.
Example: opt.VerificationMode = 'BugFinder';

EnablePrjConfigFile — Allow a custom configuration file
false (default) | true

Allows a custom configuration file instead of the default configuration specified as true or
false. Use the PrjConfigFile option to specify the configuration file.
Example: opt.EnablePrjConfigFile = true;

PrjConfigFile — Custom configuration file
'' (default) | full path to a .psprj file

Custom configuration file to use instead of the default configuration specified by the full
path to a .psprj file. Use the EnablePrjConfigFile option to use this configuration
file during your analysis.
Example: opt.PrjConfigFile = 'C:\Polyspace\config.psprj';

CheckConfigBeforeAnalysis — Configuration check before analysis
'OnWarn' (default) | 'OnHalt' | 'Off'

This property sets the level of configuration checking done before the analysis starts. The
configuration check before analysis is specified as:

• 'Off' — Checks only for errors. Stops if errors are found.
• 'OnWarn' — Stops for errors. Displays a message for warnings.
• 'OnHalt' — Stops for errors and warnings.

Example: opt.CheckConfigBeforeAnalysis = 'OnHalt';

Results

ResultDir — Results folder name and location
'C:\Polyspace_Results\results_$ModelName$' (default) | folder name | folder
path

4 Functions, Properties, Classes, and Apps

4-104

Results folder name and location specified as the local folder name or the folder path.
This folder is where Polyspace writes the analysis results. This folder name can be either
an absolute path or a path relative to the current folder. The text $ModelName$ is
replaced with the name of the original model.
Example: opt.ResultDir = '\results_v1_$ModelName$';

AddSuffixToResultDir — Add unique number to the results folder name
false (default) | true

Add unique number to the results folder name specified as true or false. If true, a unique
number is added to the end of every new result. Using this option helps you avoid
overwriting the previous results folders.
Example: opt.AddSuffixToResultDir = true;

OpenProjectManager — Open the Polyspace environment
false (default) | true

Open the Polyspace environment to monitor the progress of the analysis, specified as true
or false. Afterward, you can review the results.
Example: opt.OpenProjectManager = true;

AddToSimulinkProject — Add results to the open Simulink project
false (default) | true

Add your results to the currently open Simulink project, if any, specified as true or false.
This option allows you to keep your Polyspace results organized with the rest of your
project files. If a Simulink project is not open, the results are not added to a Simulink
project.
Example: opt.AddToSimulinkProject = true;

Additional Files

EnableAdditionalFileList — Allow an additional file list
false (default) | true

Allow an additional file list to be analyzed, specified as true or false. Use with the
AdditionalFileList option.
Example: opt.EnableAdditionalFileList = true;

 pslinkoptions Properties

4-105

AdditionalFileList — List of additional files to be analyzed
{0x1 cell} (default) | cell array of files

List of additional files to be analyzed specified as a cell array of files. Use with the
EnableAdditionalFileList option to add these files to the analysis.
Example: opt.AdditionalFileList = {'sources\file1.c', 'sources
\file2.c'};

Data Types: cell

Data Ranges

InputRangeMode — Enable design range information
'DesignMinMax' (default) | 'FullRange'

Enable design range information specified as 'DesignMinMax', to use data ranges
defined in blocks and workspaces, or 'FullRange', to treat inputs as full-range values.
Example: opt.InputRangeMode = 'FullRange';

ParamRangeMode — Enable constant parameter values
'None' (default) | 'DesignMinMax'

Enable constant parameter values, specified as 'None', to use constant parameters
values specified in the code, or 'DesignMinMax' to use a range defined in blocks and
workspaces.
Example: opt.ParamRangeMode = 'DesignMinMax';

OutputRangeMode — Enable output assertions
'None' (default) | 'DesignMinMax'

Enable output assertions specified by 'None', to not apply assertions, or
'DesignMinMax' to apply assertions to outputs using a range defined in blocks and
workspace.
Example: opt.ParamRangeMode = 'DesignMinMax';

Embedded Coder Only

ModelRefVerifDepth — Depth of verification
'Current model only' (default) | '1' | '2' | '3' | 'All'

Depth of verification specified by the model reference level to which you want to analyze.

4 Functions, Properties, Classes, and Apps

4-106

Only for Embedded Coder
Example: opt.ModelRefVerifDepth = '3';

ModelRefByModelRefVerif — Model reference analysis mode
false (default) | true

Model reference analysis mode specified as false to verify reference models within the
model hierarchy, or true to verify referenced models individually.

Only for Embedded Coder
Example: opt.ModelRefByModelRefVerif = true;

CxxVerificationSettings — Coding rule and configuration settings for C++
code
'PrjConfig' (default) | 'PrjConfigAndMisraCxx' | 'PrjConfigAndJSF' |
'MisraCxx' | 'JSF'

Coding rule and configuration settings for C++ code specified as:

• 'PrjConfig' – Inherit options from project configuration and run complete analysis.
• 'PrjConfigAndMisraCxx' – Inherit options from project configuration, enable

MISRA C++ rule checking, and run complete analysis.
• 'PrjConfigAndJSF' – Inherit options from project configuration, enable JSF rule

checking, and run complete analysis.
• 'MisraCxx' – Enable MISRA C++ rule checking, and run compilation phase only.
• 'JSF' – Enable JSF rule checking, and run compilation phase only.

Only for Embedded Coder
Example: opt.CxxVerificationSettings = 'MisraCxx';

TargetLink Only

AutoStubLUT — Lookup Table code usage
false (default) | true

Lookup Table code usage, specified as true or false.

• true — use Lookup Table code during the analysis.
• false — stub Lookup Table code.

 pslinkoptions Properties

4-107

Only for TargetLink
Example: opts.AutoStubLUT = true;

See Also
pslinkoptions | pslinkrun

4 Functions, Properties, Classes, and Apps

4-108

polyspace.Project.Configuration Properties
Customize Polyspace analysis of handwritten code with options object properties

Description
To customize your Polyspace analysis, use these polyspace.Options or
polyspace.Project.Configuration properties. Each property corresponds to an
analysis option on the Configuration pane in the Polyspace user interface.

The properties are grouped using the same categories as the Configuration pane. This
page only shows what values each property can take. For details about:

• The different options, see the analysis option reference pages.
• How to create and use the object, see polyspace.Options or polyspace.Project.

The same properties are also available with the deprecated classes
polyspace.BugFinderOptions and polyspace.CodeProverOptions.

Each property description below also highlights if the option affects only one of Bug
Finder or Code Prover.

Note Some options might not be available depending on the language setting of the
object. You can set the source code language (Language) to 'C', 'CPP' or 'C-CPP'
during object creation, but cannot change it later.

Properties
Advanced

Additional — Additional flags for analysis
character vector

Additional flags for analysis specified as a character vector.

For more information, see Other.

 polyspace.Project.Configuration Properties

4-109

Example: opts.Advanced.Additional = '-extra-flags -option -extra-flags
value'

PostAnalysisCommand — Command or script software should execute after
analysis finishes
character vector

Command or script software should execute after analysis finishes, specified as a
character vector.

For more information, see Command/script to apply after the end of the
code verification (-post-analysis-command).
Example: opts.Advanced.PostAnalysisCommand = '"C:\Program Files\perl
\win32\bin\perl.exe" "C:\My_Scripts\send_email"'

AutomaticOrangeTester — Run the Automatic Orange Tester
false (default) | true

This property affects Code Prover analysis only.

Run the Automatic Orange Tester after verification, specified as true or false.

For more information, see Automatic Orange Tester (-automatic-orange-
tester).
Example: opts.Advanced.AutomaticOrangeTester = true

AutomaticOrangeTesterLoopMaxIteration — Number of loop iterations after
which Automatic Orange Tester considers infinite loop
1000 (default) | positive integer

This property affects Code Prover analysis only.

Number of loop iterations after which Automatic Orange Tester considers the test an
infinite loop, specified as a positive integer, maximum of 1000.

For more information, see Maximum loop iterations (-automatic-orange-
tester-loop-max-iteration).
Example: opts.Advanced.AutomaticOrangeTesterLoopMaxIteration = 500

4 Functions, Properties, Classes, and Apps

4-110

AutomaticOrangeTesterTestsNumber — Number of tests that Automatic Orange
Tester must run
500 (default) | positive integer

This property affects Code Prover analysis only.

Number of tests that Automatic Orange Tester must run, specified as a positive integer,
maximum of 100,000.

For more information, see Number of automatic tests (-automatic-orange-
tester-tests-number).
Example: opts.Advanced.AutomaticOrangeTesterTestsNumber = 1000

AutomaticOrangeTesterTimeout — Time in seconds allowed for a single test in
Automatic Orange Tester
5 (default) | positive integer

This property affects Code Prover analysis only.

Time in seconds allowed for a single test in Automatic Orange Tester, specified as a
positive integer, maximum of 60.

For more information, see Maximum test time (-automatic-orange-tester-
timeout).
Example: opts.Advanced.AutomaticOrangeTesterTimeout = 10

BugFinderAnalysis (Affects Bug Finder Only)

CheckersList — List of custom checkers to activate
polyspace.DefectsOptions object | cell array of defect acronyms

This property affects Bug Finder analysis only.

List of custom checkers to activate specified by using the name of a
polyspace.DefectsOptions object or a cell array of defect acronyms. To use this
custom list in your analysis, set CheckersPreset to custom.

For more information, see polyspace.DefectsOptions.
Example: defects = polyspace.DefectsOptions;
opts.BugFinderAnalysis.CheckersList = defects

 polyspace.Project.Configuration Properties

4-111

Example: opts.BugFinderAnalysis.CheckersList =
{'INT_ZERO_DIV','FLOAT_ZERO_DIV'}

CheckersPreset — Subset of Bug Finder defects
default (default) | all | CERT-rules | CERT-all | ISO-17961 | CWE | custom

This property affects Bug Finder analysis only.

Preset checker list, specified as a character vector of one of the preset options: default,
all, or custom. To use custom, specify a BugFinderAnalysis.CheckersList.

For more information, see Find defects (-checkers).
Example: opts.BugFinderAnalysis.CheckersPreset = 'all'

EnableCheckers — Activate defect checking
true (default) | false

This property affects Bug Finder analysis only.

Activate defect checking, specified as true or false. Setting this property to false disables
all defects. If you want to disable defect checking but still get results, turn on coding
rules checking or code metric checking.

This property is equivalent to the Find defects check box in the Polyspace interface.
Example: opts.BugFinderAnalysis.EnableCheckers = false

ChecksAssumption (Affects Code Prover Only)

AllowNegativeOperandInShift — Allow left shift operations on a negative
number
false (default) | true

This property affects Code Prover analysis only.

Allow left shift operations on a negative number, specified as true or false.

For more information, see Allow negative operand for left shifts (-allow-
negative-operand-in-shift).
Example: opts.ChecksAssumption.AllowNegativeOperandInShift = true

AllowNonFiniteFloats — Incorporate infinities and/or NaNs
false (default) | true

4 Functions, Properties, Classes, and Apps

4-112

This property affects Code Prover analysis only.

Incorporate infinities and/or NaNs, specified as true or false.

For more information, see Consider non finite floats (-allow-non-finite-
floats).
Example: opts.ChecksAssumption.AllowNonFiniteFloats = true

AllowPtrArithOnStruct — Allow arithmetic on pointer to a structure field so
that it points to another field
false (default) | true

This property affects Code Prover analysis only.

Allow arithmetic on pointer to a structure field so that it points to another field, specified
as true or false.

For more information, see Enable pointer arithmetic across fields (-allow-
ptr-arith-on-struct).
Example: opts.ChecksAssumption.AllowPtrArithOnStruct = true

CheckInfinite — Detect floating-point operations that result in infinities
allow (default) | warn-first | forbid

This property affects Code Prover analysis only.

Detect floating-point operations that result in infinities.

To activate this option, specify ChecksAssumption.AllowNonFiniteFloats.

For more information, see Infinities (-check-infinite).
Example: opts.ChecksAssumption.CheckInfinite = 'forbid'

CheckNan — Detect floating-point operations that result in NaN-s
allow (default) | warn-first | forbid

This property affects Code Prover analysis only.

Detect floating-point operations that result in NaN-s.

To activate this option, specify ChecksAssumption.AllowNonFiniteFloats.

 polyspace.Project.Configuration Properties

4-113

For more information, see NaNs (-check-nan).
Example: opts.ChecksAssumption.CheckNan = 'forbid'

CheckSubnormal — Detect operations that result in subnormal floating point
values
allow (default) | warn-first | warn-all | forbid

This property affects Code Prover analysis only.

Detect operations that result in subnormal floating point values.

For more information, see Subnormal detection mode (-check-subnormal).
Example: opts.ChecksAssumption.CheckSubnormal = 'forbid'

DetectPointerEscape — Find cases where a function returns a pointer to one of
its local variables
false (default) | true

This property affects Code Prover analysis only.

Find cases where a function returns a pointer to one of its local variables, specified as
true or false.

For more information, see Detect stack pointer dereference outside scope
(-detect-pointer-escape).
Example: opts.ChecksAssumption.DetectPointerEscape = true

DisableInitializationChecks — Disable checks for noninitialized variables
and pointers
false (default) | true

This property affects Code Prover analysis only.

Disable checks for noninitialized variables and pointers, specified as true or false.

For more information, see Disable checks for non-initialization (-disable-
initialization-checks).
Example: opts.ChecksAssumption.DisableInitializationChecks = true

4 Functions, Properties, Classes, and Apps

4-114

PermissiveFunctionPointer — Allow type mismatch between function pointers
and the functions they point to
false (default) | true

This property affects Code Prover analysis only.

Allow type mismatch between function pointers and the functions they point to, specified
as true or false.

For more information, see Permissive function pointer calls (-permissive-
function-pointer).
Example: opts.ChecksAssumption.PermissiveFunctionPointer = true

SignedIntegerOverflows — Behavior of signed integer overflows
forbid (default) | allow | warn-with-wrap-around

This property affects Code Prover analysis only.

Enable the check for signed integer overflows and the assumptions to make following an
overflow specified as forbid, allow, or warn-with-wrap-around.

For more information, see Overflow mode for signed integer (-signed-
integer-overflows).
Example: opts.ChecksAssumption.SignedIntegerOverflows = 'warn-with-
wrap-around'

SizeInBytes — Allow a pointer with insufficient memory buffer to point to a
structure
false (default) | true

This property affects Code Prover analysis only.

Allow a pointer with insufficient memory buffer to point to a structure, specified as true or
false.

For more information, see Allow incomplete or partial allocation of
structures (-size-in-bytes).
Example: opts.ChecksAssumption.SizeInBytes = true

 polyspace.Project.Configuration Properties

4-115

UncalledFunctionCheck — Detect functions that are not called directly or
indirectly from main or another entry-point function
none (default) | never-called | called-from-unreachable | all

This property affects Code Prover analysis only.

Detect functions that are not called directly or indirectly from main or another entry-point
function, specified as none, never-called, called-from-unreachable, or all.

For more information, see Detect uncalled functions (-uncalled-function-
checks).
Example: opts.ChecksAssumption.UncalledFunctionCheck = 'all'

UnsignedIntegerOverflows — Behavior of unsigned integer overflows
allow (default) | forbid | warn-with-wrap-around

This property affects Code Prover analysis only.

Enable the check for unsigned integer overflows and the assumptions to make following
an overflow, specified as forbid, allow, or warn-with-wrap-around.

For more information, see Overflow mode for unsigned integer (-unsigned-
integer-overflows).
Example: opts.ChecksAssumption.UnsignedIntegerOverflows = 'allow'

CodeProverVerification (Affects Code Prover only)

ClassAnalyzer — Classes that you want to verify
all (default) | none | custom=class1[,class2,...]

This property affects Code Prover analysis only.

Classes that you want to verify, specified as all, none, or
custom=class1[,class2,...].

For more information, see Class (-class-analyzer).
Example: opts.CodeProverVerification.ClassAnalyzer =
'custom=myClass1,myClass2'

4 Functions, Properties, Classes, and Apps

4-116

ClassAnalyzerCalls — Class methods that you want to verify
unused (default) | all | all-public | inherited-all | inherited-all-public |
unused-public | inherited-unused | inherited-unused-public |
custom=method1[,method2,...]

This property affects Code Prover analysis only.

Class methods that you want to verify, specified as one of the predefined sets or as
custom=method1[,method2,...].

For more information, see Functions to call within the specified classes
(-class-analyzer-calls).
Example: opts.CodeProverVerification.ClassAnalyzerCalls = 'unused-
public'

ClassOnly — Analyze only class methods
false (default) | true

This property affects Code Prover analysis only.

Analyze only class methods, specified as true or false.

For more information, see Analyze class contents only (-class-only).
Example: opts.CodeProverVerification.ClassOnly = true

EnableMain — Use main function provided in application
false (default) | true

This property affects Code Prover analysis only.

Use main function provided in application, specified as true or false. If you set this
property to false, the analysis generates a main function, if it is not present in the source
files.

For more information, see Verify whole application.
Example: opts.CodeProverVerification.EnableMain = true

FunctionsCalledBeforeMain — Functions that you want the generated main to
call ahead of other functions
cell array of function names

 polyspace.Project.Configuration Properties

4-117

This property affects Code Prover analysis only.

Functions that you want the generated main to call ahead of other functions, specified as
a cell array of function names.

For more information, see Initialization functions (-functions-called-
before-main).
Example: opts.CodeProverVerification.FunctionsCalledBeforeMain =
{'func1','func2'}

Main — Use a Microsoft Visual C++ extensions of main
_tmain (default) | wmain | _tWinMain | wWinMain | WinMain | DllMain

This property applies to a Code Prover analysis only .

Use a Microsoft Visual C++ extension of main, specified as one of the predefined main
extensions.

For more information, see Main entry point (-main).
Example: opts.CodeProverVerification.Main = 'wmain'

MainGenerator — Generate a main function if it is not present in source files
true (default) | false

This property applies to a Code Prover analysis only .

Generate a main function if it is not present in source files, specified as true or false.

For more information, see Verify module or library (-main-generator).
Example: opts.CodeProverVerification.MainGenerator = false

MainGeneratorCalls — Functions that you want the generated main to call after
the initialization functions
unused (default) | none | all | custom=function1[,function2[,...]]

This property applies to a Code Prover analysis only .

Functions that you want the generated main to call after the initialization functions,
specified as unused, all, none, or as a character array beginning with custom=
followed by a list of comma-separated function names.

4 Functions, Properties, Classes, and Apps

4-118

For more information, see Functions to call (-main-generator-calls).
Example: opts.CodeProverVerification.MainGeneratorCalls = 'all'

MainGeneratorWriteVariables — Global variables that you want the generated
main to initialize
uninit (C++ default) | public (C default) | none | all |
custom=variable1[,variable2[,...]]

This property applies to a Code Prover analysis only .

Global variables that you want the generated main to initialize, specified as one of the
predefined sets, or as a character array beginning with custom= followed by a list of
comma-separated variable names.

For more information, see Variables to initialize (-main-generator-writes-
variables).
Example: opts.CodeProverVerification.MainGeneratorWriteVariables =
'all'

NoConstructorsInitCheck — Do not check if class constructor initializes class
members
false (default) | true

This property applies to a Code Prover analysis only .

Do not check if class constructor initializes class members, specified as true or false.

For more information, see Skip member initialization check (-no-
constructors-init-check).
Example: opts.CodeProverVerification.NoConstructorsInitCheck = true

UnitByUnit — Verify each source file independently of other source files
false (default) | true

This property affects Code Prover analysis only.

Verify each source file independently of other source files, specified as true or false.

For more information, see Verify files independently (-unit-by-unit).
Example: opts.CodeProverVerification.UnitByUnit = true

 polyspace.Project.Configuration Properties

4-119

UnitByUnitCommonSource — Files that you want to include with each source file
during a file-by-file verification
cell array of file paths

This property affects Code Prover analysis only.

Files that you want to include with each source file during a file-by-file verification,
specified as a cell array of file paths.

For more information, see Common source files (-unit-by-unit-common-
source).
Example: opts.CodeProverVerification.UnitByUnitCommonSource = {'/inc/
file1.h','/inc/file2.h'}

CodingRulesCodeMetrics

AcAgcSubset — Subset of MISRA AC AGC rules to check
OBL-rules (default) | OBL-REC-rules | single-unit-rules | system-decidable-
rules | all-rules | SQO-subset1 | SQO-subset2 |
polyspace.CodingRulesOptions object | file

Subset of MISRA AC AGC rules to check, specified by:

• Character vector of one of the subset names. For more information about the different
subsets, see Check MISRA AC AGC (-misra-ac-agc).

• A MISRA AC AGC custom coding rules object. To create a custom coding rules object,
see polyspace.CodingRulesOptions.

• Full path to a file containing your MISRA AC AGC subset. You can create this file
manually or in the Polyspace interface. See “Check for Coding Rule Violations”.

To check MISRA AC AGC rules, also set EnableAcAgc to true.
Example: opts.CodingRulesCodeMetrics.AcAgcSubset = 'all-rules'
Data Types: char

AllowedPragmas — Pragma directives for which MISRA C:2004 rule 3.4 or MISRA
C++ 16-6-1 must not be applied
cell array of character vectors

4 Functions, Properties, Classes, and Apps

4-120

Pragma directives for which MISRA C:2004 rule 3.4 or MISRA C++ 16-6-1 must not be
applied, specified as a cell array of character vectors. This property affects only MISRA C:
2004 or MISRA AC AGC rule checking.

For more information, see Allowed pragmas (-allowed-pragmas).
Example: opts.CodingRulesCodeMetrics.AllowedPragmas =
{'pragma_01','pragma_02'}

Data Types: cell

BooleanTypes — Data types the coding rule checker must treat as effectively
Boolean
cell array of character vectors

Data types that the coding rule checker must treat as effectively Boolean, specified as a
cell array of character vectors.

For more information, see Effective boolean types (-boolean-types).
Example: opts.CodingRulesCodeMetrics.BooleanTypes =
{'boolean1_t','boolean2_t'}

Data Types: cell

CodeMetrics — Activate code metric calculations
false (default) | true

Activate code metric calculations, specified as true or false. If this property is turned off,
Polyspace does not calculate code metrics even if you upload your results to Polyspace
Metrics.

For more information about the code metrics, see Calculate code metrics (-code-
metrics).
Example: opts.CodingRulesCodeMetrics.CodeMetrics = true

CustomRulesSubset — Custom naming conventions to check against
custom coding rules file

Custom naming conventions to check against, specified as a custom coding rules file. You
can create the custom coding rules file manually or in the Polyspace interface.

For more information, see Check custom rules (-custom-rules).

 polyspace.Project.Configuration Properties

4-121

Example: opts.CodingRulesCodeMetrics.CustomRulesSubset = 'C:
\ps_settings\coding_rules\custom_rules.txt'

Data Types: char

EnableAcAgc — Check MISRA AC AGC rules
false (default) | true

Check MISRA AC AGC rules, specified as true or false. To customize which rules are
checked, use AcAgcSubset.

For more information about the MISRA AC AGC checker, see Check MISRA AC AGC (-
misra-ac-agc).
Example: opts.CodingRulesCodeMetrics.EnableAcAgc = true;

EnableCustomRules — Check custom coding rules
false (default) | true

Check custom coding rules, specified as true or false. Use with CustomRulesSubset.

For more information, see Check custom rules (-custom-rules).
Example: opts.CodingRulesCodeMetrics.EnableCustomRules = true;

EnableJsf — Check JSF C++ rules
false (default) | true

Check JSF C++ rules, specified as true or false. To customize which rules are checked,
use JsfSubset.

For more information, see Check JSF C++ rules (-jsf-coding-rules).
Example: opts.CodingRulesCodeMetrics.EnableJsf = true;

EnableMisraC — Check MISRA C:2004 rules
false (default) | true

Check MISRA C:2004 rules, specified as true or false. To customize which rules are
checked, use MisraCSubset.

For more information, see Check MISRA C:2004 (-misra2).
Example: opts.CodingRulesCodeMetrics.EnableMisraC = true;

4 Functions, Properties, Classes, and Apps

4-122

EnableMisraC3 — Check MISRA C:2012 rules
false (default) | true

Check MISRA C:2012 rules, specified as true or false. To customize which rules are
checked, use MisraC3Subset.

For more information about the MISRA C:2012 checker, see Check MISRA C:2012 (-
misra3).
Example: opts.CodingRulesCodeMetrics.EnableMisraC3 = true;

EnableMisraCpp — Check MISRA C++:2008 rules
false (default) | true

Check MISRA C++:2008 rules, specified as true or false. To customize which rules are
checked, use MisraCppSubset.

For more information about the MISRA C++:2008 checker, see Check MISRA C++
rules (-misra-cpp).
Example: opts.CodingRulesCodeMetrics.EnableMisraCpp = true;

JsfSubset — Subset of JSF C++ rules to check
shall-rules (default) | shall-will-rules | all-rules |
polyspace.CodingRulesOptions object | file

Subset of JSF C++ rules to check, specified by:

• Character vector of one of the subset names. For more information about the different
subsets, see Check JSF C++ rules (-jsf-coding-rules).

• A JSF C++ custom coding rules object. To create a custom coding rules object, see
polyspace.CodingRulesOptions.

• Full path to a file containing your JSF C++ subset. You can create this file manually or
from the Polyspace interface. See “Check for Coding Rule Violations”.

To check JSF C++ rules, set EnableJsf to true.
Example: opts.CodingRulesCodeMetrics.JsfSubset = 'all-rules'
Data Types: char

Misra3AgcMode — Use the MISRA C:2012 categories for automatically generated
code
false (default) | true

 polyspace.Project.Configuration Properties

4-123

Use the MISRA C:2012 categories for automatically generated code, specified as true or
false.

For more information, see Use generated code requirements (-misra3-agc-
mode).
Example: opts.CodingRulesCodeMetrics.Misra3AgcMode = true;

MisraC3Subset — Subset of MISRA C:2012 rules to check
mandatory-required (default) | mandatory | single-unit-rules | system-
decidable-rules | CERT-rules | CERT-all | ISO-17961 | all | SQO-subset1 | SQO-
subset2 | polyspace.CodingRulesOptions object | file

Subset of MISRA C:2012 rules to check, specified by:

• Character vector of one of the subset names. For more information about the different
subsets, see Check MISRA C:2012 (-misra3).

• A MISRA C:2012 custom coding rules object. To create a custom coding rules object,
see polyspace.CodingRulesOptions.

• Full path to a file containing your MISRA C:2012 subset. You can create the custom
coding rules file manually or in the Polyspace interface. See “Check for Coding Rule
Violations”.

To check MISRA C:2012 rules, also set EnableMisraC3 to true.
Example: opts.CodingRulesCodeMetrics.MisraC3Subset = 'all'
Data Types: char

MisraCSubset — Subset of MISRA C:2004 rules to check
required-rules (default) | all-rules | SQO-subset1 | SQO-subset2 | single-
unit-rules | system-decidable-rules | polyspace.CodingRulesOptions object
| file

Subset of MISRA C:2004 rules to check, specified by:

• Character vector of one of the subset names. For more information about the different
subsets, see Check MISRA C:2004 (-misra2).

• A MISRA C:2004 custom coding rules object. To create a custom coding rules object,
see polyspace.CodingRulesOptions.

4 Functions, Properties, Classes, and Apps

4-124

• Full path to a file containing your MISRA C:2004 subset. You can create the custom
coding rules file manually or in the Polyspace interface. See “Check for Coding Rule
Violations”.

To check MISRA C:2004 rules, also set EnableMisraC to true.
Example: opts.CodingRulesCodeMetrics.MisraCSubset = 'all-rules'
Data Types: char

MisraCppSubset — Subset of MISRA C++ rules
required-rules (default) | all-rules | CERT-rules | CERT-all | SQO-subset1 |
SQO-subset2 | polyspace.CodingRulesOptions object | file

Subset of MISRA C++:2008 rules to check, specified by:

• Character vector of one of the subset names. For more information about the different
subsets, see Check MISRA C++ rules (-misra-cpp).

• A MISRA C++ coding rules object. To create a custom coding rules object, see
polyspace.CodingRulesOptions.

• Full path to a file containing your MISRA C++ subset. You can create this file
manually or from the Polyspace interface. See “Check for Coding Rule Violations”.

To check MISRA C++ rules, set EnableMisraCpp to true.
Example: opts.CodingRulesCodeMetrics.MisraCppSubset = 'all-rules'
Data Types: char

EnvironmentSettings

Dos — Consider that file paths are in MS-DOS style
true (default) | false

Consider that file paths are in MS-DOS style, specified as true or false.

For more information, see Code from DOS or Windows file system (-dos).
Example: opts.EnvironmentSettings.Dos = true;

IncludeFolders — Include folders needed for compilation
cell array of include folder paths

Include folders needed for compilation, specified as a cell array of the include folder
paths.

 polyspace.Project.Configuration Properties

4-125

To specify all subfolders of a folder, use folder path followed by **, for instance, 'C:
\includes**'. The notation follows the syntax of the dir function. See also “Specify
Multiple Source Files”.

For more information, see -I.
Example: opts.EnvironmentSettings.IncludeFolders = {'/includes','/
com1/inc'};

Example: opts.EnvironmentSettings.IncludeFolders = {'C:
\project1\common\includes'};

Data Types: cell

Includes — Files to be #include-ed by each C file
cell array of files

Files to be #include-ed by each C source file in the analysis, specified by a cell array of
files.

For more information, see Include (-include).
Example: opts.EnvironmentSettings.Includes = {'/inc/inc_file.h','/inc/
inc_math.h'}

NoExternC — Ignore linking errors inside extern blocks
false (default) | true

Ignore linking errors inside extern blocks, specified as true or false.

For more information, see Ignore link errors (-no-extern-c).
Example: opts.EnvironmentSettings.NoExternC = false;

PostPreProcessingCommand — Command or script to run on source files after
preprocessing
character vector

Command or script to run on source files after preprocessing, specified as a character
vector of the command to run.

For more information, see Command/script to apply to preprocessed files (-
post-preprocessing-command).

4 Functions, Properties, Classes, and Apps

4-126

Example: Linux — opts.EnvironmentSettings.PostPreProcessingCommand =
[pwd,'/replace_keyword.pl']

Example: Windows — opts.EnvironmentSettings.PostPreProcessingCommand =
'"C:\Program Files\MATLAB\R2015b\sys\perl\win32\bin\perl.exe" "C:
\My_Scripts\replace_keyword.pl"'

StopWithCompileError — Stop analysis if a file does not compile
false (default) | true

Stop analysis if a file does not compile, specified as true or false.

For more information, see Stop analysis if a file does not compile (-stop-
if-compile-error).
Example: opts.EnvironmentSettings.StopWithCompileError = true;

InputsStubbing

DataRangeSpecifications — Constrain global variables, function inputs, and
return values of stubbed functions
file path

Constrain global variables, function inputs, and return values of stubbed functions
specified by the path to an XML constraint file. For more information about the constraint
file, see “Specify External Constraints”.

For more information about this option, see Constraint setup (-data-range-
specifications).
Example: opts.InputsStubbing.DataRangeSpecifications = 'C:\project
\constraint_file.xml'

DoNotGenerateResultsFor — Files on which you do not want analysis results
include-folders (default) | all-headers | custom=file1[,folder1[,...]]

Files on which you do not want analysis results, specified by include-folders, all-
headers, or a character array beginning with custom= and containing a list of comma-
separated file or folder names.

Use this option with InputsStubbing.GenerateResultsFor. For more information,
see Do not generate results for (-do-not-generate-results-for).
Example: opts.InputsStubbing.DoNotGenerateResultsFor = 'custom=C:
\project\file1.c,C:\project\file2.c'

 polyspace.Project.Configuration Properties

4-127

GenerateResultsFor — Files on which you want analysis results
source-headers (default) | all-headers | custom=file1[,folder1[,...]]

Files on which you want analysis results, specified by source-headers, all-headers,
or a character array beginning with custom= and containing a comma-separated file or
folder names.

Use this option with InputsStubbing.DoNotGenerateResultsFor. For more
information, see Generate results for sources and (-generate-results-
for).
Example: opts.InputsStubbing.GenerateResultsFor = 'custom=C:\project
\includes_common_1,C:\project\includes_common_2'

FunctionsToStub — Functions to stub during analysis
cell array of function names

This property affects Code Prover analysis only.

Functions to stub during analysis, specified as a cell array of function names.

For more information, see .
Example: opts.InputsStubbing.FunctionsToStub = {'func1', 'func2'}

NoDefInitGlob — Consider global variables as uninitialized
false (default) | true

This property affects Code Prover analysis only.

Consider global variables as uninitialized, specified as true or false.

For more information, see .
Example: opts.InputsStubbing.NoDefInitGlob = true

NoStlStubs — Do not use Polyspace implementations of functions in the
Standard Template Library
false (default) | true

This property applies only to a Code Prover analysis of C++ code.

Do not use Polyspace implementations of functions in the Standard Template Library,
specified as true or false.

4 Functions, Properties, Classes, and Apps

4-128

For more information, see .
Example: opts.InputsStubbing.NoStlStubs = true

StubECoderLookupTables — Specify that the analysis must stub functions in the
generated code that use lookup tables
true (default) | false

This property applies only to a Code Prover analysis of code generated from models.

Specify that the analysis must stub functions in the generated code that use lookup
tables. By replacing the functions with stubs, the analysis assumes more precise return
values for the functions.

For more information, see Generate stubs for Embedded Coder lookup tables
(-stub-embedded-coder-lookup-table-functions).
Example: opts.InputsStubbing.StubECoderLookupTables = true

Macros

DefinedMacros — Macros to be replaced
cell array of macros

In preprocessed code, macros are replaced by the definition, specified in a cell array of
macros and definitions. Specify the macro as Macro=Value. If you want Polyspace to
ignore the macro, leave the Value blank. A macro with no equal sign replaces all
instances of that macro by 1.

For more information, see Preprocessor definitions (-D).
Example: opts.Macros.DefinedMacros = {'uint32=int','name3=','var'}

UndefinedMacros — Macros to undefine
cell array of macros

In preprocessed code, macros are undefined, specified by a cell array of macros to
undefine.

For more information, see Disabled preprocessor definitions (-U).
Example: opts.Macros.DefinedMacros = {'name1','name2'}

 polyspace.Project.Configuration Properties

4-129

MergedComputingSettings

AddToResultsRepositoryBugFinder — Upload Bug Finder results to Polyspace
Metrics web dashboard
false (default) | true

This property affects Bug Finder analysis only.

Upload Bug Finder analysis results to Polyspace Metrics web dashboard, specified as true
or false. To use this option, in your Polyspace preferences, you must specify a metrics
server.

For more information, see Upload results to Polyspace Metrics (-add-to-
results-repository).
Example: opts.MergedComputingSettings.AddToResultsRepositoryBugFinder
= true;

AddToResultsRepositoryCodeProver — Upload Code Prover results to
Polyspace Metrics web dashboard
false (default) | true

This property affects Code Prover analysis only.

Upload Code Prover analysis results to Polyspace Metrics web dashboard, specified as
true or false. To use this option, in your Polyspace preferences, you must specify a metrics
server.

For more information, see Upload results to Polyspace Metrics (-add-to-
results-repository).
Example: opts.MergedComputingSettings.AddToResultsRepositoryCodeProver
= true;

BatchBugFinder — Send Bug Finder analysis to remote server
false (default) | true

This property affects Bug Finder analysis only.

Send Bug Finder analysis to remote server, specified as true or false. To use this option, in
your Polyspace preferences, you must specify a metrics server.

For more information, see Run Bug Finder or Code Prover analysis on a
remote cluster (-batch).

4 Functions, Properties, Classes, and Apps

4-130

Example: opts.MergedComputingSettings.BatchBugFinder = true;

BatchCodeProver — Send Code Prover analysis to remote server
false (default) | true

This property affects Code Prover analysis only.

Send Code Prover analysis to remote server, specified as true or false. To use this option,
in your Polyspace preferences, you must specify a metrics server.

For more information, see Run Bug Finder or Code Prover analysis on a
remote cluster (-batch).
Example: opts.MergedComputingSettings.BatchCodeProver = true;

FastAnalysis — Run Bug Finder analysis using faster local mode
false (default) | true

This property affects Bug Finder analysis only.

Use fast analysis mode for Bug Finder analysis, specified as true or false.

For more information, see Use fast analysis mode for Bug Finder (-fast-
analysis).
Example: opts.MergedComputingSettings.FastAnalysis = true;

MergedReporting

EnableReportGeneration — Generate a report after the analysis
false (default) | true

After the analysis, generate a report, specified as true or false.

For more information, see Generate report.
Example: opts.MergedReporting.EnableReportGeneration = true

ReportOutputFormat — Output format of generated report
Word (default) | HTML | PDF

Output format of generated report, specified as one of the report formats. To activate this
option, specify Reporting.EnableReportGeneration.

 polyspace.Project.Configuration Properties

4-131

For more information about the different values, see Output format (-report-
output-format).
Example: opts.MergedReporting.ReportOutputFormat = 'PDF'

BugFinderReportTemplate — Template for generating Bug Finder analysis
report
BugFinderSummary (default) | BugFinder | SecurityCERT | SecurityCWE |
SecurityISO_17961 | CodeMetrics | CodingRules

This property affects a Bug Finder analysis only.

Template for generating analysis report, specified as one of the report formats. To
activate this option, specify Reporting.EnableReportGeneration.

For more information about the different values, see Bug Finder and Code Prover
report (-report-template).
Example: opts.MergedReporting.BugFinderReportTemplate = 'CodeMetrics'

CodeProverReportTemplate — Template for generating Code Prover analysis
report
Developer (default) | CallHierarchy | CodeMetrics | CodingRules |
DeveloperReview | Developer_withGreenChecks | Quality | VariableAccess

This property affects a Code Prover analysis only.

Template for generating analysis report, specified as one of the predefined report
formats. To activate this option, specify Reporting.EnableReportGeneration.

For more information about the different values, see Bug Finder and Code Prover
report (-report-template).
Example: opts.MergedReporting.CodeProverReportTemplate = 'CodeMetrics'

Multitasking

ArxmlMultitasking — Specify path of ARXML files to parse for multitasking
configuration
cell array of file paths

Specify the path to the ARXML files the software parses to set up your multitasking
configuration.

4 Functions, Properties, Classes, and Apps

4-132

To activate this option, specify Multitasking.EnableExternalMultitasking and set
Multitasking.ExternalMultitaskingType to autosar.

For more information, see ARXML files selection (-autosar-multitasking)
Example: opts.Multitasking.ArxmlMultitasking={'C:\Polyspace_Workspace
\AUTOSAR\myFile.arxml'}

CriticalSectionBegin — Functions that begin critical sections
cell array of critical section function names

Functions that begin critical sections specified as a cell array of critical section function
names. To activate this option, specify Multitasking.EnableMultitasking and
Multitasking.CriticalSectionEnd.

For more information, see Critical section details (-critical-section-
begin -critical-section-end).
Example: opts.Multitasking.CriticalSectionBegin =
{'function1:cs1','function2:cs2'}

CriticalSectionEnd — Functions that end critical sections
cell array of critical section function names

Functions that end critical sections specified as a cell array of critical section function
names. To activate this option, specify Multitasking.EnableMultitasking and
Multitasking.CriticalSectionBegin.

For more information, see Critical section details (-critical-section-
begin -critical-section-end).
Example: opts.Multitasking.CriticalSectionEnd =
{'function1:cs1','function2:cs2'}

CyclicTasks — Specify functions that represent cyclic tasks
cell array of function names

Specify functions that represent cyclic tasks.

To activate this option, also specify Multitasking.EnableMultitasking.

For more information, see Cyclic tasks (-cyclic-tasks).
Example: opts.Multitasking.CyclicTasks = {'function1','function2'}

 polyspace.Project.Configuration Properties

4-133

EnableConcurrencyDetection — Enable automatic detection of certain families
of threading functions
false (default) | true

This property affects Code Prover analysis only.

Enable automatic detection of certain families of threading functions, specified as true or
false.

For more information, see Enable automatic concurrency detection for Code
Prover (-enable-concurrency-detection).
Example: opts.Multitasking.EnableConcurrencyDetection = true

EnableExternalMultitasking — Enable automatic multitasking configuration
from external file definitions
false (default) | true

Enable multitasking configuration of your projects from external files you provide.
Configure multitasking from ARXML files for an AUTOSAR project, or from OIL files for
an OSEK project.

Activate this option to enable Multitasking.ArxmlMultitasking or
Multitasking.OsekMultitasking.

For more information, see OIL files selection (-osek-multitasking) and
ARXML files selection (-autosar-multitasking).
Example: opts.Multitasking.EnableExternalMultitasking = 1

EnableMultitasking — Configure multitasking manually
false (default) | true

Configure multitasking manually by specifying true. This property activates the other
manual, multitasking properties.

For more information, see Configure multitasking manually.
Example: opts.Multitasking.EnableMultitasking = 1

EntryPoints — Functions that serve as entry-points to your multitasking
application
cell array of entry-point function names

4 Functions, Properties, Classes, and Apps

4-134

Functions that serve as entry-points to your multitasking application specified as a cell
array of entry-point function names. To activate this option, also specify
Multitasking.EnableMultitasking.

For more information, see Tasks (-entry-points).
Example: opts.Multitasking.EntryPoints = {'function1','function2'}

ExternalMultitaskingType — Specify type of file to parse for multitasking
configuration
osek (default) | autosar

Specify the type of file the software parses to set up your multitasking configuration:

• For osek type, the analysis looks for OIL files in the file or folder paths that you
specify.

• For autosar type, the analysis looks for ARXML files in the file paths that you specify.

To activate this option, specify Multitasking.EnableExternalMultitasking.

For more information, see OIL files selection (-osek-multitasking) and
ARXML files selection (-autosar-multitasking).
Example: opts.Multitasking.ExternalMultitaskingType = 'autosar'

Interrupts — Specify functions that represent nonpreemptable interrupts
cell array of function names

Specify functions that represent nonpreemptable interrupts.

To activate this option, specify Multitasking.EnableMultitasking.

For more information, see Interrupts (-interrupts).
Example: opts.Multitasking.Interrupts = {'function1','function2'}

InterruptsDisableAll — Specify routine that disable interrupts
cell array with one function name

This property affects Bug Finder analysis only.

Specify function that disables all interrupts.

To activate this option, specify Multitasking.EnableMultitasking.

 polyspace.Project.Configuration Properties

4-135

For more information, see Disabling all interrupts (-routine-disable-
interrupts -routine-enable-interrupts).
Example: opts.Multitasking.InterruptsDisableAll = {'function'}

InterruptsEnableAll — Specify routine that reenable interrupts
cell array with one function name

This property affects Bug Finder analysis only.

Specify function that reenables all interrupts.

To activate this option, specify Multitasking.EnableMultitasking.

For more information, see Disabling all interrupts (-routine-disable-
interrupts -routine-enable-interrupts).
Example: opts.Multitasking.InterruptsEnableAll = {'function'}

OsekMultitasking — Specify path of OIL files to parse for multitasking
configuration
auto (default) | custom=file1[,folder1[,...]]

Specify the path to the OIL files the software parses to set up your multitasking
configuration:

• In auto mode, the analysis uses OIL files in your project source and include folders,
but not their subfolders.

• In custom mode, the analysis uses the OIL files at the specified path, and the path
subfolders.

To activate this option, specify Multitasking.EnableExternalMultitasking and set
Multitasking.ExternalMultitaskingType to osek.

For more information, see OIL files selection (-osek-multitasking)
Example: opts.Multitasking.OsekMultitasking = 'custom=file_path,
dir_path'

TemporalExclusion — Entry-point functions that cannot execute concurrently
cell array of entry-point function names

Entry-point functions that cannot execute concurrently specified as a cell array of entry-
point function names. Each set of exclusive tasks is one cell array entry with functions

4 Functions, Properties, Classes, and Apps

4-136

separated by spaces. To activate this option, specify
Multitasking.EnableMultitasking.

For more information, see Temporally exclusive tasks (-temporal-
exclusions-file).
Example: opts.Multitasking.TemporalExclusion = {'function1 function2',
'function3 function4 function5'} where function1 and function2 are temporally
exclusive, and function3, function4, and function 5 are temporally exclusive.

Precision (Affects Code Prover Only)

ContextSensitivity — Store call context information to identify function call
that caused errors
none (default) | auto | custom=function1[,function2[,...]]

This property affects Code Prover analysis only.

Store call context information to identify a function call that caused errors, specified as
none, auto, or as a character array beginning with custom= followed by a list of comma-
separated function names.

For more information, see Sensitivity context (-context-sensitivity).
Example: opts.Precision.ContextSensitivity = 'auto'
Example: opts.Precision.ContextSensitivity = 'custom=func1'

ModulesPrecision — Source files you want to verify at higher precision
cell array of file names and precision levels

This property affects Code Prover analysis only.

Source files that you want to verify at higher precision, specified as a cell array of file
names without the extension and precision levels using this syntax: filename:Olevel

For more information, see Specific precision (-modules-precision).
Example: opts.Precision.ModulesPrecision = {'file1:O0', 'file2:O3'}

OLevel — Precision level for the verification
2 (default) | 0 | 1 | 3

This property affects Code Prover analysis only.

 polyspace.Project.Configuration Properties

4-137

Precision level for the verification, specified as 0, 1, 2, or 3.

For more information, see Precision level (-O).
Example: opts.Precision.OLevel = 3

PathSensitivityDelta — Avoid certain verification approximations for code
with fewer lines
positive integer

This property affects Code Prover analysis only.

Avoid certain verification approximations for code with fewer lines, specified as a positive
integer representing how sensitive the analysis is. Higher values can increase verification
time exponentially.

For more information, see Improve precision of interprocedural analysis (-
path-sensitivity-delta).
Example: opts.Precision.PathSensitivityDelta = 2

Timeout — Time limit on your verification
character vector

This property affects Code Prover analysis only.

Time limit on your verification, specified as a character vector of time in hours.

For more information, see Verification time limit (-timeout).
Example: opts.Precision.Timeout = '5.75'

To — Number of times the verification process runs
Software Safety Analysis level 2 (default) | Software Safety Analysis
level 0 | Software Safety Analysis level 1 | Software Safety Analysis
level 3 | Software Safety Analysis level 4 | Source Compliance Checking
| other

This property affects Code Prover analysis only.

Number of times the verification process runs, specified as one of the preset analysis
levels.

For more information, see Verification level (-to).

4 Functions, Properties, Classes, and Apps

4-138

Example: opts.Precision.To = 'Software Safety Analysis level 3'

Scaling (Affects Code Prover Only)

Inline — Functions on which separate results must be generated for each
function call
cell array of function names

This property affects Code Prover analysis only.

Functions on which separate results must be generated for each function call, specified as
a cell array of function names.

For more information, see Inline (-inline).
Example: opts.Scaling.Inline = {'func1','func2'}

KLimiting — Limit depth of analysis for nested structures
positive integer

This property affects Code Prover analysis only.

Limit depth of analysis for nested structures, specified as a positive integer indicating
how many levels into a nested structure to verify.

For more information, see Depth of verification inside structures (-k-
limiting).
Example: opts.Scaling.KLimiting = 3

TargetCompiler

Compiler — Compiler that builds your source code
generic (default) | gnu3.4 | gnu4.6 | gnu4.7 | gnu4.8 | gnu4.9 | gnu5.x | gnu6.x |
clang3.x | visual9.0 | visual10 | visual11.0 | visual12.0 | visual14.0 | keil |
iar | codewarrior | diab | greenhills | iar-ew | renesas | tasking | ti

Compiler that builds your source code.

For more information, see Compiler (-compiler).
Example: opts.TargetCompiler.Compiler = 'Visual11.0'

CppVersion — Specify C++11 standard version followed in code
defined-by-compiler (default) | cpp03 | cpp11 | cpp14

 polyspace.Project.Configuration Properties

4-139

Specify C++ standard version followed in code, specified as a character vector.

For more information, see C++ standard version (-cpp-version).
Example: opts.TargetCompiler.CppVersion = 'cpp11';

CVersion — Specify C standard version followed in code
defined-by-compiler (default) | c90 | c99 | c11

Specify C standard version followed in code, specified as a character vector.

For more information, see C standard version (-c-version).
Example: opts.TargetCompiler.CVersion = 'c90';

DivRoundDown — Round down quotients from division or modulus of negative
numbers
false (default) | true

Round down quotients from division or modulus of negative numbers, specified as true or
false.

For more information, see Division round down (-div-round-down).
Example: opts.TargetCompiler.DivRoundDown = true

EnumTypeDefinition — Base type representation of enum
defined-by-compiler (default) | auto-signed-first | auto-unsigned-first

Base type representation of enum, specified by an allowed base-type set. For more
information about the different values, see Enum type definition (-enum-type-
definition).
Example: opts.TargetCompiler.EnumTypeDefinition = 'auto-unsigned-
first'

IgnorePragmaPack — Ignore #pragma pack directives
false (default) | true

Ignore #pragma pack directives, specified as true or false.

For more information, see Ignore pragma pack directives (-ignore-pragma-
pack).
Example: opts.TargetCompiler.IgnorePragmaPack = true

4 Functions, Properties, Classes, and Apps

4-140

Language — Language of analysis
C-CPP (default) | C | CPP

This property is read-only.

Language of the analysis, specified during the object construction. This value changes
which properties appear.

For more information, see Source code language (-lang).

LogicalSignedRightShift — Treatment of signed bit on signed variables
Arithmetical (default) | Logical

Treatment of signed bit on signed variables, specified as Arithmetical or Logical. For
more information, see Signed right shift (-logical-signed-right-shift).
Example: opts.TargetCompiler.LogicalSignedRightShift = 'Logical'

NoUliterals — Do not use predefined typedefs for char16_t or char32_t
false (default) | true

Do not use predefined typedefs for char16_t or char32_t, specified as true or false. For
more information, see Block char16/32_t types (-no-uliterals).
Example: opts.TargetCompiler.NoUliterals = true

PackAlignmentValue — Default structure packing alignment
defined-by-compiler (default) | 1 | 2 | 4 | 8 | 16

Default structure packing alignment, specified as defined-by-compiler, 1,2, 4, 8, or
16. This property is available only for Visual C++ code.

For more information, see Pack alignment value (-pack-alignment-value).
Example: opts.TargetCompiler.PackAlignmentValue = '4'

SfrTypes — sfr types
cell array of sfr keywords

sfr types, specified as a cell array of sfr keywords using the syntax
sfr_name=size_in_bits. For more information, see Sfr type support (-sfr-
types).

This option only applies when you set TargetCompiler.Compiler to keil or iar.

 polyspace.Project.Configuration Properties

4-141

Example: opts.TargetCompiler.SfrTypes = {'sfr32=32'}

SizeTTypeIs — Underlying type of size_t
defined-by-compiler (default) | unsigned-int | unsigned-long | unsigned-
long-long

Underlying type of size_t, specified as defined-by-compiler, unsigned-int,
unsigned-long, or unsigned-long-long. See Management of size_t (-size-t-
type-is).
Example: opts.TargetCompiler.SizeTTypeIs = 'unsigned-long'

Target — Target processor
i386 (default) | arm | arm64 | avr | c-167 | c166 | c18 | c28x | c6000 | coldfire |
hc08 | hc12 | m68k | mcore | mips | mpc5xx | msp430 | necv850 | powerpc |
powerpc64 | rh850 | rl78 | rx | s12z | sharc21x61 | sparc | superh | tms320c3x |
tricore | x86_64 | generic target object

Set size of data types and endianness of processor, specified as one of the predefined
target processors or a generic target object.

For more information about the predefined processors, see Target processor type
(-target).

For more information about creating a generic target, see
polyspace.GenericTargetOptions.
Example: opts.TargetCompiler.Target = 'hc12'

WcharTTypeIs — Underlying type of wchar_t
defined-by-compiler (default) | signed-short | unsigned-short | signed-int |
unsigned-int | signed-long | unsigned-long

Underlying type of wchar_t, specified as defined-by-compiler, signed-short,
unsigned-short, signed-int, unsigned-int, signed-long, or unsigned-long.
See Management of wchar_t (-wchar-t-type-is).
Example: opts.TargetCompiler.WcharTTypeIs = 'unsigned-int'

VerificationAssumption (Affects Code Prover Only)

ConsiderVolatileQualifierOnFields — Assume that volatile qualified
structure fields can have all possible values at any point in code
false (default) | true

4 Functions, Properties, Classes, and Apps

4-142

This property affects Code Prover analysis only.

Assume that volatile qualified structure fields can have all possible values at any point in
code.

For more information, see Consider volatile qualifier on fields (-
consider-volatile-qualifier-on-fields).
Example: opts.VerificationAssumption.ConsiderVolatileQualifierOnFields
= true

ConstraintPointersMayBeNull — Specify that environment pointers can be
NULL unless constrained otherwise
false (default) | true

This property affects Code Prover analysis only.

Specify that environment pointers can be NULL unless constrained otherwise.

For more information, see Consider environment pointers as unsafe (-
stubbed-pointers-are-unsafe).
Example: opts.VerificationAssumption.ConstraintPointersMayBeNull =
true

FloatRoundingMode — Rounding modes to consider when determining the
results of floating-point arithmetic
to-nearest (default) | all

This property affects Code Prover analysis only.

Rounding modes to consider when determining the results of floating-point arithmetic,
specified as to-nearest or all.

For more information, see Float rounding mode (-float-rounding-mode).
Example: opts.VerificationAssumption.FloatRoundingMode = 'all'

RespectTypesInFields — Do not cast nonpointer fields of a structure to
pointers
false (default) | true

This property affects Code Prover analysis only.

 polyspace.Project.Configuration Properties

4-143

Do not cast nonpointer fields of a structure to pointers, specified as true or false.

For more information, see Respect types in fields (-respect-types-in-
fields).
Example: opts.VerificationAssumption.RespectTypesInFields = true

RespectTypesInGlobals — Do not cast nonpointer global variables to pointers
false (default) | true

This property affects Code Prover analysis only.

Do not cast nonpointer global variables to pointers, specified as true or false.

For more information, see Respect types in global variables (-respect-
types-in-globals).
Example: opts.VerificationAssumption.RespectTypesInGlobals = true

Other Properties

Author — Project author
username of current user (default) | character vector

Name of project author, specified as a character vector.

For more information, see -author.
Example: opts.Author = 'JaneDoe'

ImportComments — Import comments and justifications from previous analysis
character vector

To import comments and justifications from a previous analysis, specify the path to the
results folder of the previous analysis.

For more information, see -import-comments
Example: opts.ImportComments =
fullfile(matlabroot,'polyspace','examples','cxx','Bug_Finder_Example
','Module_1','BF_Result')

Prog — Project name
PolyspaceProject (default) | character vector

4 Functions, Properties, Classes, and Apps

4-144

Project name, specified as a character vector.

For more information, see -prog.
Example: opts.Prog = 'myProject'

ResultsDir — Location to store results
folder path

Location to store results, specified as a folder path. By default, the results are stored in
the current folder.

For more information, see -results-dir.
Example: opts.ResultsDir = 'C:\project\myproject\results\'

Sources — Source files
cell array of files

Source files to analyze, specified as a cell array of files.

To specify all files in a folder, use folder path followed by *, for instance, 'C:\src*'. To
specify all files in a folder and its subfolders, use folder path followed by **, for instance,
'C:\src**'. The notation follows the syntax of the dir function. See also “Specify
Multiple Source Files”.

For more information, see -sources.
Example: opts.Sources = {'file1.c', 'file2.c', 'file3.c'}
Example: opts.Sources = {'project/src1/file1.c', 'project/src2/
file2.c', 'project/src3/file3.c'}

Version — Project version number
1.0 (default) | character array of a number

Version number of project, specified as a character array of a number. This option is
useful if you upload your results to Polyspace Metrics. If you increment version numbers
each time that you reanalyze your object, you can compare the results from two versions
in Polyspace Metrics.

For more information, see -v[ersion].
Example: opts.Version = '2.3'

 polyspace.Project.Configuration Properties

4-145

See Also

Topics
“Analysis Options”

Introduced in R2017a

4 Functions, Properties, Classes, and Apps

4-146

polyspace.ModelLinkOptions Properties
Customize Polyspace analysis of generated code with options object properties

Description
To customize your Polyspace analysis of generated code, modify the
polyspace.ModelLinkOptions object properties. Each property corresponds to an
analysis option on the Configuration pane in the Polyspace user interface.

The properties are grouped using the same categories as the Configuration pane. This
page only shows what values each property can take. For details about:

• The different options, see the analysis options reference pages.
• How to create and use the object, see polyspace.ModelLinkOptions.

The same properties are also available with the deprecated classes
polyspace.ModelLinkBugFinderOptions and
polyspace.ModelLinkCodeProverOptions.

Each property description below also highlights if the option affects only one of Bug
Finder or Code Prover.

Note Some options might not be available depending on the language setting of the
object. You can set the source code language (Language) to 'C', 'CPP' or 'C-CPP'
during object creation, but cannot change it later.

Properties
Advanced

Additional — Additional flags for analysis
character vector

Additional flags for analysis specified as a character vector.

For more information, see Other.

 polyspace.ModelLinkOptions Properties

4-147

Example: opts.Advanced.Additional = '-extra-flags -option -extra-flags
value'

PostAnalysisCommand — Command or script software should execute after
analysis finishes
character vector

Command or script software should execute after analysis finishes, specified as a
character vector.

For more information, see Command/script to apply after the end of the
code verification (-post-analysis-command).
Example: opts.Advanced.PostAnalysisCommand = '"C:\Program Files\perl
\win32\bin\perl.exe" "C:\My_Scripts\send_email"'

AutomaticOrangeTester — Run the Automatic Orange Tester
false (default) | true

This property affects Code Prover analysis only.

Run the Automatic Orange Tester after verification, specified as true or false.

For more information, see Automatic Orange Tester (-automatic-orange-
tester).
Example: opts.Advanced.AutomaticOrangeTester = true

AutomaticOrangeTesterLoopMaxIteration — Number of loop iterations after
which Automatic Orange Tester considers infinite loop
1000 (default) | positive integer

This property affects Code Prover analysis only.

Number of loop iterations after which Automatic Orange Tester considers the test an
infinite loop, specified as a positive integer, maximum of 1000.

For more information, see Maximum loop iterations (-automatic-orange-
tester-loop-max-iteration).
Example: opts.Advanced.AutomaticOrangeTesterLoopMaxIteration = 500

4 Functions, Properties, Classes, and Apps

4-148

AutomaticOrangeTesterTestsNumber — Number of tests that Automatic Orange
Tester must run
500 (default) | positive integer

This property affects Code Prover analysis only.

Number of tests that Automatic Orange Tester must run, specified as a positive integer,
maximum of 100,000.

For more information, see Number of automatic tests (-automatic-orange-
tester-tests-number).
Example: opts.Advanced.AutomaticOrangeTesterTestsNumber = 1000

AutomaticOrangeTesterTimeout — Time in seconds allowed for a single test in
Automatic Orange Tester
5 (default) | positive integer

This property affects Code Prover analysis only.

Time in seconds allowed for a single test in Automatic Orange Tester, specified as a
positive integer, maximum of 60.

For more information, see Maximum test time (-automatic-orange-tester-
timeout).
Example: opts.Advanced.AutomaticOrangeTesterTimeout = 10

BugFinderAnalysis (Affects Bug Finder Only)

CheckersList — List of custom checkers to activate
polyspace.DefectsOptions object | cell array of defect acronyms

This property affects Bug Finder analysis only.

List of custom checkers to activate specified by using the name of a
polyspace.DefectsOptions object or a cell array of defect acronyms. To use this
custom list in your analysis, set CheckersPreset to custom.

For more information, see polyspace.DefectsOptions.
Example: defects = polyspace.DefectsOptions;
opts.BugFinderAnalysis.CheckersList = defects

 polyspace.ModelLinkOptions Properties

4-149

Example: opts.BugFinderAnalysis.CheckersList =
{'INT_ZERO_DIV','FLOAT_ZERO_DIV'}

CheckersPreset — Subset of Bug Finder defects
default (default) | all | CERT-rules | CERT-all | ISO-17961 | CWE | custom

This property affects Bug Finder analysis only.

Preset checker list, specified as a character vector of one of the preset options: default,
all, or custom. To use custom, specify a BugFinderAnalysis.CheckersList.

For more information, see Find defects (-checkers).
Example: opts.BugFinderAnalysis.CheckersPreset = 'all'

EnableCheckers — Activate defect checking
true (default) | false

This property affects Bug Finder analysis only.

Activate defect checking, specified as true or false. Setting this property to false disables
all defects. If you want to disable defect checking but still get results, turn on coding
rules checking or code metric checking.

This property is equivalent to the Find defects check box in the Polyspace interface.
Example: opts.BugFinderAnalysis.EnableCheckers = false

ChecksAssumption (Affects Code Prover Only)

AllowNegativeOperandInShift — Allow left shift operations on a negative
number
true (default) | false

This property affects Code Prover analysis only.

Allow left shift operations on a negative number, specified as true or false.

For more information, see Allow negative operand for left shifts (-allow-
negative-operand-in-shift).
Example: opts.ChecksAssumption.AllowNegativeOperandInShift = true

AllowNonFiniteFloats — Incorporate infinities and/or NaNs
false (default) | true

4 Functions, Properties, Classes, and Apps

4-150

This property affects Code Prover analysis only.

Incorporate infinities and/or NaNs, specified as true or false.

For more information, see Consider non finite floats (-allow-non-finite-
floats).
Example: opts.ChecksAssumption.AllowNonFiniteFloats = true

AllowPtrArithOnStruct — Allow arithmetic on pointer to a structure field so
that it points to another field
false (default) | true

This property affects Code Prover analysis only.

Allow arithmetic on pointer to a structure field so that it points to another field, specified
as true or false.

For more information, see Enable pointer arithmetic across fields (-allow-
ptr-arith-on-struct).
Example: opts.ChecksAssumption.AllowPtrArithOnStruct = true

CheckInfinite — Detect floating-point operations that result in infinities
allow (default) | warn-first | forbid

This property affects Code Prover analysis only.

Detect floating-point operations that result in infinities.

To activate this option, specify ChecksAssumption.AllowNonFiniteFloats.

For more information, see Infinities (-check-infinite).
Example: opts.ChecksAssumption.CheckInfinite = 'forbid'

CheckNan — Detect floating-point operations that result in NaN-s
allow (default) | warn-first | forbid

This property affects Code Prover analysis only.

Detect floating-point operations that result in NaN-s.

To activate this option, specify ChecksAssumption.AllowNonFiniteFloats.

 polyspace.ModelLinkOptions Properties

4-151

For more information, see NaNs (-check-nan).
Example: opts.ChecksAssumption.CheckNan = 'forbid'

CheckSubnormal — Detect operations that result in subnormal floating point
values
allow (default) | warn-first | warn-all | forbid

This property affects Code Prover analysis only.

Detect operations that result in subnormal floating point values.

For more information, see Subnormal detection mode (-check-subnormal).
Example: opts.ChecksAssumption.CheckSubnormal = 'forbid'

DetectPointerEscape — Find cases where a function returns a pointer to one of
its local variables
false (default) | true

This property affects Code Prover analysis only.

Find cases where a function returns a pointer to one of its local variables, specified as
true or false.

For more information, see Detect stack pointer dereference outside scope
(-detect-pointer-escape).
Example: opts.ChecksAssumption.DetectPointerEscape = true

DisableInitializationChecks — Disable checks for noninitialized variables
and pointers
false (default) | true

This property affects Code Prover analysis only.

Disable checks for noninitialized variables and pointers, specified as true or false.

For more information, see Disable checks for non-initialization (-disable-
initialization-checks).
Example: opts.ChecksAssumption.DisableInitializationChecks = true

4 Functions, Properties, Classes, and Apps

4-152

PermissiveFunctionPointer — Allow type mismatch between function pointers
and the functions they point to
false (default) | true

This property affects Code Prover analysis only.

Allow type mismatch between function pointers and the functions they point to, specified
as true or false.

For more information, see Permissive function pointer calls (-permissive-
function-pointer).
Example: opts.ChecksAssumption.PermissiveFunctionPointer = true

SignedIntegerOverflows — Behavior of signed integer overflows
warn-with-wrap-around (default) | forbid | allow

This property affects Code Prover analysis only.

Enable the check for signed integer overflows and the assumptions to make following an
overflow specified as forbid, allow, or warn-with-wrap-around.

For more information, see Overflow mode for signed integer (-signed-
integer-overflows).
Example: opts.ChecksAssumption.SignedIntegerOverflows = 'warn-with-
wrap-around'

SizeInBytes — Allow a pointer with insufficient memory buffer to point to a
structure
false (default) | true

This property affects Code Prover analysis only.

Allow a pointer with insufficient memory buffer to point to a structure, specified as true or
false.

For more information, see Allow incomplete or partial allocation of
structures (-size-in-bytes).
Example: opts.ChecksAssumption.SizeInBytes = true

 polyspace.ModelLinkOptions Properties

4-153

UncalledFunctionCheck — Detect functions that are not called directly or
indirectly from main or another entry-point function
none (default) | never-called | called-from-unreachable | all

This property affects Code Prover analysis only.

Detect functions that are not called directly or indirectly from main or another entry-point
function, specified as none, never-called, called-from-unreachable, or all.

For more information, see Detect uncalled functions (-uncalled-function-
checks).
Example: opts.ChecksAssumption.UncalledFunctionCheck = 'all'

UnsignedIntegerOverflows — Behavior of unsigned integer overflows
allow (default) | forbid | warn-with-wrap-around

This property affects Code Prover analysis only.

Enable the check for unsigned integer overflows and the assumptions to make following
an overflow, specified as forbid, allow, or warn-with-wrap-around.

For more information, see Overflow mode for unsigned integer (-unsigned-
integer-overflows).
Example: opts.ChecksAssumption.UnsignedIntegerOverflows = 'allow'

CodeProverVerification (Affects Code Prover only)

ClassAnalyzer — Classes that you want to verify
none (default) | all | cell array of class names

This property affects Code Prover analysis only.

Classes that you want to verify, specified as all, none, or a cell array of class names.

For more information, see Class (-class-analyzer).
Example: opts.CodeProverVerification.ClassAnalyzer = 'none'

FunctionsCalledAfterLoop — Functions that the generated main must call after
the cyclic code loop
cell array of function names

This property affects Code Prover analysis only.

4 Functions, Properties, Classes, and Apps

4-154

Functions that the generated main must call after the cyclic code loop, specified as a cell
array of function names.

For more information, see Termination functions (-functions-called-after-
loop).
Example: opts.CodeProverVerification.FunctionsCalledAfterLoop =
{'func1','func2'}

FunctionsCalledBeforeLoop — Functions that the generated main must call
before the cyclic code loop
cell array of function names

This property affects Code Prover analysis only.

Model Link only. Functions that the generated main must call before the cyclic code loop,
specified as a cell array of function names.

For more information, see Initialization functions (-functions-called-
before-loop)).
Example: opts.CodeProverVerification.FunctionsCalledBeforeLoop =
{'func1','func2'}

FunctionsCalledInLoop — Functions that the generated main must call in the
cyclic code loop
none (default) | all | cell array of function names

This property affects Code Prover analysis only.

Functions that the generated main must call in the cyclic code loop, specified as none,
all, or a cell array of function names.

For more information, see Step functions (-functions-called-in-loop).
Example: opts.CodeProverVerification.FunctionsCalledInLoop = 'all'

MainGenerator — Generate a main function if it is not present in source files
true (default) | false

This property affects Code Prover analysis only.

Generate a main function if it is not present in source files, specified as true or false.

 polyspace.ModelLinkOptions Properties

4-155

For more information, see Verify module or library (-main-generator).
Example: opts.CodeProverVerification.MainGenerator = false

VariablesWrittenBeforeLoop — Variables that the generated main must
initialize before the cyclic code loop
none (default) | all | cell array of variable names

This property affects Code Prover analysis only.

Variables that the generated main must initialize before the cyclic code loop, specified as
none, all, or a cell array of variable names.

For more information, see Parameters (-variables-written-before-loop).
Example: opts.CodeProverVerification.VariablesWrittenBeforeLoop =
'all'

VariablesWrittenInLoop — Variables that the generated main must initialize in
the cyclic code loop
none (default) | all | cell array of variable names

This property affects Code Prover analysis only.

Variables that the generated main must initialize in the cyclic code loop, specified as
none, all, or a cell array of variable names.

For more information, see Inputs (-variables-written-in-loop).
Example: opts.CodeProverVerification.VariablesWrittenInLoop = 'all'

CodingRulesCodeMetrics

AcAgcSubset — Subset of MISRA AC AGC rules to check
OBL-rules (default) | OBL-REC-rules | single-unit-rules | system-decidable-
rules | all-rules | SQO-subset1 | SQO-subset2 |
polyspace.CodingRulesOptions object | file

Subset of MISRA AC AGC rules to check, specified by:

• Character vector of one of the subset names. For more information about the different
subsets, see Check MISRA AC AGC (-misra-ac-agc).

• A MISRA AC AGC custom coding rules object. To create a custom coding rules object,
see polyspace.CodingRulesOptions.

4 Functions, Properties, Classes, and Apps

4-156

• Full path to a file containing your MISRA AC AGC subset. You can create this file
manually or in the Polyspace interface. See “Check for Coding Rule Violations”.

To check MISRA AC AGC rules, also set EnableAcAgc to true.
Example: opts.CodingRulesCodeMetrics.AcAgcSubset = 'all-rules'
Data Types: char

AllowedPragmas — Pragma directives for which MISRA C:2004 rule 3.4 or MISRA
C++ 16-6-1 must not be applied
cell array of character vectors

Pragma directives for which MISRA C:2004 rule 3.4 or MISRA C++ 16-6-1 must not be
applied, specified as a cell array of character vectors. This property affects only MISRA C:
2004 or MISRA AC AGC rule checking.

For more information, see Allowed pragmas (-allowed-pragmas).
Example: opts.CodingRulesCodeMetrics.AllowedPragmas =
{'pragma_01','pragma_02'}

Data Types: cell

BooleanTypes — Data types the coding rule checker must treat as effectively
Boolean
cell array of character vectors

Data types that the coding rule checker must treat as effectively Boolean, specified as a
cell array of character vectors.

For more information, see Effective boolean types (-boolean-types).
Example: opts.CodingRulesCodeMetrics.BooleanTypes =
{'boolean1_t','boolean2_t'}

Data Types: cell

CodeMetrics — Activate code metric calculations
false (default) | true

Activate code metric calculations, specified as true or false. If this property is turned off,
Polyspace does not calculate code metrics even if you upload your results to Polyspace
Metrics.

 polyspace.ModelLinkOptions Properties

4-157

For more information about the code metrics, see Calculate code metrics (-code-
metrics).
Example: opts.CodingRulesCodeMetrics.CodeMetrics = true

CustomRulesSubset — Custom naming conventions to check against
custom coding rules file

Custom naming conventions to check against, specified as a custom coding rules file. You
can create the custom coding rules file manually or in the Polyspace interface.

For more information, see Check custom rules (-custom-rules).
Example: opts.CodingRulesCodeMetrics.CustomRulesSubset = 'C:
\ps_settings\coding_rules\custom_rules.txt'

Data Types: char

EnableAcAgc — Check MISRA AC AGC rules
false (default) | true

Check MISRA AC AGC rules, specified as true or false. To customize which rules are
checked, use AcAgcSubset.

For more information about the MISRA AC AGC checker, see Check MISRA AC AGC (-
misra-ac-agc).
Example: opts.CodingRulesCodeMetrics.EnableAcAgc = true;

EnableCustomRules — Check custom coding rules
false (default) | true

Check custom coding rules, specified as true or false. Use with CustomRulesSubset.

For more information, see Check custom rules (-custom-rules).
Example: opts.CodingRulesCodeMetrics.EnableCustomRules = true;

EnableJsf — Check JSF C++ rules
false (default) | true

Check JSF C++ rules, specified as true or false. To customize which rules are checked,
use JsfSubset.

For more information, see Check JSF C++ rules (-jsf-coding-rules).

4 Functions, Properties, Classes, and Apps

4-158

Example: opts.CodingRulesCodeMetrics.EnableJsf = true;

EnableMisraC — Check MISRA C:2004 rules
false (default) | true

Check MISRA C:2004 rules, specified as true or false. To customize which rules are
checked, use MisraCSubset.

For more information, see Check MISRA C:2004 (-misra2).
Example: opts.CodingRulesCodeMetrics.EnableMisraC = true;

EnableMisraC3 — Check MISRA C:2012 rules
false (default) | true

Check MISRA C:2012 rules, specified as true or false. To customize which rules are
checked, use MisraC3Subset.

For more information about the MISRA C:2012 checker, see Check MISRA C:2012 (-
misra3).
Example: opts.CodingRulesCodeMetrics.EnableMisraC3 = true;

EnableMisraCpp — Check MISRA C++:2008 rules
false (default) | true

Check MISRA C++:2008 rules, specified as true or false. To customize which rules are
checked, use MisraCppSubset.

For more information about the MISRA C++:2008 checker, see Check MISRA C++
rules (-misra-cpp).
Example: opts.CodingRulesCodeMetrics.EnableMisraCpp = true;

JsfSubset — Subset of JSF C++ rules to check
shall-rules (default) | shall-will-rules | all-rules |
polyspace.CodingRulesOptions object | file

Subset of JSF C++ rules to check, specified by:

• Character vector of one of the subset names. For more information about the different
subsets, see Check JSF C++ rules (-jsf-coding-rules).

• A JSF C++ custom coding rules object. To create a custom coding rules object, see
polyspace.CodingRulesOptions.

 polyspace.ModelLinkOptions Properties

4-159

• Full path to a file containing your JSF C++ subset. You can create this file manually or
from the Polyspace interface. See “Check for Coding Rule Violations”.

To check JSF C++ rules, set EnableJsf to true.
Example: opts.CodingRulesCodeMetrics.JsfSubset = 'all-rules'
Data Types: char

Misra3AgcMode — Use the MISRA C:2012 categories for automatically generated
code
false (default) | true

Use the MISRA C:2012 categories for automatically generated code, specified as true or
false.

For more information, see Use generated code requirements (-misra3-agc-
mode).
Example: opts.CodingRulesCodeMetrics.Misra3AgcMode = true;

MisraC3Subset — Subset of MISRA C:2012 rules to check
mandatory-required (default) | mandatory | single-unit-rules | system-
decidable-rules | CERT-rules | CERT-all | ISO-17961 | all | SQO-subset1 | SQO-
subset2 | polyspace.CodingRulesOptions object | file

Subset of MISRA C:2012 rules to check, specified by:

• Character vector of one of the subset names. For more information about the different
subsets, see Check MISRA C:2012 (-misra3).

• A MISRA C:2012 custom coding rules object. To create a custom coding rules object,
see polyspace.CodingRulesOptions.

• Full path to a file containing your MISRA C:2012 subset. You can create the custom
coding rules file manually or in the Polyspace interface. See “Check for Coding Rule
Violations”.

To check MISRA C:2012 rules, also set EnableMisraC3 to true.
Example: opts.CodingRulesCodeMetrics.MisraC3Subset = 'all'
Data Types: char

4 Functions, Properties, Classes, and Apps

4-160

MisraCSubset — Subset of MISRA C:2004 rules to check
required-rules (default) | all-rules | SQO-subset1 | SQO-subset2 | single-
unit-rules | system-decidable-rules | polyspace.CodingRulesOptions object
| file

Subset of MISRA C:2004 rules to check, specified by:

• Character vector of one of the subset names. For more information about the different
subsets, see Check MISRA C:2004 (-misra2).

• A MISRA C:2004 custom coding rules object. To create a custom coding rules object,
see polyspace.CodingRulesOptions.

• Full path to a file containing your MISRA C:2004 subset. You can create the custom
coding rules file manually or in the Polyspace interface. See “Check for Coding Rule
Violations”.

To check MISRA C:2004 rules, also set EnableMisraC to true.
Example: opts.CodingRulesCodeMetrics.MisraCSubset = 'all-rules'
Data Types: char

MisraCppSubset — Subset of MISRA C++ rules
required-rules (default) | all-rules | CERT-rules | CERT-all | SQO-subset1 |
SQO-subset2 | polyspace.CodingRulesOptions object | file

Subset of MISRA C++:2008 rules to check, specified by:

• Character vector of one of the subset names. For more information about the different
subsets, see Check MISRA C++ rules (-misra-cpp).

• A MISRA C++ coding rules object. To create a custom coding rules object, see
polyspace.CodingRulesOptions.

• Full path to a file containing your MISRA C++ subset. You can create this file
manually or from the Polyspace interface. See “Check for Coding Rule Violations”.

To check MISRA C++ rules, set EnableMisraCpp to true.
Example: opts.CodingRulesCodeMetrics.MisraCppSubset = 'all-rules'
Data Types: char

 polyspace.ModelLinkOptions Properties

4-161

EnvironmentSettings

Dos — Consider that file paths are in MS-DOS style
true (default) | false

Consider that file paths are in MS-DOS style, specified as true or false.

For more information, see Code from DOS or Windows file system (-dos).
Example: opts.EnvironmentSettings.Dos = true;

IncludeFolders — Include folders needed for compilation
cell array of include folder paths

Include folders needed for compilation, specified as a cell array of the include folder
paths.

To specify all subfolders of a folder, use folder path followed by **, for instance, 'C:
\includes**'. The notation follows the syntax of the dir function. See also “Specify
Multiple Source Files”.

For more information, see -I.
Example: opts.EnvironmentSettings.IncludeFolders = {'/includes','/
com1/inc'};

Example: opts.EnvironmentSettings.IncludeFolders = {'C:
\project1\common\includes'};

Data Types: cell

Includes — Files to be #include-ed by each C file
cell array of files

Files to be #include-ed by each C source file in the analysis, specified by a cell array of
files.

For more information, see Include (-include).
Example: opts.EnvironmentSettings.Includes = {'/inc/inc_file.h','/inc/
inc_math.h'}

NoExternC — Ignore linking errors inside extern blocks
false (default) | true

4 Functions, Properties, Classes, and Apps

4-162

Ignore linking errors inside extern blocks, specified as true or false.

For more information, see Ignore link errors (-no-extern-c).
Example: opts.EnvironmentSettings.NoExternC = false;

PostPreProcessingCommand — Command or script to run on source files after
preprocessing
character vector

Command or script to run on source files after preprocessing, specified as a character
vector of the command to run.

For more information, see Command/script to apply to preprocessed files (-
post-preprocessing-command).
Example: Linux — opts.EnvironmentSettings.PostPreProcessingCommand =
[pwd,'/replace_keyword.pl']

Example: Windows — opts.EnvironmentSettings.PostPreProcessingCommand =
'"C:\Program Files\MATLAB\R2015b\sys\perl\win32\bin\perl.exe" "C:
\My_Scripts\replace_keyword.pl"'

StopWithCompileError — Stop analysis if a file does not compile
false (default) | true

Stop analysis if a file does not compile, specified as true or false.

For more information, see Stop analysis if a file does not compile (-stop-
if-compile-error).
Example: opts.EnvironmentSettings.StopWithCompileError = true;

InputsStubbing

DataRangeSpecifications — Constrain global variables, function inputs, and
return values of stubbed functions
file path

Constrain global variables, function inputs, and return values of stubbed functions
specified by the path to an XML constraint file. For more information about the constraint
file, see “Specify External Constraints”.

For more information about this option, see Constraint setup (-data-range-
specifications).

 polyspace.ModelLinkOptions Properties

4-163

Example: opts.InputsStubbing.DataRangeSpecifications = 'C:\project
\constraint_file.xml'

DoNotGenerateResultsFor — Files on which you do not want analysis results
include-folders (default) | all-headers | custom=file1[,folder1[,...]]

Files on which you do not want analysis results, specified by include-folders, all-
headers, or a character array beginning with custom= and containing a list of comma-
separated file or folder names.

Use this option with InputsStubbing.GenerateResultsFor. For more information,
see Do not generate results for (-do-not-generate-results-for).
Example: opts.InputsStubbing.DoNotGenerateResultsFor = 'custom=C:
\project\file1.c,C:\project\file2.c'

GenerateResultsFor — Files on which you want analysis results
source-headers (default) | all-headers | custom=file1[,folder1[,...]]

Files on which you want analysis results, specified by source-headers, all-headers,
or a character array beginning with custom= and containing a comma-separated file or
folder names.

Use this option with InputsStubbing.DoNotGenerateResultsFor. For more
information, see Generate results for sources and (-generate-results-
for).
Example: opts.InputsStubbing.GenerateResultsFor = 'custom=C:\project
\includes_common_1,C:\project\includes_common_2'

FunctionsToStub — Functions to stub during analysis
cell array of function names

This property affects Code Prover analysis only.

Functions to stub during analysis, specified as a cell array of function names.

For more information, see .
Example: opts.InputsStubbing.FunctionsToStub = {'func1', 'func2'}

NoDefInitGlob — Consider global variables as uninitialized
false (default) | true

4 Functions, Properties, Classes, and Apps

4-164

This property affects Code Prover analysis only.

Consider global variables as uninitialized, specified as true or false.

For more information, see .
Example: opts.InputsStubbing.NoDefInitGlob = true

NoStlStubs — Do not use Polyspace implementations of functions in the
Standard Template Library
false (default) | true

This property applies only to a Code Prover analysis of C++ code.

Do not use Polyspace implementations of functions in the Standard Template Library,
specified as true or false.

For more information, see .
Example: opts.InputsStubbing.NoStlStubs = true

StubECoderLookupTables — Specify that the analysis must stub functions in the
generated code that use lookup tables
true (default) | false

This property applies only to a Code Prover analysis of code generated from models.

Specify that the analysis must stub functions in the generated code that use lookup
tables. By replacing the functions with stubs, the analysis assumes more precise return
values for the functions.

For more information, see Generate stubs for Embedded Coder lookup tables
(-stub-embedded-coder-lookup-table-functions).
Example: opts.InputsStubbing.StubECoderLookupTables = true

Macros

DefinedMacros — Macros to be replaced
cell array of macros

In preprocessed code, macros are replaced by the definition, specified in a cell array of
macros and definitions. Specify the macro as Macro=Value. If you want Polyspace to
ignore the macro, leave the Value blank. A macro with no equal sign replaces all
instances of that macro by 1.

 polyspace.ModelLinkOptions Properties

4-165

For more information, see Preprocessor definitions (-D).
Example: opts.Macros.DefinedMacros = {'uint32=int','name3=','var'}

UndefinedMacros — Macros to undefine
cell array of macros

In preprocessed code, macros are undefined, specified by a cell array of macros to
undefine.

For more information, see Disabled preprocessor definitions (-U).
Example: opts.Macros.DefinedMacros = {'name1','name2'}

MergedComputingSettings

AddToResultsRepositoryBugFinder — Upload Bug Finder results to Polyspace
Metrics web dashboard
false (default) | true

This property affects Bug Finder analysis only.

Upload Bug Finder analysis results to Polyspace Metrics web dashboard, specified as true
or false. To use this option, in your Polyspace preferences, you must specify a metrics
server.

For more information, see Upload results to Polyspace Metrics (-add-to-
results-repository).
Example: opts.MergedComputingSettings.AddToResultsRepositoryBugFinder
= true;

AddToResultsRepositoryCodeProver — Upload Code Prover results to
Polyspace Metrics web dashboard
false (default) | true

This property affects Code Prover analysis only.

Upload Code Prover analysis results to Polyspace Metrics web dashboard, specified as
true or false. To use this option, in your Polyspace preferences, you must specify a metrics
server.

For more information, see Upload results to Polyspace Metrics (-add-to-
results-repository).

4 Functions, Properties, Classes, and Apps

4-166

Example: opts.MergedComputingSettings.AddToResultsRepositoryCodeProver
= true;

BatchBugFinder — Send Bug Finder analysis to remote server
false (default) | true

This property affects Bug Finder analysis only.

Send Bug Finder analysis to remote server, specified as true or false. To use this option, in
your Polyspace preferences, you must specify a metrics server.

For more information, see Run Bug Finder or Code Prover analysis on a
remote cluster (-batch).
Example: opts.MergedComputingSettings.BatchBugFinder = true;

BatchCodeProver — Send Code Prover analysis to remote server
false (default) | true

This property affects Code Prover analysis only.

Send Code Prover analysis to remote server, specified as true or false. To use this option,
in your Polyspace preferences, you must specify a metrics server.

For more information, see Run Bug Finder or Code Prover analysis on a
remote cluster (-batch).
Example: opts.MergedComputingSettings.BatchCodeProver = true;

FastAnalysis — Run Bug Finder analysis using faster local mode
false (default) | true

This property affects Bug Finder analysis only.

Use fast analysis mode for Bug Finder analysis, specified as true or false.

For more information, see Use fast analysis mode for Bug Finder (-fast-
analysis).
Example: opts.MergedComputingSettings.FastAnalysis = true;

MergedReporting

EnableReportGeneration — Generate a report after the analysis
false (default) | true

 polyspace.ModelLinkOptions Properties

4-167

After the analysis, generate a report, specified as true or false.

For more information, see Generate report.
Example: opts.MergedReporting.EnableReportGeneration = true

ReportOutputFormat — Output format of generated report
Word (default) | HTML | PDF

Output format of generated report, specified as one of the report formats. To activate this
option, specify Reporting.EnableReportGeneration.

For more information about the different values, see Output format (-report-
output-format).
Example: opts.MergedReporting.ReportOutputFormat = 'PDF'

BugFinderReportTemplate — Template for generating Bug Finder analysis
report
BugFinderSummary (default) | BugFinder | SecurityCERT | SecurityCWE |
SecurityISO_17961 | CodeMetrics | CodingRules

This property affects a Bug Finder analysis only.

Template for generating analysis report, specified as one of the report formats. To
activate this option, specify Reporting.EnableReportGeneration.

For more information about the different values, see Bug Finder and Code Prover
report (-report-template).
Example: opts.MergedReporting.BugFinderReportTemplate = 'CodeMetrics'

CodeProverReportTemplate — Template for generating Code Prover analysis
report
Developer (default) | CallHierarchy | CodeMetrics | CodingRules |
DeveloperReview | Developer_withGreenChecks | Quality | VariableAccess

This property affects a Code Prover analysis only.

Template for generating analysis report, specified as one of the predefined report
formats. To activate this option, specify Reporting.EnableReportGeneration.

For more information about the different values, see Bug Finder and Code Prover
report (-report-template).

4 Functions, Properties, Classes, and Apps

4-168

Example: opts.MergedReporting.CodeProverReportTemplate = 'CodeMetrics'

Multitasking

ArxmlMultitasking — Specify path of ARXML files to parse for multitasking
configuration
cell array of file paths

Specify the path to the ARXML files the software parses to set up your multitasking
configuration.

To activate this option, specify Multitasking.EnableExternalMultitasking and set
Multitasking.ExternalMultitaskingType to autosar.

For more information, see ARXML files selection (-autosar-multitasking)
Example: opts.Multitasking.ArxmlMultitasking={'C:\Polyspace_Workspace
\AUTOSAR\myFile.arxml'}

CriticalSectionBegin — Functions that begin critical sections
cell array of critical section function names

Functions that begin critical sections specified as a cell array of critical section function
names. To activate this option, specify Multitasking.EnableMultitasking and
Multitasking.CriticalSectionEnd.

For more information, see Critical section details (-critical-section-
begin -critical-section-end).
Example: opts.Multitasking.CriticalSectionBegin =
{'function1:cs1','function2:cs2'}

CriticalSectionEnd — Functions that end critical sections
cell array of critical section function names

Functions that end critical sections specified as a cell array of critical section function
names. To activate this option, specify Multitasking.EnableMultitasking and
Multitasking.CriticalSectionBegin.

For more information, see Critical section details (-critical-section-
begin -critical-section-end).
Example: opts.Multitasking.CriticalSectionEnd =
{'function1:cs1','function2:cs2'}

 polyspace.ModelLinkOptions Properties

4-169

CyclicTasks — Specify functions that represent cyclic tasks
cell array of function names

Specify functions that represent cyclic tasks.

To activate this option, also specify Multitasking.EnableMultitasking.

For more information, see Cyclic tasks (-cyclic-tasks).
Example: opts.Multitasking.CyclicTasks = {'function1','function2'}

EnableConcurrencyDetection — Enable automatic detection of certain families
of threading functions
false (default) | true

This property affects Code Prover analysis only.

Enable automatic detection of certain families of threading functions, specified as true or
false.

For more information, see Enable automatic concurrency detection for Code
Prover (-enable-concurrency-detection).
Example: opts.Multitasking.EnableConcurrencyDetection = true

EnableExternalMultitasking — Enable automatic multitasking configuration
from external file definitions
false (default) | true

Enable multitasking configuration of your projects from external files you provide.
Configure multitasking from ARXML files for an AUTOSAR project, or from OIL files for
an OSEK project.

Activate this option to enable Multitasking.ArxmlMultitasking or
Multitasking.OsekMultitasking.

For more information, see OIL files selection (-osek-multitasking) and
ARXML files selection (-autosar-multitasking).
Example: opts.Multitasking.EnableExternalMultitasking = 1

EnableMultitasking — Configure multitasking manually
false (default) | true

4 Functions, Properties, Classes, and Apps

4-170

Configure multitasking manually by specifying true. This property activates the other
manual, multitasking properties.

For more information, see Configure multitasking manually.
Example: opts.Multitasking.EnableMultitasking = 1

EntryPoints — Functions that serve as entry-points to your multitasking
application
cell array of entry-point function names

Functions that serve as entry-points to your multitasking application specified as a cell
array of entry-point function names. To activate this option, also specify
Multitasking.EnableMultitasking.

For more information, see Tasks (-entry-points).
Example: opts.Multitasking.EntryPoints = {'function1','function2'}

ExternalMultitaskingType — Specify type of file to parse for multitasking
configuration
osek (default) | autosar

Specify the type of file the software parses to set up your multitasking configuration:

• For osek type, the analysis looks for OIL files in the file or folder paths that you
specify.

• For autosar type, the analysis looks for ARXML files in the file paths that you specify.

To activate this option, specify Multitasking.EnableExternalMultitasking.

For more information, see OIL files selection (-osek-multitasking) and
ARXML files selection (-autosar-multitasking).
Example: opts.Multitasking.ExternalMultitaskingType = 'autosar'

Interrupts — Specify functions that represent nonpreemptable interrupts
cell array of function names

Specify functions that represent nonpreemptable interrupts.

To activate this option, specify Multitasking.EnableMultitasking.

For more information, see Interrupts (-interrupts).

 polyspace.ModelLinkOptions Properties

4-171

Example: opts.Multitasking.Interrupts = {'function1','function2'}

InterruptsDisableAll — Specify routine that disable interrupts
cell array with one function name

This property affects Bug Finder analysis only.

Specify function that disables all interrupts.

To activate this option, specify Multitasking.EnableMultitasking.

For more information, see Disabling all interrupts (-routine-disable-
interrupts -routine-enable-interrupts).
Example: opts.Multitasking.InterruptsDisableAll = {'function'}

InterruptsEnableAll — Specify routine that reenable interrupts
cell array with one function name

This property affects Bug Finder analysis only.

Specify function that reenables all interrupts.

To activate this option, specify Multitasking.EnableMultitasking.

For more information, see Disabling all interrupts (-routine-disable-
interrupts -routine-enable-interrupts).
Example: opts.Multitasking.InterruptsEnableAll = {'function'}

OsekMultitasking — Specify path of OIL files to parse for multitasking
configuration
auto (default) | custom=file1[,folder1[,...]]

Specify the path to the OIL files the software parses to set up your multitasking
configuration:

• In auto mode, the analysis uses OIL files in your project source and include folders,
but not their subfolders.

• In custom mode, the analysis uses the OIL files at the specified path, and the path
subfolders.

To activate this option, specify Multitasking.EnableExternalMultitasking and set
Multitasking.ExternalMultitaskingType to osek.

4 Functions, Properties, Classes, and Apps

4-172

For more information, see OIL files selection (-osek-multitasking)
Example: opts.Multitasking.OsekMultitasking = 'custom=file_path,
dir_path'

TemporalExclusion — Entry-point functions that cannot execute concurrently
cell array of entry-point function names

Entry-point functions that cannot execute concurrently specified as a cell array of entry-
point function names. Each set of exclusive tasks is one cell array entry with functions
separated by spaces. To activate this option, specify
Multitasking.EnableMultitasking.

For more information, see Temporally exclusive tasks (-temporal-
exclusions-file).
Example: opts.Multitasking.TemporalExclusion = {'function1 function2',
'function3 function4 function5'} where function1 and function2 are temporally
exclusive, and function3, function4, and function 5 are temporally exclusive.

Precision (Affects Code Prover Only)

ContextSensitivity — Store call context information to identify function call
that caused errors
none (default) | auto | custom=function1[,function2[,...]]

This property affects Code Prover analysis only.

Store call context information to identify a function call that caused errors, specified as
none, auto, or as a character array beginning with custom= followed by a list of comma-
separated function names.

For more information, see Sensitivity context (-context-sensitivity).
Example: opts.Precision.ContextSensitivity = 'auto'
Example: opts.Precision.ContextSensitivity = 'custom=func1'

ModulesPrecision — Source files you want to verify at higher precision
cell array of file names and precision levels

This property affects Code Prover analysis only.

Source files that you want to verify at higher precision, specified as a cell array of file
names without the extension and precision levels using this syntax: filename:Olevel

 polyspace.ModelLinkOptions Properties

4-173

For more information, see Specific precision (-modules-precision).
Example: opts.Precision.ModulesPrecision = {'file1:O0', 'file2:O3'}

OLevel — Precision level for the verification
2 (default) | 0 | 1 | 3

This property affects Code Prover analysis only.

Precision level for the verification, specified as 0, 1, 2, or 3.

For more information, see Precision level (-O).
Example: opts.Precision.OLevel = 3

PathSensitivityDelta — Avoid certain verification approximations for code
with fewer lines
positive integer

This property affects Code Prover analysis only.

Avoid certain verification approximations for code with fewer lines, specified as a positive
integer representing how sensitive the analysis is. Higher values can increase verification
time exponentially.

For more information, see Improve precision of interprocedural analysis (-
path-sensitivity-delta).
Example: opts.Precision.PathSensitivityDelta = 2

Timeout — Time limit on your verification
character vector

This property affects Code Prover analysis only.

Time limit on your verification, specified as a character vector of time in hours.

For more information, see Verification time limit (-timeout).
Example: opts.Precision.Timeout = '5.75'

To — Number of times the verification process runs
Software Safety Analysis level 2 (default) | Software Safety Analysis
level 0 | Software Safety Analysis level 1 | Software Safety Analysis

4 Functions, Properties, Classes, and Apps

4-174

level 3 | Software Safety Analysis level 4 | Source Compliance Checking
| other

This property affects Code Prover analysis only.

Number of times the verification process runs, specified as one of the preset analysis
levels.

For more information, see Verification level (-to).
Example: opts.Precision.To = 'Software Safety Analysis level 3'

Scaling (Affects Code Prover Only)

Inline — Functions on which separate results must be generated for each
function call
cell array of function names

This property affects Code Prover analysis only.

Functions on which separate results must be generated for each function call, specified as
a cell array of function names.

For more information, see Inline (-inline).
Example: opts.Scaling.Inline = {'func1','func2'}

KLimiting — Limit depth of analysis for nested structures
positive integer

This property affects Code Prover analysis only.

Limit depth of analysis for nested structures, specified as a positive integer indicating
how many levels into a nested structure to verify.

For more information, see Depth of verification inside structures (-k-
limiting).
Example: opts.Scaling.KLimiting = 3

 polyspace.ModelLinkOptions Properties

4-175

TargetCompiler

Compiler — Compiler that builds your source code
generic (default) | gnu3.4 | gnu4.6 | gnu4.7 | gnu4.8 | gnu4.9 | gnu5.x | gnu6.x |
clang3.x | visual9.0 | visual10 | visual11.0 | visual12.0 | visual14.0 | keil |
iar | codewarrior | diab | greenhills | iar-ew | renesas | tasking | ti

Compiler that builds your source code.

For more information, see Compiler (-compiler).
Example: opts.TargetCompiler.Compiler = 'Visual11.0'

CppVersion — Specify C++11 standard version followed in code
defined-by-compiler (default) | cpp03 | cpp11 | cpp14

Specify C++ standard version followed in code, specified as a character vector.

For more information, see C++ standard version (-cpp-version).
Example: opts.TargetCompiler.CppVersion = 'cpp11';

CVersion — Specify C standard version followed in code
defined-by-compiler (default) | c90 | c99 | c11

Specify C standard version followed in code, specified as a character vector.

For more information, see C standard version (-c-version).
Example: opts.TargetCompiler.CVersion = 'c90';

DivRoundDown — Round down quotients from division or modulus of negative
numbers
false (default) | true

Round down quotients from division or modulus of negative numbers, specified as true or
false.

For more information, see Division round down (-div-round-down).
Example: opts.TargetCompiler.DivRoundDown = true

EnumTypeDefinition — Base type representation of enum
defined-by-compiler (default) | auto-signed-first | auto-unsigned-first

4 Functions, Properties, Classes, and Apps

4-176

Base type representation of enum, specified by an allowed base-type set. For more
information about the different values, see Enum type definition (-enum-type-
definition).
Example: opts.TargetCompiler.EnumTypeDefinition = 'auto-unsigned-
first'

IgnorePragmaPack — Ignore #pragma pack directives
false (default) | true

Ignore #pragma pack directives, specified as true or false.

For more information, see Ignore pragma pack directives (-ignore-pragma-
pack).
Example: opts.TargetCompiler.IgnorePragmaPack = true

Language — Language of analysis
C-CPP (default) | C | CPP

This property is read-only.

Language of the analysis, specified during the object construction. This value changes
which properties appear.

For more information, see Source code language (-lang).

LogicalSignedRightShift — Treatment of signed bit on signed variables
Arithmetical (default) | Logical

Treatment of signed bit on signed variables, specified as Arithmetical or Logical. For
more information, see Signed right shift (-logical-signed-right-shift).
Example: opts.TargetCompiler.LogicalSignedRightShift = 'Logical'

NoUliterals — Do not use predefined typedefs for char16_t or char32_t
false (default) | true

Do not use predefined typedefs for char16_t or char32_t, specified as true or false. For
more information, see Block char16/32_t types (-no-uliterals).
Example: opts.TargetCompiler.NoUliterals = true

PackAlignmentValue — Default structure packing alignment
defined-by-compiler (default) | 1 | 2 | 4 | 8 | 16

 polyspace.ModelLinkOptions Properties

4-177

Default structure packing alignment, specified as defined-by-compiler, 1,2, 4, 8, or
16. This property is available only for Visual C++ code.

For more information, see Pack alignment value (-pack-alignment-value).
Example: opts.TargetCompiler.PackAlignmentValue = '4'

SfrTypes — sfr types
cell array of sfr keywords

sfr types, specified as a cell array of sfr keywords using the syntax
sfr_name=size_in_bits. For more information, see Sfr type support (-sfr-
types).

This option only applies when you set TargetCompiler.Compiler to keil or iar.
Example: opts.TargetCompiler.SfrTypes = {'sfr32=32'}

SizeTTypeIs — Underlying type of size_t
defined-by-compiler (default) | unsigned-int | unsigned-long | unsigned-
long-long

Underlying type of size_t, specified as defined-by-compiler, unsigned-int,
unsigned-long, or unsigned-long-long. See Management of size_t (-size-t-
type-is).
Example: opts.TargetCompiler.SizeTTypeIs = 'unsigned-long'

Target — Target processor
i386 (default) | arm | arm64 | avr | c-167 | c166 | c18 | c28x | c6000 | coldfire |
hc08 | hc12 | m68k | mcore | mips | mpc5xx | msp430 | necv850 | powerpc |
powerpc64 | rh850 | rl78 | rx | s12z | sharc21x61 | sparc | superh | tms320c3x |
tricore | x86_64 | generic target object

Set size of data types and endianness of processor, specified as one of the predefined
target processors or a generic target object.

For more information about the predefined processors, see Target processor type
(-target).

For more information about creating a generic target, see
polyspace.GenericTargetOptions.
Example: opts.TargetCompiler.Target = 'hc12'

4 Functions, Properties, Classes, and Apps

4-178

WcharTTypeIs — Underlying type of wchar_t
defined-by-compiler (default) | signed-short | unsigned-short | signed-int |
unsigned-int | signed-long | unsigned-long

Underlying type of wchar_t, specified as defined-by-compiler, signed-short,
unsigned-short, signed-int, unsigned-int, signed-long, or unsigned-long.
See Management of wchar_t (-wchar-t-type-is).
Example: opts.TargetCompiler.WcharTTypeIs = 'unsigned-int'

VerificationAssumption (Affects Code Prover Only)

ConsiderVolatileQualifierOnFields — Assume that volatile qualified
structure fields can have all possible values at any point in code
false (default) | true

This property affects Code Prover analysis only.

Assume that volatile qualified structure fields can have all possible values at any point in
code.

For more information, see Consider volatile qualifier on fields (-
consider-volatile-qualifier-on-fields).
Example: opts.VerificationAssumption.ConsiderVolatileQualifierOnFields
= true

ConstraintPointersMayBeNull — Specify that environment pointers can be
NULL unless constrained otherwise
false (default) | true

This property affects Code Prover analysis only.

Specify that environment pointers can be NULL unless constrained otherwise.

For more information, see Consider environment pointers as unsafe (-
stubbed-pointers-are-unsafe).
Example: opts.VerificationAssumption.ConstraintPointersMayBeNull =
true

FloatRoundingMode — Rounding modes to consider when determining the
results of floating-point arithmetic
to-nearest (default) | all

 polyspace.ModelLinkOptions Properties

4-179

This property affects Code Prover analysis only.

Rounding modes to consider when determining the results of floating-point arithmetic,
specified as to-nearest or all.

For more information, see Float rounding mode (-float-rounding-mode).
Example: opts.VerificationAssumption.FloatRoundingMode = 'all'

RespectTypesInFields — Do not cast nonpointer fields of a structure to
pointers
false (default) | true

This property affects Code Prover analysis only.

Do not cast nonpointer fields of a structure to pointers, specified as true or false.

For more information, see Respect types in fields (-respect-types-in-
fields).
Example: opts.VerificationAssumption.RespectTypesInFields = true

RespectTypesInGlobals — Do not cast nonpointer global variables to pointers
false (default) | true

This property affects Code Prover analysis only.

Do not cast nonpointer global variables to pointers, specified as true or false.

For more information, see Respect types in global variables (-respect-
types-in-globals).
Example: opts.VerificationAssumption.RespectTypesInGlobals = true

Other Properties

Author — Project author
username of current user (default) | character vector

Name of project author, specified as a character vector.

For more information, see -author.
Example: opts.Author = 'JaneDoe'

4 Functions, Properties, Classes, and Apps

4-180

ImportComments — Import comments and justifications from previous analysis
character vector

To import comments and justifications from a previous analysis, specify the path to the
results folder of the previous analysis.

For more information, see -import-comments
Example: opts.ImportComments =
fullfile(matlabroot,'polyspace','examples','cxx','Bug_Finder_Example
','Module_1','BF_Result')

Prog — Project name
PolyspaceProject (default) | character vector

Project name, specified as a character vector.

For more information, see -prog.
Example: opts.Prog = 'myProject'

ResultsDir — Location to store results
folder path

Location to store results, specified as a folder path. By default, the results are stored in
the current folder.

For more information, see -results-dir.
Example: opts.ResultsDir = 'C:\project\myproject\results\'

Sources — Source files
cell array of files

Source files to analyze, specified as a cell array of files.

To specify all files in a folder, use folder path followed by *, for instance, 'C:\src*'. To
specify all files in a folder and its subfolders, use folder path followed by **, for instance,
'C:\src**'. The notation follows the syntax of the dir function. See also “Specify
Multiple Source Files”.

For more information, see -sources.
Example: opts.Sources = {'file1.c', 'file2.c', 'file3.c'}

 polyspace.ModelLinkOptions Properties

4-181

Example: opts.Sources = {'project/src1/file1.c', 'project/src2/
file2.c', 'project/src3/file3.c'}

Version — Project version number
1.0 (default) | character array of a number

Version number of project, specified as a character array of a number. This option is
useful if you upload your results to Polyspace Metrics. If you increment version numbers
each time that you reanalyze your object, you can compare the results from two versions
in Polyspace Metrics.

For more information, see -v[ersion].
Example: opts.Version = '2.3'

See Also

Topics
“Analysis Options”

Introduced in R2017a

4 Functions, Properties, Classes, and Apps

4-182

copyTo
Class: polyspace.Options
Package: polyspace

Copy common settings between Polyspace options objects

Syntax
optsFrom.copyTo(optsTo)

Description
optsFrom.copyTo(optsTo) copies the common options from optsFrom to optsTo.
The options objects do not need to be the same type of options object. This method copies
only properties that are common between the two objects.

Input Arguments
optsFrom — Options object you want to copy properties from
polyspace.Options or polyspace.ModelLinkOptions object

Option object that you want to copy properties from, specified as a polyspace.Options
or polyspace.ModelLinkOptions object.
Example: opts = polyspace.Options;

optsTo — Options object you want to copy properties to
polyspace.Options object

Option object that you want to copy properties to, specified as a polyspace.Options or
polyspace.ModelLinkOptions object.
Example: opts = polyspace.Options;

 copyTo

4-183

Examples

Copy Polyspace Options Object

This example shows how to set the properties of one options object and then copy that
object to another one.

Create a Polyspace options object and set properties.

opts1 = polyspace.Options();
opts1.Prog = 'DataRaceProject';
opts1.Sources = {'datarace.c'};
opts1.TargetCompiler.Compiler = 'diab';

Create another object and use copyTo to copy over options from the previous object.

opts2 = polyspace.Options();
copyTo(opts1, opts2);

See Also
polyspace.BugFinderOptions | polyspace.ModelLinkBugFinderOptions |
polyspace.Options | polyspace.Options.generateProject

Introduced in R2016b

4 Functions, Properties, Classes, and Apps

4-184

generateProject
Class: polyspace.Options
Package: polyspace

Generate psprj project from options object

Syntax
opts.generateProject(projectName)

Description
opts.generateProject(projectName) creates a .psprj project called
projectName from the options specified in the polyspace.Options object opts.

Input Arguments
opts — Options object to convert into a psprj file
polyspace.Options or polyspace.ModelLinkOptions object

Option object to convert into a psprj file specified as a polyspace.Options or
polyspace.ModelLinkOptions object.
Example: opts = polyspace.Options;

projectName — Project file name
character vector

Project file name specified as a character vector. This argument is used as the name of
the psprj file.
Example: 'myProject'

 generateProject

4-185

Examples

Generate Project from a Bug Finder Options Object

This example shows how to create and use a Polyspace project that was generated from
an options object.

Create a Bug Finder object and set properties.

sources = fullfile(matlabroot, 'polyspace','examples','cxx','Bug_Finder_Example',...
 'sources','numerical.c');
opts = polyspace.Options();
opts.Prog = 'MyProject';
opts.Sources = {sources};
opts.TargetCompiler.Compiler = 'gnu4.7';

Generate a Polyspace project. Name the project using the Prog property.

psprj = opts.generateProject(opts.Prog);

Run a Bug Finder analysis using one of these commands. Both commands produce
identical analysis results. The only difference is that the psprj project can be rerun in
the Polyspace interface.

polyspaceBugFinder(psprj, '-nodesktop');
polyspaceBugFinder(opts);

To run a Code Prover analysis, use polyspaceCodeProver instead of
polyspaceBugFinder.

Tips
If you want to include an options object in a pslinkoptions object:

1 Use this method to convert your object to a project.
2 Add the project to the pslinkoptions property PrjConfig.
3 Turn on the property EnablePrjConfig.

4 Functions, Properties, Classes, and Apps

4-186

See Also
polyspace.BugFinderOptions | polyspace.ModelLinkBugFinderOptions |
polyspace.Options | polyspace.Options.copyTo

Introduced in R2016b

 generateProject

4-187

toScript
Class: polyspace.Options
Package: polyspace

Add Polyspace options object definition to a script

Syntax
filePath = opts.toScript(fileName,positionInScript)

Description
filePath = opts.toScript(fileName,positionInScript) adds the properties of
a polyspace.Options object to a MATLAB script. The script shows the values assigned
to all the properties of the object. You can run the script later to define the object in the
MATLAB workspace and use it.

Input Arguments
opts — Options object with Polyspace analysis options
polyspace.Options or polyspace.ModelLinkOptions object

Option object to store in MATLAB script, specified as a polyspace.Options or
polyspace.ModelLinkOptions object.
Example: opts = polyspace.Options;

fileName — Script name
character vector

Name or path to script, specified as a character vector. If you specify a relative path, the
script is created in subfolder of the current working folder.
Example: 'runPolyspace.m'

4 Functions, Properties, Classes, and Apps

4-188

positionInScript — Where to add object definition
'create' (default) | 'append'

Position in script where the object properties are added, specified as 'create' or
'append'. If you specify 'append', the object properties are added to the end of an
existing script. Otherwise, a new script is created.

Output Arguments
filePath — Full path to script
character vector

Full path to script, specified as a character vector.
Example: 'C:\myScripts\runPolyspace.m'

See Also
polyspace.BugFinderOptions | polyspace.ModelLinkBugFinderOptions |
polyspace.Options | polyspace.Options.generateProject

Topics
“Generate MATLAB Scripts from Polyspace User Interface”

Introduced in R2017b

 toScript

4-189

run
Class: polyspace.Project
Package: polyspace

Run a Polyspace analysis

Syntax
proj.run(product)

Description
status = proj.run(product) runs a Polyspace Bug Finder or Polyspace Code Prover
analysis using the configuration specified in the polyspace.Project object proj. The
analysis results are also stored in proj.

Input Arguments
proj — Polyspace project
polyspace.Project object

Polyspace project with configuration and results, specified as a polyspace.Project
object.

product — Type of analysis
'bugFinder' | 'codeProver'

Type of analysis to run.

Output Arguments
status — Results of a Code Prover analysis
true | false

4 Functions, Properties, Classes, and Apps

4-190

Status of analysis. If the analysis fails, the status is false. Otherwise, it is true.

The analysis can fail for multiple reasons:

• You provide source files that do not exist.
• None of your files compile. Even if one file compiles, unless you set the property

StopWithCompileError to true, the analysis succeeds and returns a true status.

There can be many other reasons why the analysis fails. If the analysis fails, in your
results folder, check the log file. You can see the results folder using the Configuration
property of the polyspace.Project object:

proj = polyspace.Project;
proj.Configuration.ResultsDir

The log file is named Polyspace_R20##n_ProjectName_date-time.log.

Examples
Read Results to MATLAB Tables

Run a Polyspace Bug Finder analysis on the demo file numerical.c. Configure these
options:

• Specify GCC 4.9 as your compiler.
• Save the results in a results subfolder of the current working folder.

proj = polyspace.Project

% Configure analysis
proj.Configuration.Sources = {fullfile(matlabroot, 'polyspace', ...
 'examples', 'cxx', 'Bug_Finder_Example', 'sources', 'numerical.c')};
proj.Configuration.TargetCompiler.Compiler = 'gnu4.9';
proj.Configuration.ResultsDir = fullfile(pwd,'results');

% Run analysis
bfStatus = proj.run('bugFinder');

 run

4-191

% Read results
bfSummary = proj.Results.getSummary('defects');

Introduced in R2017b

4 Functions, Properties, Classes, and Apps

4-192

getSummary
Class: polyspace.BugFinderResults
Package: polyspace

View number of defects organized by defect type

Syntax
resObj.getSummary(resultsType)

Description
resSummary = resObj.getSummary(resultsType) returns the distribution of results
of type resultsType in a Bug Finder result set denoted by the
polyspace.BugFinderResults object resObj. For instance, if you choose to see
defects, you can see how many defects of each type are present in the result set, for
instance, how many non-initialized variables or declaration mismatches.

Input Arguments
resultsType — Type of Bug Finder analysis result
'defects' (default) | 'misraC' | 'misraCAGC' | 'misraCPP' | 'misraC2012' |
'jsf' | 'metrics' | 'customRules'

Type of result, specified as a character vector.

Entry Meaning
'defects' Bugs or defects. See “Defects”.
'misraC' MISRA C:2004 rules. See “MISRA C:2004

and MISRA AC AGC Rules”.

 getSummary

4-193

Entry Meaning
'misraCAGC' MISRA C:2004 rules for generated code.

See “MISRA C:2004 and MISRA AC AGC
Rules”.

'misraCPP' MISRA C++ rules. See “MISRA C++:2008
Rules”.

'misraC2012' MISRA C:2012 rules. See “MISRA C:2012
Directives and Rules”.

'jsf' JSF C++ rules. See “JSF C++ Rules”.
'metrics' Code complexity metrics. See “Code

Metrics”.
'customRules' Custom rules enforcing naming conventions

for identifiers. See “Custom Coding Rules”.

Output Arguments
resSummary — Distribution of defects by defect type
table

Distribution of defects by defect type, specified as a table. For instance, an extract of the
table looks like this:

Category Defect Impact Total
Concurrency Data race High 2
Concurrency Deadlock High 1
Data flow Non-initialized

variable
High 2

The table above shows that the result set contains two data races, one deadlock and two
non-initialized variables.

For more information on MATLAB tables, see “Tables” (MATLAB).

4 Functions, Properties, Classes, and Apps

4-194

Examples
Copy Existing Results to MATLAB Tables

This example shows how to read Bug Finder analysis results from MATLAB.

Copy a demo result set to a temporary folder.

resPath = fullfile(matlabroot,'polyspace','examples','cxx','Bug_Finder_Example', ...
'Module_1','BF_Result');
userResPath = tempname;
copyfile(resPath,userResPath);

Create the results object.

resObj = polyspace.BugFinderResults(userResPath);

Read results to MATLAB tables using the object.

resSummary = resObj.getSummary('defects');
resTable = resObj.getResults();

Run Analysis and Read Results to MATLAB Tables

Run a Polyspace Bug Finder analysis on the demo file numerical.c. Configure these
options:

• Specify GCC 4.9 as your compiler.
• Save the results in a results subfolder of the current working folder.

proj = polyspace.Project

% Configure analysis
proj.Configuration.Sources = {fullfile(matlabroot, 'polyspace', ...
 'examples', 'cxx', 'Bug_Finder_Example', 'sources', 'numerical.c')};
proj.Configuration.TargetCompiler.Compiler = 'gnu4.9';
proj.Configuration.ResultsDir = fullfile(pwd,'results');

% Run analysis
bfStatus = proj.run('bugFinder');

 getSummary

4-195

% Read results
bfSummary = proj.Results.getSummary('defects');

See Also
polyspace.BugFinderResults

Topics
“Defects”
“Bug Finder Defect Groups”
“Classification of Defects by Impact”

Introduced in R2017a

4 Functions, Properties, Classes, and Apps

4-196

getResults
Class: polyspace.BugFinderResults
Package: polyspace

Read Bug Finder results into MATLAB table

Syntax
getResults(content)

Description
resTable = getResults(content) returns a table showing all results in a Bug Finder
result set denoted by the polyspace.BugFinderResults object resObj. You can
manipulate the table to produce graphs and statistics about your results that you cannot
obtain readily from the user interface.

Input Arguments
content — Result information to include
'full' (default) | 'readable'

Amount of information to be included for each result. If you specify 'full', all
information is included. See “Export Polyspace Analysis Results”. If you specify
'readable', the following information is not included:

• ID: Unique number for a result for the current analysis.
• Group: Defect groups, MISRA C:2012 groups, etc.
• Status, Severity, Comment: Information that you enter about a result.

If you do not specify this argument, the full table is included.

 getResults

4-197

Output Arguments
resTable — Results of a Bug Finder analysis
table

Table showing all results from a single Bug Finder analysis. For each result, the table has
information such as file, family, and so on. If a particular information is not available for a
result, the entry in the table states <undefined>.

For more information on:

• The columns of the table, see “Export Polyspace Analysis Results”.
• MATLAB tables, see “Tables” (MATLAB).

Examples

Copy Existing Results to MATLAB Tables

This example shows how to read Bug Finder analysis results from MATLAB.

Copy a demo result set to a temporary folder.

resPath = fullfile(matlabroot,'polyspace','examples','cxx','Bug_Finder_Example', ...
'Module_1','BF_Result');
userResPath = tempname;
copyfile(resPath,userResPath);

Create the results object.

resObj = polyspace.BugFinderResults(userResPath);

Read results to MATLAB tables using the object.

resSummary = getSummary (resObj);
resTable = getResults (resObj);

Run Analysis and Read Results to MATLAB Tables

Run a Polyspace Bug Finder analysis on the demo file numerical.c. Configure these
options:

4 Functions, Properties, Classes, and Apps

4-198

• Specify GCC 4.9 as your compiler.
• Save the results in a results subfolder of the current working folder.

proj = polyspace.Project

% Configure analysis
proj.Configuration.Sources = {fullfile(matlabroot, 'polyspace', ...
 'examples', 'cxx', 'Bug_Finder_Example', 'sources', 'numerical.c')};
proj.Configuration.TargetCompiler.Compiler = 'gnu4.9';
proj.Configuration.ResultsDir = fullfile(pwd,'results');

% Run analysis
bfStatus = proj.run('bugFinder');

% Read results
bfSummary = proj.Results.getResults('readable');

See Also
polyspace.BugFinderResults

Introduced in R2017a

 getResults

4-199

MISRA C 2012

5

MISRA C:2012 Dir 1.1
Any implementation-defined behavior on which the output of the program depends shall
be documented and understood

Description

Directive Definition
Any implementation-defined behavior on which the output of the program depends shall
be documented and understood.

Rationale
A code construct has implementation-defined behavior if the C standard allows compilers
to choose their own specifications for the construct. The full list of implementation-
defined behavior is available in Annex J.3 of the standard ISO/IEC 9899:1999 (C99) and in
Annex G.3 of the standard ISO/IEC 9899:1990 (C90).

If you understand and document all implementation-defined behavior, you can be assured
that all output of your program is intentional and not produced by chance.

Polyspace Specification
The analysis detects the following possibilities of implementation-defined behavior in C99
and their counterparts in C90. If you know the behavior of your compiler implementation,
justify the analysis result with appropriate comments. To justify a result, assign one of
these statuses: Justified, No action planned, or Not a defect.

Tip To mass-justify all results that indicate the same implementation-defined behavior,
use the Detail column on the Results List pane. Click the column header so that all
results with the same entry are grouped together. Select the first result and then select
the last result while holding the Shift key. Assign a status to one of the results. If you do
not see the Detail column, right-click any other column header and enable this column.

5 MISRA C 2012

5-2

C99 Standard
Annex Ref

Behavior to Be
Documented

How Polyspace Helps

J.3.2:
Environment

An alternative
manner in which
main function
may be defined.

The analysis flags main with arguments and return
types other than:

int main(void) { ... }

or

int main(int argc, char *argv[]) { ... }

See section 5.1.2.2.1 of the C99 Standard.
J.3.2:
Environment

The set of
environment
names and the
method for
altering the
environment list
used by the
getenv function.

The analysis flags uses of the getenv function. For
this function, you need to know the list of
environment variables and how the list is modified.

See section 7.20.4.5 of the C99 Standard.

J.3.6: Floating
Point

The rounding
behaviors
characterized by
non-standard
values of
FLT_ROUNDS.

The analysis flags the include of float.h if values
of FLT_ROUNDS are outside the set, {-1, 0, 1, 2, 3}.
Only the values in this set lead to well-defined
rounding behavior.

See section 5.2.4.2.2 of the C99 Standard.
J.3.6: Floating
Point

The evaluation
methods
characterized by
non-standard
negative values
of
FLT_EVAL_METH
OD.

The analysis flags the include of float.h if values
of FLT_EVAL_METHOD are outside the set, {-1, 0, 1,
2}. Only the values in this set lead to well-defined
behavior for floating-point operations.

See section 5.2.4.2.2 of the C99 Standard.

 MISRA C:2012 Dir 1.1

5-3

C99 Standard
Annex Ref

Behavior to Be
Documented

How Polyspace Helps

J.3.6: Floating
Point

The direction of
rounding when
an integer is
converted to a
floating-point
number that
cannot exactly
represent the
original value.

The analysis flags conversions from integer to
floating-point data types of smaller size (for
example, 64-bit int to 32-bit float).

See section 6.3.1.4 of the C99 Standard.

J.3.6: Floating
Point

The direction of
rounding when a
floating-point
number is
converted to a
narrower
floating-point
number.

The analysis flags these conversions:

• double to float
• long double to double or float

See section 6.3.1.5 of the C99 Standard.

J.3.6: Floating
Point

The default state
for the
FENV_ACCESS
pragma.

The analysis flags use of the pragma other than:

#pragma STDC FENV_ACCESS ON

or

#pragma STDC FENV_ACCESS OFF

See section 7.6.1 of the C99 Standard.
J.3.6: Floating
Point

The default state
for the
FP_CONTRACT
pragma.

The analysis flags use of the pragma other than:

#pragma STDC FP_CONTRACT ON

or

#pragma STDC FP_CONTRACT OFF

See section 7.12.2 of the C99 Standard.

5 MISRA C 2012

5-4

C99 Standard
Annex Ref

Behavior to Be
Documented

How Polyspace Helps

J.3.11:
Preprocessing
Directives

The behavior on
each recognized
non-STDC
#pragma
directive.

The analysis flags the pragma usage:

#pragma pp-tokens

where the processing token STDC does not
immediately followpragma. For instance:

#pragma FENV_ACCESS ON

See section 6.10.6 of the C99 Standard.
J.3.12: Library
Functions

Whether the
feraiseexcept
function raises
the ‘‘inexact’’
floating-point
exception in
addition to the
‘‘overflow’’ or
‘‘underflow’’
floating-point
exception.

The analysis flags calls to the feraiseexcept
function.

See section 7.6.2.3 of the C99 Standard.

J.3.12: Library
Functions

Strings other
than "C" and ""
that may be
passed as the
second argument
to the
setlocale
function.

The analysis flags calls to the setlocale function
when its second argument is not "C" or "".

See section 7.11.1.1 of the C99 Standard.

J.3.12: Library
Functions

The types defined
for float_t and
double_t when
the value of the
FLT_EVAL_METH
OD macro is less
than 0 or greater
than 2.

The analysis flags the include of math.h if
FLT_EVAL_METHOD has values outside the set
{0,1,2}.

See section 7.12 of the C99 Standard.

 MISRA C:2012 Dir 1.1

5-5

C99 Standard
Annex Ref

Behavior to Be
Documented

How Polyspace Helps

J.3.12: Library
Functions

The base-2
logarithm of the
modulus used by
the remquo
functions in
reducing the
quotient.

The analysis flags calls to the remquo, remquof
and remquol function.

See section 7.12.10.3 of the C99 Standard.

J.3.12: Library
Functions

The termination
status returned
to the host
environment by
the abort, exit,
or _Exit
function.

The analysis flags calls to the abort, exit, or
_Exit function.

See sections 7.20.4.1, 7.20.4.3 or 7.20.4.4 of the
C99 Standard.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: The implementation
Category: Required
AGC Category: Required
Language: C90, C99
CERT C: EXP11-C, FLP30-C

See Also

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

5 MISRA C 2012

5-6

https://www.securecoding.cert.org/confluence/x/HIB2
https://www.securecoding.cert.org/confluence/x/AoG_

Introduced in R2017b

 MISRA C:2012 Dir 1.1

5-7

MISRA C:2012 Dir 2.1
All source files shall compile without any compilation errors

Description

Directive Definition
All source files shall compile without any compilation errors.

Rationale
A conforming compiler is permitted to produce an object module despite the presence of
compilation errors. However, execution of the resulting program can produce unexpected
behavior.

Polyspace Specification
The software raises a violation of this directive if it finds a compilation error. Because
Code Prover is more strict about compilation errors compared to Bug Finder, the coding
rules checking in the two products can produce different results for this directive.

Message in Report
All source files shall compile without any compilation errors.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Compilation and build

5 MISRA C 2012

5-8

Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 1.1

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2015b

 MISRA C:2012 Dir 2.1

5-9

MISRA C:2012 Dir 4.1
Run-time failures shall be minimized

Description

Directive Definition
Run-time failures shall be minimized.

Rationale
Some areas to concentrate on are:

• Arithmetic errors
• Pointer arithmetic
• Array bound errors
• Function parameters
• Pointer dereferencing
• Dynamic memory

Polyspace Specification
This directive is checked through the Polyspace analysis. For more information, see:

• “Defects”.
• “Run-Time Checks” (Polyspace Code Prover).

Polyspace Bug Finder and Polyspace Code Prover check this coding rule differently. The
analyses can produce different results.

Message in Report
Run-time failures shall be minimized.

5 MISRA C 2012

5-10

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Code design
Category: Required
AGC Category: Required
Language: C90, C99
ISO/IEC TS 17961 ID: chrsgnext, diverr, intoflow, inverrno, invfmtstr,
ioileave, libptr, nonnullcs, nullref, taintformatio, taintsink,
taintstrcpy, usrfmt, xfilepos

See Also
MISRA C:2012 Dir 4.11 | MISRA C:2012 Rule 1.3 | MISRA C:2012 Rule 18.1 |
MISRA C:2012 Rule 18.2 | MISRA C:2012 Rule 18.3

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Dir 4.1

5-11

MISRA C:2012 Dir 4.3
Assembly language shall be encapsulated and isolated

Description

Directive Definition
Assembly language shall be encapsulated and isolated.

Rationale
Encapsulating assembly language is beneficial because:

• It improves readability.
• The name, and documentation, of the encapsulating macro or function makes the

intent of the assembly language clear.
• All uses of assembly language for a given purpose can share encapsulation, which

improves maintainability.
• You can easily substitute the assembly language for a different target or for purposes

of static analysis.

Polyspace Specification
Polyspace does not raise a warning on assembly language code encapsulated in the
following:

• asm functions or asm pragmas
• Macros

Message in Report
Assembly language shall be encapsulated and isolated

5 MISRA C 2012

5-12

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Examples

Assembly Language Code in C Function
enum boolVal {TRUE, FALSE};
enum boolVal isTaskActive;
void taskHandler(void);

void taskHandler(void) {
 isTaskActive = FALSE;
 // Software interrupt for task switching
 asm volatile
 (
 "SWI &02" /* Service #1: calculate run-time */
);
 return;
}

In this example, the rule violation occurs because the assembly language code is
embedded directly in a C function taskHandler that contains other C language
statements.

One possible correction is to encapsulate the assembly language code in a macro and
invoke the macro in the function taskHandler.

#define RUN_TIME_CALC \
asm volatile \
 (\
 "SWI &02" /* Service #1: calculate run-Time */ \
)\

enum boolVal {TRUE, FALSE};
enum boolVal isTaskActive;
void taskHandler(void);

 MISRA C:2012 Dir 4.3

5-13

void taskHandler(void) {
 isTaskActive = FALSE;
 RUN_TIME_CALC;
 return;
}

Check Information
Group: Code design
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 1.2

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-14

MISRA C:2012 Dir 4.5
Identifiers in the same name space with overlapping visibility should be typographically
unambiguous

Description

Directive Definition
Identifiers in the same name space with overlapping visibility should be typographically
unambiguous.

Rationale
What “unambiguous” means depends on the alphabet and language in which source code
is written. When you use identifiers that are typographically close, you can confuse
between them.

For the Latin alphabet as used in English words, at a minimum, the identifiers should not
differ by:

• The interchange of a lowercase letter with its uppercase equivalent.
• The presence or absence of the underscore character.
• The interchange of the letter O and the digit 0.
• The interchange of the letter I and the digit 1.
• The interchange of the letter I and the letter l.
• The interchange of the letter S and the digit 5.
• The interchange of the letter Z and the digit 2.
• The interchange of the letter n and the letter h.
• The interchange of the letter B and the digit 8.
• The interchange of the letters rn and the letter m.

 MISRA C:2012 Dir 4.5

5-15

Message in Report
Identifiers in the same name space with overlapping visibility should be typographically
unambiguous.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Examples

Typographically Ambiguous Identifiers
void func(void) {
 int id1_numval;
 int id1_num_val; /* Non-compliant */

 int id2_numval;
 int id2_numVal; /* Non-compliant */

 int id3_lvalue;
 int id3_Ivalue; /* Non-compliant */

 int id4_xyz;
 int id4_xy2; /* Non-compliant */

 int id5_zerO;
 int id5_zer0; /* Non-compliant */

 int id6_rn;
 int id6_m; /* Non-compliant */
}

In this example, the rule is violated when identifiers that can be confused for each other
are used.

5 MISRA C 2012

5-16

Check Information
Group: Code design
Category: Advisory
AGC Category: Readability
Language: C90, C99
CERT C: DCL02-C

See Also

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2015b

 MISRA C:2012 Dir 4.5

5-17

https://www.securecoding.cert.org/confluence/x/SQU

MISRA C:2012 Dir 4.6
typedefs that indicate size and signedness should be used in place of the basic
numerical types

Description

Directive Definition
typedefs that indicate size and signedness should be used in place of the basic
numerical types.

Rationale
When the amount of memory being allocated is important, using specific-length types
makes it clear how much storage is being reserved for each object.

Polyspace Specification
The rule checker flags use of basic data types in variable or function declarations and
definitions. The rule enforces use of typedefs instead.

The rule checker does not flag the use of basic types in the typedef statements
themselves.

Message in Report
Typedefs that indicate size and signedness should be used in place of the basic numerical
types

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

5 MISRA C 2012

5-18

Examples

Direct Use of Basic Types in Definitions
typedef unsigned int uint32_t;

int x = 0; /* Non compliant */
uint32_t y = 0; /* Compliant */

In this example, the declaration of x is noncompliant because it uses a basic type directly.

Check Information
Group: Code design
Category: Advisory
AGC Category: Advisory
Language: C90, C99
CERT C: INT00-C

See Also

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Dir 4.6

5-19

https://www.securecoding.cert.org/confluence/x/FhE

MISRA C:2012 Dir 4.7
If a function returns error information, then that error information shall be tested

Description

Directive Definition
If a function returns error information, then that error information shall be tested.

Rationale
Typically a function indicates whether an error occurred during execution, via a special
return value or by another means.

If a function provides a mechanism to determine errors, before you use the function
return value, you must check for such errors.

Polyspace Specification
The checking of this directive follows the same specifications as the defect checker
Returned value of a sensitive function not checked.

This directive is only partially supported.

Message in Report
If a function returns error information, then that error information shall be tested.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

5 MISRA C 2012

5-20

Check Information
Group: Code design
Category: Required
AGC Category: Required
Language: C90, C99
CERT C: ERR00-C, API04-C
ISO/IEC TS 17961 ID: inverrno, liberr

See Also

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2017a

 MISRA C:2012 Dir 4.7

5-21

https://www.securecoding.cert.org/confluence/x/DwBl
https://www.securecoding.cert.org/confluence/x/SQCCAQ

MISRA C:2012 Dir 4.8
If a pointer to a structure or union is never dereferenced within a translation unit, then
the implementation of the object should be hidden

Description

Rule Definition
If a pointer to a structure or union is never dereferenced within a translation unit, then
the implementation of the object should be hidden.

Rationale
If a pointer to a structure or union is not dereferenced in a file, the implementation
details of the structure or union need not be available in the translation unit for the file.
You can hide the implementation details such as structure members and protect them
from unintentional changes.

Define an opaque type that can be referenced via pointers but whose contents cannot be
accessed.

Polyspace Specification
If a pointer to a structure or union is not dereferenced in a file but the structure or union
is defined in the file or a header file included in the file, the checker flags a coding rule
violation.

Message in Report
If a pointer to a structure or union is never dereferenced within a translation unit, then
the implementation of the object should be hidden.

5 MISRA C 2012

5-22

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Examples

Object Implementation Revealed
/* file.h */

#ifndef TYPE_GUARD
#define TYPE_GUARD

typedef struct {
 int a;
} myStruct;

#endif

/* file.c */
#include "file.h"

myStruct* getObj(void);
void useObj(myStruct*);

void func() {
 myStruct *sPtr = getObj();
 useObj(sPtr);
}

In this example, the pointer to the type myStruct is not dereferenced. The pointer is
simply obtained from the getObj function and passed to the useObj function.

The implementation of myStruct is visible in the translation unit consisting of file.c
and file.h.

One possible correction is to define an opaque data type in the header file file.h. The
opaque data type ptrMyStruct points to the myStruct structure without revealing what
the structure contains. The structure myStruct itself can be defined in a separate

 MISRA C:2012 Dir 4.8

5-23

translation unit, in this case, consisting of the file file2.c. The common header file
file.h must be included in both file.c and file2.c for linking the structure
definition to the opaque type definition.

/* file.h */

#ifndef TYPE_GUARD
#define TYPE_GUARD

typedef struct myStruct *ptrMyStruct;

#endif

/* file.c */
#include "file.h"

ptrMyStruct getObj(void);
void useObj(ptrMyStruct);

void func() {
 ptrMyStruct sPtr = getObj();
 useObj(sPtr);
}

/* file2.c */
#include "file.h"

struct myStruct {
 int a;
};

Check Information
Group: Code design
Category: Advisory
AGC Category: Advisory
Language: C90, C99
CERT C: DCL12-C

5 MISRA C 2012

5-24

https://wiki.sei.cmu.edu/confluence/x/4tUxBQ

See Also

Topics
“Avoid Violations of MISRA C 2012 Rules 8.x”
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2018a

 MISRA C:2012 Dir 4.8

5-25

MISRA C:2012 Dir 4.9
A function should be used in preference to a function-like macro where they are
interchangeable

Description

Directive Definition
A function should be used in preference to a function-like macro where they are
interchangeable.

Rationale
In most circumstances, use functions instead of macros. Functions perform argument
type-checking and evaluate their arguments once, avoiding problems with potential
multiple side effects.

Polyspace Specification
Polyspace considers all function-like macro definitions.

Message in Report
A function should be used in preference to a function-like macro where they are
interchangeable

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

5 MISRA C 2012

5-26

Check Information
Group: Code design
Category: Advisory
AGC Category: Advisory
Language: C90, C99
CERT C: PRE00-C

See Also
MISRA C:2012 Rule 13.2 | MISRA C:2012 Rule 20.7

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Dir 4.9

5-27

https://www.securecoding.cert.org/confluence/x/VIbu

MISRA C:2012 Dir 4.10
Precautions shall be taken in order to prevent the contents of a header file being included
more than once

Description
Directive Definition
Precautions shall be taken in order to prevent the contents of a header file being included
more than once.

Rationale
When a translation unit contains a complex hierarchy of nested header files, it is possible
for a particular header file to be included more than once, leading to confusion. If this
multiple inclusion produces multiple or conflicting definitions, then your program can
have undefined or erroneous behavior.

For instance, suppose that a header file contains:

#ifdef _WIN64
 int env_var;
#elseif
 long int env_var;
#endif

If the header file is contained in two inclusion paths, one that defines the macro _WIN64
and another that undefines it, you can have conflicting definitions of env_var.

Polyspace Specification
If you include a header file whose contents are not guarded from multiple inclusion, the
analysis raises a violation of this directive. The violation is shown at the beginning of the
header file.

You can guard the contents of a header file from multiple inclusion by using one of the
following methods:

5 MISRA C 2012

5-28

<start-of-file>
#ifndef <control macro>
#define <control macro>
 /* Contents of file */
#endif
<end-of-file>

or

<start-of-file>
#ifdef <control macro>
#error ...
#else
#define <control macro>
 /* Contents of file */
#endif
<end-of-file>

Unless you use one of these methods, Polyspace flags the header file inclusion as
noncompliant.

Message in Report
Precautions shall be taken in order to prevent the contents of a header file being included
more than once.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Examples

Code After Macro Guard
#ifndef __MY_MACRO__
#define __MY_MACRO__
 void func(void);

 MISRA C:2012 Dir 4.10

5-29

#endif
void func2(void);

If a header file contains this code, it is noncompliant because the macro guard does not
cover the entire content of the header file. The line void func2(void) is outside the
guard.

Note You can have comments outside the macro guard.

Code Before Macro Guard

void func(void);
#ifndef __MY_MACRO__
#define __MY_MACRO__
 void func2(void);
#endif

If a header file contains this code, it is noncompliant because the macro guard does not
cover the entire content of the header file. The line void func(void) is outside the
guard.

Note You can have comments outside the macro guard.

Mismatch in Macro Guard
#ifndef __MY_MACRO__
#define __MY_MARCO__
 void func(void);
 void func2(void);
#endif

If a header file contains this code, it is noncompliant because the macro name in the
#ifndef statement is different from the name in the following #define statement.

Check Information
Group: Code Design

5 MISRA C 2012

5-30

Category: Required
AGC Category: Required
Language: C90, C99
CERT C: PRE06-C

See Also

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Dir 4.10

5-31

https://www.securecoding.cert.org/confluence/x/WgBi

MISRA C:2012 Dir 4.11
The validity of values passed to library functions shall be checked

Description

Directive Definition
The validity of values passed to library functions shall be checked.

Rationale
Many Standard C functions do not check the validity of parameters passed to them. Even
if checks are performed by a compiler, there is no guarantee that the checks are
adequate. For example, you should not pass negative numbers to sqrt or log.

Polyspace Specification
Polyspace raises a violation result for library function arguments if the following are all
true:

• Argument is a local variable.
• Local variable is not tested between last assignment and call to the library function.
• Corresponding parameter of the library function has a restricted input domain.
• Library function is one of the following common mathematical functions:

• sqrt
• tan
• pow
• log
• log10
• fmod
• acos

5 MISRA C 2012

5-32

• asin
• acosh
• atanh
• or atan2

Bug Finder and Code Prover check this rule differently. The analysis can produce different
results.

Tip To mass-justify all results related to the same library function, use the Detail column
on the Results List pane. Click the column header so that all results with the same entry
are grouped together. Select the first result and then select the last result while holding
the Shift key. Assign a status to one of the results. If you do not see the Detail column,
right-click any other column header and enable this column.

Message in Report
The validity of values passed to library functions shall be checked

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Code design
Category: Required
AGC Category: Required
Language: C90, C99
ISO/IEC TS 17961 ID: chrsgnext, inverrno, invfmtstr, libptr, nonnullcs,
taintformatio, taintsink, taintstrcpy, usrfmt, xfilepos

See Also
MISRA C:2012 Dir 4.1

 MISRA C:2012 Dir 4.11

5-33

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-34

MISRA C:2012 Dir 4.13
Functions which are designed to provide operations on a resource should be called in an
appropriate sequence

Description
Directive Definition
Functions which are designed to provide operations on a resource should be called in an
appropriate sequence.

Rationale
You typically use functions operating on a resource in the following way:

1 You allocate the resource.

For example, you open a file or critical section.
2 You use the resource.

For example, you read from the file or perform operations in the critical section.
3 You deallocate the resource.

For example, you close the file or critical section.

For your functions to operate as you expect, perform the steps in sequence. For instance,
if you call a resource allocation function on a certain execution path, you must call a
deallocation function on that path.

Polyspace Specification
Polyspace Bug Finder detects a violation of this rule if you specify multitasking options
and your code contains one of these defects:

• Missing lock: A task calls an unlock function before calling the corresponding lock
function.

 MISRA C:2012 Dir 4.13

5-35

• Missing unlock: A task calls a lock function but ends without a call to the
corresponding unlock function.

• Double lock: A task calls a lock function twice without an intermediate call to an
unlock function.

• Double unlock: A task calls an unlock function twice without an intermediate call to
a lock function.

For more information on the multitasking options, see “Multitasking”.

Message in Report
Functions which are designed to provide operations on a resource should be called in an
appropriate sequence.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Examples
Multitasking: Lock Function That Is Missing Unlock Function
typedef signed int int32_t;
typedef signed short int16_t;

typedef struct tag_mutex_t {
 int32_t value;
} mutex_t;

extern mutex_t mutex_lock (void);
extern void mutex_unlock (mutex_t m);

extern int16_t x;
void func(void);

void task1(void) {
 func();

5 MISRA C 2012

5-36

}

void task2(void) {
 func();
}

void func (void) {
 mutex_t m = mutex_lock (); /* Non-compliant */

 if (x > 0) {
 mutex_unlock (m);
 } else {
 /* Mutex not unlocked on this path */
 }
}

In this example, the rule is violated when:

• You specify that the functions mutex_lock and mutex_unlock are paired.

mutex_lock begins a critical section and mutex_unlock ends it.
• The function mutex_lock is called. However, if x <= 0, the function mutex_unlock

is not called.

To enable detection of this rule violation, you must specify these analysis options.

Option Specification
Configure multitasking
manually
Entry points task1

task2
Critical section details Starting routine Ending routine

mutex_lock mutex_unlock

For more information on the options, see:

• Tasks (-entry-points)
• Critical section details (-critical-section-begin -critical-

section-end)

 MISRA C:2012 Dir 4.13

5-37

Check Information
Group: Code design
Category: Advisory
AGC Category: Advisory
Language: C90, C99
CERT C: MEM30-C

See Also
MISRA C:2012 Rule 22.1 | MISRA C:2012 Rule 22.2 | MISRA C:2012 Rule
22.6

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2015b

5 MISRA C 2012

5-38

https://www.securecoding.cert.org/confluence/x/vAE

MISRA C:2012 Dir 4.14
The validity of values received from external sources shall be checked

Description

Directive Definition
The validity of values received from external sources shall be checked.

Rationale
The values originating from external sources can be invalid because of errors or
deliberate modification by attackers. Before using the data, you must check the data for
validity.

For instance:

• Before using an external input as array index, you must check if it can potentially
cause an array bounds error.

• Before using a variable to control a loop, you must check if it can potentially result in
an infinite loop.

Message in Report
The validity of values received from external sources shall be checked.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

 MISRA C:2012 Dir 4.14

5-39

Examples

Validity of External Values Not Checked
#include <stdio.h>

void f1(char from_user[])
{
 char input [128];
 (void) sscanf (from_user, "%128c", input);
 (void) sprintf ("%s", input);
}

In this example, the sscanf statement is noncompliant as there is no check to ensure
that the user input is null terminated. The subsequent sprintf statement that outputs
the string can potentially lead to an array bounds error (buffer overrun).

Check Information
Group: Code design
Category: Required
AGC Category: Required
Language: C90, C99
CERT C: EXP34-C, INT04-C, INT10-C, STR02-C
ISO/IEC TS 17961 ID: diverr, nullref, taintformatio, taintnoproto,
taintsink, taintstrcpy, usrfmt

See Also

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2017a

5 MISRA C 2012

5-40

https://www.securecoding.cert.org/confluence/x/PAw
https://www.securecoding.cert.org/confluence/x/kgI
https://www.securecoding.cert.org/confluence/x/NQBi
https://www.securecoding.cert.org/confluence/x/-AY

MISRA C:2012 Rule 1.1
The program shall contain no violations of the standard C syntax and constraints, and
shall not exceed the implementation’s translation limits

Description

Rule Definition
The program shall contain no violations of the standard C syntax and constraints, and
shall not exceed the implementation’s translation limits.

Polyspace Specification
The rule violation can come from multiple causes. Standard compilation error messages
do not lead to a violation of this MISRA rule.

Tip To mass-justify all results that come from the same cause, use the Detail column on
the Results List pane. Click the column header so that all results with the same entry are
grouped together. Select the first result and then select the last result while holding the
Shift key. Assign a status to one of the results. If you do not see the Detail column,
right-click any other column header and enable this column.

Message in Report
• Too many nesting levels of #includes: N1. The limit is N0.

Note: The rule checker considers a brace as an additional level. For instance, the if
branch in this code is counted as two levels of nesting.

if(flag) {
}

The metric Number of Call Levels counts this as one level of nesting.
• Integer constant is too large.

 MISRA C:2012 Rule 1.1

5-41

• ANSI C does not allow '#XX'.
• Text following preprocessing directive violates ANSI standard.
• Too many macro definitions: N1. The limit is N0.
• Array of zero size should not be used.
• Integer constant does not fit within long int.
• Integer constant does not fit within unsigned long int.
• Too many nesting levels for control flow: N1. The limit is N0.
• Assembly language should not be used.
• Too many enumeration constants: N1. The limit is N0.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Standard C Environment
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 1.2

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-42

MISRA C:2012 Rule 1.2
Language extensions should not be used

Description

Rule Definition
Language extensions should not be used.

Rationale
If a program uses language extensions, its portability is reduced. Even if you document
the language extensions, the documentation might not describe the behavior in all
circumstances.

Polyspace Specification
All the supported extensions lead to a violation of this MISRA rule.

Message in Report
• ANSI C90 forbids hexadecimal floating-point constants.
• ANSI C90 forbids universal character names.
• ANSI C90 forbids mixed declarations and code.
• ANSI C90/C99 forbids case ranges.
• ANSI C90/C99 forbids local label declaration.
• ANSI C90 forbids mixed declarations and code.
• ANSI C90/C99 forbids typeof operator.
• ANSI C90/C99 forbids casts to union.
• ANSI C90 forbids compound literals.
• ANSI C90/C99 forbids statements and declarations in expressions.

 MISRA C:2012 Rule 1.2

5-43

• ANSI C90 forbids __func__ predefined identifier.
• ANSI C90 forbids keyword '_Bool'.
• ANSI C90 forbids 'long long int' type.
• ANSI C90 forbids long long integer constants.
• ANSI C90 forbids 'long double' type.
• ANSI C90/C99 forbids 'short long int' type.
• ANSI C90 forbids _Pragma preprocessing operator.
• ANSI C90 does not allow macros with variable arguments list.
• ANSI C90 forbids designated initializer.

Keyword 'inline' should not be used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Standard C Environment
Category: Advisory
AGC Category: Advisory
Language: C90, C99
CERT C: MSC04-C

See Also
MISRA C:2012 Rule 1.1

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-44

https://www.securecoding.cert.org/confluence/x/KgQ

MISRA C:2012 Rule 1.3
There shall be no occurrence of undefined or critical unspecified behaviour

Description

Rule Definition
There shall be no occurrence of undefined or critical unspecified behaviour.

Message in Report
There shall be no occurrence of undefined or critical unspecified behavior

• 'defined' without an identifier.
• macro 'XX' used with too few arguments.
• macro 'XX used with too many arguments.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Standard C Environment
Category: Required
AGC Category: Required
Language: C90, C99
ISO/IEC TS 17961 ID: accfree, accsig, argcomp, chrsgnext, dblfree,
diverr, funcdecl, intoflow, intptrconv, invfmtstr, invptr, ioileave,
libmod, libptr, nonnullcs, ptrcomp, ptrobj, resident, restrict,
taintsink, uninitref, usrfmt, xfilepos, xfree

 MISRA C:2012 Rule 1.3

5-45

See Also
MISRA C:2012 Dir 4.1

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-46

MISRA C:2012 Rule 2.1
A project shall not contain unreachable code

Description

Rule Definition
A project shall not contain unreachable code.

Rationale
Unless a program exhibits any undefined behavior, unreachable code cannot execute. The
unreachable code cannot affect the program output. The presence of unreachable code
can indicate an error in the program logic. Unreachable code that the compiler does not
remove wastes resources, for example:

• It occupies space in the target machine memory.
• Its presence can cause a compiler to select longer, slower jump instructions when

transferring control around the unreachable code.
• Within a loop, it can prevent the entire loop from residing in an instruction cache.

Polyspace Specification
Polyspace Bug Finder and Polyspace Code Prover check this coding rule differently. The
analyses can produce different results.

The Code Prover run-time check for unreachable code shows more cases than the MISRA
checker for rule 2.1. See also Unreachable code. The run-time check performs a more
exhaustive analysis. In the process, the check can show some instances that are not
strictly unreachable code but unreachable only in the context of the analysis. For
instance, in the following code, the run-time check shows a potential division by zero in
the first line and then removes the zero value of flag for the rest of the analysis.
Therefore, it considers the if block unreachable.

 MISRA C:2012 Rule 2.1

5-47

val=1.0/flag;
if(!flag) {}

The MISRA checker is designed to prevent these kinds of results.

Message in Report
A project shall not contain unreachable code.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Examples

Code Following return Statement
enum light { red, amber, red_amber, green };

enum light next_light (enum light color)
{
 enum light res;

 switch (color)
 {
 case red:
 res = red_amber;
 break;
 case red_amber:
 res = green;
 break;
 case green:
 res = amber;
 break;
 case amber:
 res = red;
 break;
 default:
 {

5 MISRA C 2012

5-48

 error_handler ();
 break;
 }
 }

 res = color;
 return res;
 res = color; /* Non-compliant */
}

In this example, the rule is violated because there is an unreachable operation following
the return statement.

Check Information
Group: Unused Code
Category: Required
AGC Category: Required
Language: C90, C99
CERT C: MSC07-C, MSC12-C

See Also
MISRA C:2012 Rule 14.3 | MISRA C:2012 Rule 16.4

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 2.1

5-49

https://www.securecoding.cert.org/confluence/x/JwAy
https://www.securecoding.cert.org/confluence/x/NYA5

MISRA C:2012 Rule 2.2
There shall be no dead code

Description
Rule Definition
There shall be no dead code.

Rationale
If an operation is reachable but removing the operation does not affect program behavior,
the operation constitutes dead code.

The presence of dead code can indicate an error in the program logic. Because a compiler
can remove dead code, its presence can cause confusion for code reviewers.

Operations involving language extensions such as __asm ("NOP"); are not
considered dead code.

Polyspace Specification
Polyspace Bug Finder detects useless write operations during analysis.

Polyspace Code Prover does not detect useless write operations. For instance, if you
assign a value to a local variable but do not read it later, Polyspace Code Prover does not
detect this useless assignment. Use Polyspace Bug Finder to detect such useless write
operations. For more information, see MISRA C:2012 in Polyspace Bug Finder on page 5-
50.

In Code Prover, you can also see a difference in results based on your choice for the
option Verification level (-to). See “Check for Coding Rule Violations”.

Message in Report
There shall be no dead code.

5 MISRA C 2012

5-50

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Examples

Redundant Operations
extern volatile unsigned int v;
extern char *p;

void f (void) {
 unsigned int x;

 (void) v; /* Compliant - Exception*/
 (int) v; /* Non-compliant */
 v >> 3; /* Non-compliant */

 x = 3; /* Non-compliant - Detected in Bug Finder only */

 p++; / Non-compliant */
 (*p)++; /* Compliant */
}

In this example, the rule is violated when an operation is performed on a variable, but the
result of that operation is not used. For instance,

• The operations (int) and >> on the variable v are redundant because the results are
not used.

• The operation = is redundant because the local variable x is not read after the
operation.

• The operation * on p++ is redundant because the result is not used.

The rule is not violated when:

• A variable is cast to void. The cast indicates that you are intentionally not using the
value.

 MISRA C:2012 Rule 2.2

5-51

• The result of an operation is used. For instance, the operation * on p is not redundant,
because *p is incremented.

Redundant Function Call
void g (void) {
 /* Compliant */
}

void h (void) {
 g(); /* Non-compliant */
}

In this example, g is an empty function. Though the function itself does not violate the
rule, a call to the function violates the rule.

Check Information
Group: Unused Code
Category: Required
AGC Category: Required
Language: C90, C99
CERT C: DCL22-C, MSC12-C

See Also
MISRA C:2012 Rule 17.7 | Write without a further read

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-52

https://www.securecoding.cert.org/confluence/x/OoEt
https://www.securecoding.cert.org/confluence/x/NYA5

MISRA C:2012 Rule 2.3
A project should not contain unused type declarations

Description

Rule Definition
A project should not contain unused type declarations.

Rationale
If a type is declared but not used, a reviewer does not know if the type is redundant or if
it is unused by mistake.

Message in Report
A project should not contain unused type declarations: type XX is not used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Examples

Unused Local Type
signed short unusedType (void){

 typedef signed short myType; /* Non-compliant */
 return 67;

}

 MISRA C:2012 Rule 2.3

5-53

signed short usedType (void){

 typedef signed short myType; /* Compliant */
 myType tempVar = 67;
 return tempVar;

}

In this example, in function unusedType, the typedef statement defines a new local
type myType. However, this type is never used in the function. Therefore, the rule is
violated.

The rule is not violated in the function usedType because the new type myType is used.

Check Information
Group: Unused Code
Category: Advisory
AGC Category: Readability
Language: C90, C99

See Also
MISRA C:2012 Rule 2.4

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-54

MISRA C:2012 Rule 2.4
A project should not contain unused tag declarations

Description

Rule Definition
A project should not contain unused tag declarations.

Rationale
If a tag is declared but not used, a reviewer does not know if the tag is redundant or if it
is unused by mistake.

Message in Report
A project should not contain unused tag declarations: tag tag_name is not used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Examples

Tag Defined in Function but Not Used
void unusedTag (void)
{
 enum state1 { S_init, S_run, S_sleep }; /* Non-compliant */
}

void usedTag (void)

 MISRA C:2012 Rule 2.4

5-55

{
 enum state2 { S_init, S_run, S_sleep }; /* Compliant */
 enum state2 my_State = S_init;
}

In this example, in the function unusedTag, the tag state1 is defined but not used.
Therefore, the rule is violated.

Tag Used in typedef Only
typedef struct record_t /* Non-compliant */
{
 unsigned short key;
 unsigned short val;
} record1_t;

typedef struct /* Compliant */
{
 unsigned short key;
 unsigned short val;
} record2_t;

record1_t myRecord1_t;
record2_t myRecord2_t;

In this example, the tag record_t appears only in the typedef of record1_t. In the
rest of the translation unit, the type record1_t is used. Therefore, the rule is violated.

Check Information
Group: Unused Code
Category: Advisory
AGC Category: Readability
Language: C90, C99

See Also
MISRA C:2012 Rule 2.3

5 MISRA C 2012

5-56

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 2.4

5-57

MISRA C:2012 Rule 2.5
A project should not contain unused macro declarations

Description
Rule Definition
A project should not contain unused macro declarations.

Rationale
If a macro is declared but not used, a reviewer does not know if the macro is redundant
or if it is unused by mistake.

Message in Report
A project should not contain unused macro declarations: macro macro_name is not used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Examples
Unused Macro Definition
void use_macro (void)
{
 #define SIZE 4
 #define DATA 3

 use_int16(SIZE);
}

5 MISRA C 2012

5-58

In this example, the macro DATA is never used in the use_macro function.

Check Information
Group: Unused Code
Category: Advisory
AGC Category: Readability
Language: C90, C99

See Also

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 2.5

5-59

MISRA C:2012 Rule 2.6
A function should not contain unused label declarations

Description

Rule Definition
A function should not contain unused label declarations.

Rationale
If you declare a label but do not use it, it is not clear to a reviewer of your code if the
label is redundant or unused by mistake.

Message in Report
A function should not contain unused label declarations.

Label label_name is not used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Examples

Unused Label Declarations
void use_var(signed short);

void unused_label (void)
{

5 MISRA C 2012

5-60

 signed short x = 6;

label1: /* Non-compliant - label1 not used */
 use_var (x);
}

void used_label (void)
{
 signed short x = 6;

 for (int i=0; i < 5; i++) {
 if (i==2) goto label1;
 }

label1: /* Compliant - label1 used */
 use_var (x);
}

In this example, the rule is violated when the label label1 in function unused_label is
not used.

Check Information
Group: Unused code
Category: Advisory
AGC Category: Readability
Language: C90, C99

See Also

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2015b

 MISRA C:2012 Rule 2.6

5-61

MISRA C:2012 Rule 2.7
There should be no unused parameters in functions

Description
Rule Definition
There should be no unused parameters in functions.

Rationale
If a parameter is unused, it is possible that the implementation of the function does not
match its specifications. This rule can highlight such mismatches.

Message in Report
There should be no unused parameters in functions.

Parameter parameter_name is not used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Examples
Unused Function Parameters
double func(int param1, int* param2) {
 return (param1/2.0);
}

In this example, the rule is violated because the parameter param2 is not used.

5 MISRA C 2012

5-62

Check Information
Group: Unused code
Category: Advisory
AGC Category: Readability
Language: C90, C99

See Also
Unused parameter

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2015b

 MISRA C:2012 Rule 2.7

5-63

MISRA C:2012 Rule 3.1
The character sequences /* and // shall not be used within a comment

Description

Rule Definition
The character sequences /* and // shall not be used within a comment.

Rationale
These character sequences are not allowed in code comments because:

• If your code contains a /* or a // in a /* */ comment, it typically means that you
have inadvertently commented out code.

• If your code contains a /* in a // comment, it typically means that you have
inadvertently uncommented a /* */ comment.

Polyspace Specification
You cannot annotate this rule in the source code.

For information on annotations, see “Annotate Code and Hide Known or Acceptable
Results”.

Message in Report
The character sequence /* shall not appear within a comment.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

5 MISRA C 2012

5-64

Examples

/* Used in // Comments
int x;
int y;
int z;

void non_compliant_comments (void)
{
 x = y // /* Non-compliant
 + z
 // */
 ;
 z++; // Compliant with exception: // permitted within a // comment
}

void compliant_comments (void)
{
 x = y /* Compliant
 + z
 */
 ;
 z++; // Compliant with exception: // is permitted within a // comment
}

In this example, in the non_compliant_comments function, the /* character occurs in
what appears to be a // comment, violating the rule. Because of the comment structure,
the operation that takes place is x = y + z;. However, without the two //-s, an entirely
different operation x=y; takes place. It is not clear which operation is intended.

Use a comment format that makes your intention clear. For instance, in the
compliant_comments function, it is clear that the operation x=y; is intended.

Check Information
Group: Comments
Category: Required
AGC Category: Required
Language: C90, C99

 MISRA C:2012 Rule 3.1

5-65

CERT C: MSC04-C

See Also

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-66

https://www.securecoding.cert.org/confluence/x/KgQ

MISRA C:2012 Rule 3.2
Line-splicing shall not be used in // comments

Description

Rule Definition
Line-splicing shall not be used in // comments.

Rationale
Line-splicing occurs when the \ character is immediately followed by a new-line
character. Line splicing is used for statements that span multiple lines.

If you use line-splicing in a // comment, the following line can become part of the
comment. In most cases, the \ is spurious and can cause unintentional commenting out of
code.

Message in Report
Line-splicing shall not be used in // comments.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Examples

Line Splicing in // Comment
#include <stdbool.h>

 MISRA C:2012 Rule 3.2

5-67

extern _Bool b;

void func (void)
{
 unsigned short x = 0; // Non-compliant - Line-splicing \
 if (b)
 {
 ++b;
 }
}

Because of line-splicing, the statement if (b) is a part of the previous // comment.
Therefore, the statement b++ always executes, making the if block redundant.

Check Information
Group: Comments
Category: Required
AGC Category: Required
Language: C99

See Also

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”

Introduced in R2014b

5 MISRA C 2012

5-68

MISRA C:2012 Rule 4.1
Octal and hexadecimal escape sequences shall be terminated

Description

Rule Definition
Octal and hexadecimal escape sequences shall be terminated.

Rationale
There is potential for confusion if an octal or hexadecimal escape sequence is followed by
other characters. For example, the character constant '\x1f' consists of a single
character, whereas the character constant '\x1g' consists of the two characters '\x1'
and 'g'. The manner in which multi-character constants are represented as integers is
implementation-defined.

If every octal or hexadecimal escape sequence in a character constant or string literal is
terminated, you reduce potential confusion.

Message in Report
Octal and hexadecimal escape sequences shall be terminated.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

 MISRA C:2012 Rule 4.1

5-69

Examples

Compliant and Noncompliant Escape Sequences
const char *s1 = "\x41g"; /* Non-compliant */
const char *s2 = "\x41" "g"; /* Compliant - Terminated by end of literal */
const char *s3 = "\x41\x67"; /* Compliant - Terminated by another escape sequence*/

int c1 = '\141t'; /* Non-compliant */
int c2 = '\141\t'; /* Compliant - Terminated by another escape sequence*/

In this example, the rule is violated when an escape sequence is not terminated with the
end of string literal or another escape sequence.

Check Information
Group: Character Sets and Lexical Conventions
Category: Required
AGC Category: Required
Language: C90, C99

See Also

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-70

MISRA C:2012 Rule 4.2
Trigraphs should not be used

Description

Rule Definition
Trigraphs should not be used.

Rationale
You denote trigraphs with two question marks followed by a specific third character (for
instance,'??-' represents a '~' (tilde) character and '??)' represents a ']'). These
trigraphs can cause accidental confusion with other uses of two question marks.

Note Digraphs (<: :>, <% %>, %:, %:%:) are permitted because they are tokens.

Polyspace Specification
The Polyspace analysis converts trigraphs to the equivalent character for the defect
analysis. However, Polyspace also raises a MISRA violation.

The standard requires that trigraphs must be transformed before comments are removed
during preprocessing. Therefore, Polyspace raises a violation of this rule even if a
trigraph appears in code comments.

Message in Report
Trigraphs should not be used.

 MISRA C:2012 Rule 4.2

5-71

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Character Sets and Lexical Conventions
Category: Advisory
AGC Category: Advisory
Language: C90, C99
CERT C: PRE07-C

See Also

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-72

https://www.securecoding.cert.org/confluence/x/nAE_

MISRA C:2012 Rule 5.1
External identifiers shall be distinct

Description

Rule Definition
External identifiers shall be distinct.

Rationale
External identifiers are ones declared with global scope or storage class extern.

Polyspace considers two names as distinct if there is a difference between their first 31
characters. If the difference between two names occurs only beyond the first 31
characters, they can be easily mistaken for each other. The readability of the code is
reduced. For C90, the difference must occur between the first 6 characters. To use the
C90 rules checking, use the value c90 for the option C standard version (-c-
version).

Message in Report
External %s %s conflicts with the external identifier XX in file YY.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

 MISRA C:2012 Rule 5.1

5-73

Examples

C90: First Six Characters of Identifiers Not Unique
int engine_temperature_raw;
int engine_temperature_scaled; /* Non-compliant */
int engin2_temperature; /* Compliant */

In this example, the identifier engine_temperature_scaled has the same first six
characters as a previous identifier, engine_temperature_raw.

C99: First 31 Characters of Identifiers Not Unique
int engine_exhaust_gas_temperature_raw;
int engine_exhaust_gas_temperature_scaled; /* Non-compliant */

int eng_exhaust_gas_temp_raw;
int eng_exhaust_gas_temp_scaled; /* Compliant */

In this example, the identifier engine_exhaust_gas_temperature_scaled has the
same first 31 characters as a previous identifier,
engine_exhaust_gas_temperature_raw.

C90: First Six Characters Identifiers in Different Translation
Units Differ in Case Alone
/* file1.c */
int abc = 0;

/* file2.c */
int ABC = 0; /* Non-compliant */

In this example, the implementation supports 6 significant case-insensitive characters in
external identifiers. The identifiers in the two translation are different but are not distinct
in their significant characters.

Check Information
Group: Identifiers

5 MISRA C 2012

5-74

Category: Required
AGC Category: Required
Language: C90, C99
CERT C: DCL23-C, DCL40-C
ISO/IEC TS 17961 ID: funcdecl

See Also
MISRA C:2012 Rule 5.2 | MISRA C:2012 Rule 5.4 | MISRA C:2012 Rule 5.5

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 5.1

5-75

https://www.securecoding.cert.org/confluence/x/QAU
https://www.securecoding.cert.org/confluence/x/cwGTAw

MISRA C:2012 Rule 5.2
Identifiers declared in the same scope and name space shall be distinct

Description

Rule Definition
Identifiers declared in the same scope and name space shall be distinct.

Rationale
Polyspace considers two names as distinct if there is a difference between their first 63
characters. If the difference between two names occurs only beyond the first 63
characters, they can be easily mistaken for each other. The readability of the code is
reduced. For C90, the difference must occur between the first 31 characters. To use the
C90 rules checking, use the value c90 for the option C standard version (-c-
version).

Message in Report
Identifier XX has same significant characters as identifier YY.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Examples

C90: First 31 Characters of Identifiers Not Unique
extern int engine_exhaust_gas_temperature_raw;
static int engine_exhaust_gas_temperature_scaled; /* Non-compliant */

5 MISRA C 2012

5-76

extern double engine_exhaust_gas_temperature_raw;
static double engine_exhaust_gas_temperature2_scaled; /* Compliant */

void func (void)
{
 /* Not in the same scope */
 int engine_exhaust_gas_temperature_local; /* Compliant */
}

In this example, the identifier engine_exhaust_gas_temperature_scaled has the
same 31 characters as a previous identifier, engine_exhaust_gas_temperature_raw.

The rule does not apply if the two identifiers have the same 31 characters but have
different scopes. For instance, engine_exhaust_gas_temperature_local has the
same 31 characters as engine_exhaust_gas_temperature_raw but different scope.

C99: First 63 Characters of Identifiers Not Unique
extern int engine_xxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_x_raw;
static int engine_xxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_x_scale;
 /* Non-compliant */

extern int engine_gas_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx__raw;
static int engine_gas_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx__scale;
 /* Compliant */

void func (void)
{
/* Not in the same scope */
 int engine_xxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_x_local;
 /* Compliant */
}

In this example, the identifier
engine_xxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_x_scale
has the same 63 characters as a previous identifier,
engine_xxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_x_raw.

 MISRA C:2012 Rule 5.2

5-77

Check Information
Group: Identifiers
Category: Required
AGC Category: Required
Language: C90, C99
CERT C: DCL23-C

See Also
MISRA C:2012 Rule 5.1 | MISRA C:2012 Rule 5.3 | MISRA C:2012 Rule 5.4 |
MISRA C:2012 Rule 5.5

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-78

https://www.securecoding.cert.org/confluence/x/QAU

MISRA C:2012 Rule 5.3
An identifier declared in an inner scope shall not hide an identifier declared in an outer
scope

Description

Rule Definition
An identifier declared in an inner scope shall not hide an identifier declared in an outer
scope.

Rationale
If two identifiers have the same name but different scope, the identifier in the inner scope
hides the identifier in the outer scope. All uses of the identifier name refers to the
identifier in the inner scope. This behavior forces the developer to keep track of the scope
and reduces code readability.

Polyspace considers two names as distinct if there is a difference between their first 63
characters. If the difference between two names occurs only beyond the first 63
characters, they can be easily mistaken for each other. The readability of the code is
reduced. For C90, the difference must occur between the first 31 characters. To use the
C90 rules checking, use the value c90 for the option C standard version (-c-
version).

Message in Report
Variable XX hides variable XX (FILE line LINE column COLUMN).

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

 MISRA C:2012 Rule 5.3

5-79

Examples

Local Variable Hidden by Another Local Variable in Inner Block
typedef signed short int16_t;

void func(void)
{
 int16_t i;
 {
 int16_t i; /* Non-compliant */
 i = 3;
 }
}

In this example, the identifier i defined in the inner block in func hides the identifier i
with function scope.

It is not immediately clear to a reader which i is referred to in the statement i=3.

Global Variable Hidden by Function Parameter
typedef signed short int16_t;

struct astruct
{
 int16_t m;
};

extern void g (struct astruct *p);
int16_t xyz = 0;

void func (struct astruct xyz) /* Non-compliant */
{
 g (&xyz);
}

In this example, the parameter xyz of function func hides the global variable xyz.

It is not immediately clear to a reader which xyz is referred to in the statement g
(&xyz).

5 MISRA C 2012

5-80

Check Information
Group: Identifiers
Category: Required
AGC Category: Advisory
Language: C90, C99
CERT C: DCL01-C, DCL23-C

See Also
MISRA C:2012 Rule 5.2 | MISRA C:2012 Rule 5.8

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 5.3

5-81

https://www.securecoding.cert.org/confluence/x/VwE
https://www.securecoding.cert.org/confluence/x/QAU

MISRA C:2012 Rule 5.4
Macro identifiers shall be distinct

Description

Rule Definition
Macro identifiers shall be distinct.

Rationale
The names of macro identifiers must be distinct from both other macro identifiers and
their parameters.

Polyspace considers two names as distinct if there is a difference between their first 63
characters. If the difference between two names occurs only beyond the first 63
characters, they can be easily mistaken for each other. The readability of the code is
reduced. For C90, the difference must occur between the first 31 characters. To use the
C90 rules checking, use the value c90 for the option C standard version (-c-
version).

Message in Report
• Macro identifiers shall be distinct. Macro XX has same significant characters as macro

YY.
• Macro identifiers shall be distinct. Macro parameter XX has same significant

characters as macro parameter YY in macro ZZ.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

5 MISRA C 2012

5-82

Examples

C90: First 31 Characters of Macro Names Not Unique
#define engine_exhaust_gas_temperature_raw egt_r
#define engine_exhaust_gas_temperature_scaled egt_s /* Non-compliant */

#define engine_exhaust_gas_temp_raw egt_r
#define engine_exhaust_gas_temp_scaled egt_s /* Compliant */

In this example, the macro engine_exhaust_gas_temperature_scaled egt_s has
the same first 31 characters as a previous macro
engine_exhaust_gas_temperature_scaled.

C99: First 63 Characters of Macro Names Not Unique
#define engine_xxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_raw egt_r
#define engine_xxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_raw_scaled egt_s
 /* Non-compliant */

/* 63 significant case-sensitive characters in macro identifiers */
#define new_engine_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_raw egt_r
#define new_engine_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_scaled egt_s
 /* Compliant */

In this example, the macro
engine_xxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx___gaz_s
caled has the same first 63 characters as a previous macro
engine_xxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx___raw.

Check Information
Group: Identifiers
Category: Required
AGC Category: Required
Language: C90, C99
CERT C: DCL23-C

 MISRA C:2012 Rule 5.4

5-83

https://www.securecoding.cert.org/confluence/x/QAU

See Also
MISRA C:2012 Rule 5.1 | MISRA C:2012 Rule 5.2 | MISRA C:2012 Rule 5.5

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-84

MISRA C:2012 Rule 5.5
Identifiers shall be distinct from macro names

Description

Rule Definition
Identifiers shall be distinct from macro names.

Rationale
The rule requires that macro names that exist only prior to processing must be different
from identifier names that also exist after preprocessing. Keeping macro names and
identifiers distinct help avoid confusion.

Polyspace considers two names as distinct if there is a difference between their first 63
characters. If the difference between two names occurs only beyond the first 63
characters, they can be easily mistaken for each other. The readability of the code is
reduced. For C90, the difference must occur between the first 31 characters. To use the
C90 rules checking, use the value c90 for the option C standard version (-c-
version).

Message in Report
Identifier XX has same significant characters as macro YY.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

 MISRA C:2012 Rule 5.5

5-85

Examples

Macro Names Same as Identifier Names
#define Sum_1(x, y) ((x) + (y))
short Sum_1; /* Non-compliant */

#define Sum_2(x, y) ((x) + (y))
short x = Sum_2 (1, 2); /* Compliant */

In this example, Sum_1 is both the name of an identifier and a macro. Sum_2 is used only
as a macro.

C90: First 31 Characters of Macro Name Same as Identifier
Name
#define low_pressure_turbine_temperature_1 lp_tb_temp_1
static int low_pressure_turbine_temperature_2; /* Non-compliant */

In this example, the identifier low_pressure_turbine_temperature_2 has the same
first 31 characters as a previous macro low_pressure_turbine_temperature_1.

Check Information
Group: Identifiers
Category: Required
AGC Category: Required
Language: C90, C99
CERT C: DCL23-C

See Also
MISRA C:2012 Rule 5.1 | MISRA C:2012 Rule 5.2 | MISRA C:2012 Rule 5.4

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

5 MISRA C 2012

5-86

https://www.securecoding.cert.org/confluence/x/QAU

Introduced in R2014b

 MISRA C:2012 Rule 5.5

5-87

MISRA C:2012 Rule 5.6
A typedef name shall be a unique identifier

Description

Rule Definition
A typedef name shall be a unique identifier.

Rationale
Reusing a typedef name as another typedef or as the name of a function, object or
enum constant can cause developer confusion.

Message in Report
XX conflicts with the typedef name YY.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Examples

typedef Names Reused
void func (void){
 {
 typedef unsigned char u8_t;
 }
 {
 typedef unsigned char u8_t; /* Non-compliant */

5 MISRA C 2012

5-88

 }
}

typedef float mass;
void func1 (void){
 float mass = 0.0f; /* Non-compliant */
}

In this example, the typedef name u8_t is used twice. The typedef name mass is also
used as an identifier name.

typedef Name Same as Structure Name
typedef struct list{ /* Compliant - exception */
 struct list *next;
 unsigned short element;
} list;

typedef struct{
 struct chain{ /* Non-compliant */
 struct chain *list2;
 unsigned short element;
 } s1;
 unsigned short length;
} chain;

In this example, the typedef name list is the same as the original name of the struct
type. The rule allows this exceptional case.

However, the typedef name chain is not the same as the original name of the struct
type. The name chain is associated with a different struct type. Therefore, it clashes
with the typedef name.

Check Information
Group: Identifiers
Category:
AGC Category: Required
Language: C90, C99

 MISRA C:2012 Rule 5.6

5-89

See Also
MISRA C:2012 Rule 5.7

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-90

MISRA C:2012 Rule 5.7
A tag name shall be a unique identifier

Description

Rule Definition
A tag name shall be a unique identifier.

Rationale
Reusing a tag name can cause developer confusion.

Message in Report
XX conflicts with the tag name YY.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Identifiers
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 5.6

 MISRA C:2012 Rule 5.7

5-91

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-92

MISRA C:2012 Rule 5.8
Identifiers that define objects or functions with external linkage shall be unique

Description

Rule Definition
Identifiers that define objects or functions with external linkage shall be unique.

Rationale
External identifiers are those declared with global scope or with storage class extern.
Reusing an external identifier name can cause developer confusion.

Identifiers defined within a function have smaller scope. Even if names of such identifiers
are not unique, they are not likely to cause confusion.

Message in Report
• Object XX conflicts with the object name YY.
• Function XX conflicts with the function name YY.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Identifiers
Category: Required
AGC Category: Required
Language: C90, C99

 MISRA C:2012 Rule 5.8

5-93

See Also
MISRA C:2012 Rule 5.3

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-94

MISRA C:2012 Rule 5.9
Identifiers that define objects or functions with internal linkage should be unique

Description

Rule Definition
Identifiers that define objects or functions with internal linkage should be unique.

Polyspace Specification
This rule checker assumes that rule 5.8 is not violated.

Message in Report
• Object XX conflicts with the object name YY.
• Function XX conflicts with the function name YY.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Identifiers
Category: Advisory
AGC Category: Readability
Language: C90, C99

See Also
MISRA C:2012 Rule 8.10

 MISRA C:2012 Rule 5.9

5-95

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-96

MISRA C:2012 Rule 6.1
Bit-fields shall only be declared with an appropriate type

Description

Rule Definition
Bit-fields shall only be declared with an appropriate type.

Rationale
Using int is implementation-defined because bit-fields of type int can be either signed
or unsigned.

The use of enum, short char, or any other type of bit-field is not permitted in C90
because the behavior is undefined.

In C99, the implementation can potentially define other integer types that are permitted
in bit-field declarations.

Message in Report
Bit-fields shall only be declared with an appropriate type.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Types
Category: Required
AGC Category: Required

 MISRA C:2012 Rule 6.1

5-97

Language: C90, C99
CERT C: INT12-C

See Also

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-98

https://www.securecoding.cert.org/confluence/x/RAE

MISRA C:2012 Rule 6.2
Single-bit named bit fields shall not be of a signed type

Description

Rule Definition
Single-bit named bit fields shall not be of a signed type.

Rationale
According to the C99 Standard Section 6.2.6.2, a single-bit signed bit-field has one sign
bit and no value bits. In any representation of integers, zero value bits cannot specify a
meaningful value.

A single-bit signed bit-field is therefore unlikely to behave in a useful way. Its presence is
likely to indicate programmer confusion.

Although the C90 Standard does not provide much detail regarding the representation of
types, the same single-bit bit-field considerations apply.

Polyspace Specification
This rule does not apply to unnamed bit fields because their values cannot be accessed.

Message in Report
Single-bit named bit fields shall not be of a signed type.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

 MISRA C:2012 Rule 6.2

5-99

Check Information
Group: Types
Category: Required
AGC Category: Required
Language: C90, C99

See Also

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-100

MISRA C:2012 Rule 7.1
Octal constants shall not be used

Description
Rule Definition
Octal constants shall not be used.

Rationale
Octal constants are denoted by a leading zero. Developers can mistake an octal constant
as a decimal constant with a redundant leading zero.

Polyspace Specification
If you use octal constants in a macro definition, the rule checker flags the issue even if
the macro is not used.

Message in Report
Octal constants shall not be used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Examples
Use of octal constants
#define CST 021
#define VALUE 010 /* Compliant - constant not used */

 MISRA C:2012 Rule 7.1

5-101

#if 010 == 01 /* Non-Compliant - constant used */
#define CST 021 /* Non-Compliant - constant not used */
#endif

extern short code[5];
static char* str2 = "abcd\0efg"; /* Compliant */

void main(void) {
 int value1 = 0; /* Compliant */
 int value2 = 01; /* Non-Compliant - decimal 01 */
 int value3 = 1; /* Compliant */
 int value4 = '\109'; /* Compliant */

 code[1] = 109; /* Compliant - decimal 109 */
 code[2] = 100; /* Compliant - decimal 100 */
 code[3] = 052; /* Non-Compliant - decimal 42 */
 code[4] = 071; /* Non-Compliant - decimal 57 */

 if (value1 != CST) { /* Non-Compliant - decimal 17 */
 value1 = !(value1 != 0); /* Compliant */
 }
}

In this example, the rule is not violated when octal constants are used to define macros
CST and VALUE. The rule is violated only when the macros are used.

Check Information
Group: Literals and Constants
Category: Required
AGC Category: Advisory
Language: C90, C99
CERT C: DCL18-C

See Also

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

5 MISRA C 2012

5-102

https://www.securecoding.cert.org/confluence/x/_QC7AQ

Introduced in R2014b

 MISRA C:2012 Rule 7.1

5-103

MISRA C:2012 Rule 7.2
A “u” or “U” suffix shall be applied to all integer constants that are represented in an
unsigned type

Description

Rule Definition
A “u” or “U” suffix shall be applied to all integer constants that are represented in an
unsigned type.

Rationale
The signedness of a constant is determined from:

• Value of the constant.
• Base of the constant: octal, decimal or hexadecimal.
• Size of the various types.
• Any suffixes used.

Unless you use a suffix u or U, another developer looking at your code cannot determine
easily whether a constant is signed or unsigned.

Message in Report
A “u” or “U” suffix shall be applied to all integer constants that are represented in an
unsigned type.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

5 MISRA C 2012

5-104

Check Information
Group: Literals and Constants
Category: Required
AGC Category: Readability
Language: C90, C99

See Also

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 7.2

5-105

MISRA C:2012 Rule 7.3
The lowercase character “l” shall not be used in a literal suffix

Description

Rule Definition
The lowercase character “l” shall not be used in a literal suffix.

Rationale
The lowercase character “l” can be confused with the digit “1”. Use the uppercase “L”
instead.

Message in Report
The lowercase character “l” shall not be used in a literal suffix.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Literals and Constants
Category: Required
AGC Category: Readability
Language: C90, C99
CERT C: DCL16-C

5 MISRA C 2012

5-106

https://www.securecoding.cert.org/confluence/x/koAtAQ

See Also

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 7.3

5-107

MISRA C:2012 Rule 7.4
A string literal shall not be assigned to an object unless the object’s type is “pointer to
const-qualified char”

Description

Rule Definition
A string literal shall not be assigned to an object unless the object’s type is “pointer to
const-qualified char”.

Rationale
This rule prevents assignments that allow modification of a string literal.

An attempt to modify a string literal can result in undefined behavior. For example, some
implementations can store string literals in read-only memory. An attempt to modify the
string literal can result in an exception or crash.

Message in Report
A string literal shall not be assigned to an object unless the object’s type is “pointer to
const-qualified char”.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

5 MISRA C 2012

5-108

Examples

Incorrect Assignment of String Literal
char *str1 = "AccountHolderName";
const char *str2 = "AccountHolderName";

void checkAccount1(char*); /* Non-Compliant */
void checkAccount2(const char*); /* Compliant */

void main() {
 checkAccount1("AccountHolderName"); /* Non-Compliant */
 checkAccount2("AccountHolderName"); /* Compliant */
}

In this example, the rule is not violated when string literals are assigned to const char*
pointers, either directly or through copy of function arguments. The rule is violated only
when the const qualifier is not used.

Check Information
Group: Literals and Constants
Category: Required
AGC Category: Required
Language: C90, C99
ISO/IEC TS 17961 ID: strmod

See Also
MISRA C:2012 Rule 11.4 | MISRA C:2012 Rule 11.8

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 7.4

5-109

MISRA C:2012 Rule 8.1
Types shall be explicitly specified

Description

Rule Definition
Types shall be explicitly specified.

Rationale
n some circumstances, you can omit types from the C90 standard. In those cases, the int
type is implicitly specified. However, the omission of an explicit type can lead to
confusion. For example, in the declaration extern void foo (char c, const k);,
the type of k is const int, but you might expect const char.

You might be using an implicit type in:

• Object declarations
• Parameter declarations
• Member declarations
• typedef declarations
• Function return types

Polyspace Specification
The rule checker flags situations where a function parameter or return type is not
explicitly specified. To enable checking of this rule, use the value c90 for the option C
standard version (-c-version).

Message in Report
Types shall be explicitly specified.

5 MISRA C 2012

5-110

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Examples

Implicit Types
static foo(int a); /* Non compliant */
static void bar(void); /* Compliant */

In this example, the rule is violated because the return type of foo is implicit.

Check Information
Group: Declarations and Definitions
Category: Required
AGC Category: Required
Language: C90
CERT C: DCL31-C

See Also
MISRA C:2012 Rule 8.2

Topics
“Avoid Violations of MISRA C 2012 Rules 8.x”
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 8.1

5-111

https://www.securecoding.cert.org/confluence/x/tgDI

MISRA C:2012 Rule 8.2
Function types shall be in prototype form with named parameters

Description

Rule Definition
Function types shall be in prototype form with named parameters.

Rationale
The rule requires that you specify names and data types for all the parameters in a
declaration. The parameter names provide useful information regarding the function
interface. A mismatch between a declaration and definition can indicate a programming
error. For instance, you mixed up parameters when defining the function. By insisting on
parameter names, the rule allows a code reviewer to detect this mismatch.

Polyspace Specification
The rule checker shows a violation if the parameters in a function declaration or
definition are missing names or data types.

Message in Report
• Too many arguments to function_name.
• Too few arguments to function_name.
• Function types shall be in prototype form with named parameters.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

5 MISRA C 2012

5-112

Examples

Function Prototype Without Named Parameters
extern int func(int); /* Non compliant */
extern int func2(int n); /* Compliant */

extern int func3(); /* Non compliant */
extern int func4(void); /* Compliant */

In this example, the declarations of func and func3 are noncompliant because the
parameters are missing or do not have names.

Check Information
Group: Declarations and Definitions
Category: Required
AGC Category: Required
Language: C90, C99
CERT C: DCL07-C, DCL20-C, DCL36-C
ISO/IEC TS 17961 ID: argcomp, taintnoproto

See Also
MISRA C:2012 Rule 8.1 | MISRA C:2012 Rule 8.4 | MISRA C:2012 Rule 17.3

Topics
“Avoid Violations of MISRA C 2012 Rules 8.x”
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 8.2

5-113

https://www.securecoding.cert.org/confluence/x/LoAg
https://www.securecoding.cert.org/confluence/x/9YAzAg
https://www.securecoding.cert.org/confluence/x/hoAg

MISRA C:2012 Rule 8.3
All declarations of an object or function shall use the same names and type qualifiers

Description

Rule Definition
All declarations of an object or function shall use the same names and type qualifiers.

Rationale
Consistently using parameter names and types across declarations of the same object or
function encourages stronger typing. It is easier to check that the same function interface
is used across all declarations.

Polyspace Specification
The rule checker detects situations where parameter names or data types are different
between multiple declarations or the declaration and the definition. The checker
considers declarations in all translation units and flags issues that are not likely to be
detected by a compiler.

Polyspace Bug Finder and Polyspace Code Prover check this coding rule differently. The
analyses can produce different results.

Message in Report
• Definition of function function_name incompatible with its declaration.
• Global declaration of function_name function has incompatible type with its
definition.

• Global declaration of variable_name variable has incompatible type with its
definition.

• All declarations of an object or function shall use the same names and type qualifiers.

5 MISRA C 2012

5-114

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Examples

Mismatch in Parameter Names
extern int div (int num, int den);

int div(int den, int num) { /* Non compliant */
 return(num/den);
}

In this example, the rule is violated because the parameter names in the declaration and
definition are switched.

Mismatch in Parameter Data Types
typedef unsigned short width;
typedef unsigned short height;
typedef unsigned int area;

extern area calculate(width w, height h);

area calculate(width w, width h) { /* Non compliant *
 return w*h;
}

In this example, the rule is violated because the second argument of the calculate
function has data type:

• height in the declaration.
• width in the definition.

The rule is violated even though the underlying type of height and width are identical.

 MISRA C:2012 Rule 8.3

5-115

Check Information
Group: Declarations and Definitions
Category: Required
AGC Category: Required
Language: C90, C99
CERT C: DCL40-C, EXP37-C
ISO/IEC TS 17961 ID: argcomp, funcdecl

See Also
MISRA C:2012 Rule 8.4

Topics
“Avoid Violations of MISRA C 2012 Rules 8.x”
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-116

https://www.securecoding.cert.org/confluence/x/cwGTAw
https://www.securecoding.cert.org/confluence/x/VQBc

MISRA C:2012 Rule 8.4
A compatible declaration shall be visible when an object or function with external linkage
is defined

Description

Rule Definition
A compatible declaration shall be visible when an object or function with external linkage
is defined.

Rationale
If a declaration is visible when an object or function is defined, it allows the compiler to
check that the declaration and the definition are compatible.

This rule with MISRA C:2012 Rule 8.5 enforces the practice of declaring an object (or
function) in a header file and including the header file in source files that define or use
the object (or function).

Polyspace Specification
The rule checker detects situations where:

• An object or function is defined without a previous declaration.
• There is a data type mismatch between the object or function declaration and
definition. Such a mismatch also causes a compilation error.

Message in Report
• Global definition of variable_name variable has no previous declaration.
• Function function_name has no visible compatible prototype at definition.

 MISRA C:2012 Rule 8.4

5-117

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Examples
Definition Without Previous Declaration
Header file:

/* file.h */
extern int var2;
void func2(void);

Source file:

/* file.c */
#include "file.h"

int var1 = 0; /* Non compliant */
int var2 = 0; /* Compliant */

void func1(void) { /* Non compliant */
}

void func2(void) { /* Compliant */
}

In this example, the definitions of var1 and func1 are noncompliant because they are
not preceded by declarations.

Mismatch in Parameter Data Types
void func(int param1, int param2);

void func(int param1, unsigned int param2) { /* Non compliant */
}

In this example, the definition of func has a different parameter type from its declaration.
The mismatch also causes a compilation error.

5 MISRA C 2012

5-118

Check Information
Group: Declarations and Definitions
Category: Required
AGC Category: Advisory
Language: C90, C99
CERT C: DCL36-C
ISO/IEC TS 17961 ID: funcdecl

See Also
MISRA C:2012 Rule 8.2 | MISRA C:2012 Rule 8.3 | MISRA C:2012 Rule 8.5 |
MISRA C:2012 Rule 17.3

Topics
“Avoid Violations of MISRA C 2012 Rules 8.x”
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 8.4

5-119

https://www.securecoding.cert.org/confluence/x/hoAg

MISRA C:2012 Rule 8.5
An external object or function shall be declared once in one and only one file

Description

Rule Definition
An external object or function shall be declared once in one and only one file.

Rationale
If you declare an identifier in a header file, you can include the header file in any
translation unit where the identifier is defined or used. In this way, you ensure
consistency between:

• The declaration and the definition.
• The declarations in different translation units.

The rule enforces the practice of declaring external objects or functions in header files.

Polyspace Specification
The rule checker checks only explicit extern declarations (tentative definitions are
ignored). The checker flags variables or functions declared extern in a non-header file.

Polyspace Bug Finder and Polyspace Code Prover check this coding rule differently. The
analyses can produce different results.

Message in Report
• Object object_name has external declarations in multiple files.
• Function function_name has external declarations in multiple files.

5 MISRA C 2012

5-120

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Examples
Extern Declaration in Non-Header File
Header file:

/* file.h */
extern int var;
extern void func1(void); /* Compliant */

Source file:

/* file.c */
#include "file.h"

extern void func2(void); /* Non compliant */

/* Definitions */
int var = 0;
void func1(void) {}

In this example, the declaration of external function func2 is noncompliant because it
occurs in a non-header file. The other external object and function declarations occur in a
header file and comply with this rule.

Check Information
Group: Declarations and Definitions
Category: Required
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 8.4

 MISRA C:2012 Rule 8.5

5-121

Topics
“Avoid Violations of MISRA C 2012 Rules 8.x”
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-122

MISRA C:2012 Rule 8.6
An identifier with external linkage shall have exactly one external definition

Description

Rule Definition
An identifier with external linkage shall have exactly one external definition.

Rationale
If you use an identifier for which multiple definitions exist in different files or no definition
exists, the behavior is undefined.

Multiple definitions in different files are not permitted by this rule even if the definitions
are the same.

Polyspace Specification
The checker flags multiple definitions only if the definitions occur in different files.

The checker does not consider tentative definitions as definitions. For instance, the
following code does not violate the rule:

int val;
int val=1;

The checker does not show a violation if a function is not defined at all but declared with
external linkage and called in the source code.

Polyspace Bug Finder and Polyspace Code Prover check this coding rule differently. The
analyses can produce different results.

 MISRA C:2012 Rule 8.6

5-123

Message in Report
• Forbidden multiple definitions for function function_name.
• Forbidden multiple tentative definitions for object object_name.
• Global variable variable_name multiply defined.
• Function function_name multiply defined.
• Global variable has multiple tentative definitions.
• Undefined global variable variable_name.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Examples

Variable Multiply Defined
First source file:

extern int var = 1;

Second source file:

int var = 0; /* Non compliant */

In this example, the global variable var is multiply defined. Unless explicitly specified
with the static qualifier, the variables have external linkage.

Function Multiply Defined
Header file:

/* file.h */
int func(int param);

First source file:

5 MISRA C 2012

5-124

/* file1.c */
#include "file.h"

int func(int param) {
 return param+1;
}

Second source file:

/* file2.c */
#include "file.h"

int func(int param) { /* Non compliant */
 return param-1;
}

In this example, the function func is multiply defined. Unless explicitly specified with the
static qualifier, the functions have external linkage.

Check Information
Group: Declarations and Definitions
Category: Required
AGC Category: Required
Language: C90, C99

See Also

Topics
“Avoid Violations of MISRA C 2012 Rules 8.x”
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 8.6

5-125

MISRA C:2012 Rule 8.7
Functions and objects should not be defined with external linkage if they are referenced
in only one translation unit

Description

Rule Definition
Functions and objects should not be defined with external linkage if they are referenced
in only one translation unit.

Rationale
Compliance with this rule avoids confusion between your identifier and an identical
identifier in another translation unit or library. If you restrict or reduce the visibility of an
object by giving it internal linkage or no linkage, you or someone else is less likely to
access the object inadvertently.

Polyspace Specification
The rule checker flags:

• Objects that are defined at file scope without the static specifier but used only in
one file.

• Functions that are defined without the static specifier but called only in one file.

If you intend to use the object or function in one file only, declare it static.

Polyspace Bug Finder and Polyspace Code Prover check this coding rule differently. The
analyses can produce different results.

Message in Report
• Variable variable_name should have internal linkage.

5 MISRA C 2012

5-126

• Function function_name should have internal linkage.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Examples

Variable with External Linkage Used in One File
Header file:

/* file.h */
extern int var;

First source file:

/* file1.c */
#include "file.h"

int var; /* Compliant */
int var2; /* Non compliant */
static int var3; /* Compliant */

void reset(void);

void reset(void) {
 var = 0;
 var2 = 0;
 var3 = 0;
}

Second source file:

/* file2.c */
#include "file.h"

void increment(int var2);

void increment(int var2) {

 MISRA C:2012 Rule 8.7

5-127

 var++;
 var2++;
}

In this example:

• The declaration of var is compliant because var is declared with external linkage and
used in multiple files.

• The declaration of var2 is noncompliant because var2 is declared with external
linkage but used in one file only.

It might appear that var2 is defined in both files. However, in the second file, var2 is
a parameter with no linkage and is not the same as the var2 in the first file.

• The declaration of var3 is compliant because var3 is declared with internal linkage
(with the static specifier) and used in one file only.

Function with External Linkage Used in One File
Header file:

/* file.h */
extern int var;
extern void increment1 (void);

First source file:

/* file1.c */
#include "file.h"

int var;

void increment2(void);
static void increment3(void);
void func(void);

void increment2(void) { /* Non compliant */
 var+=2;
}

static void increment3(void) { /* Compliant */
 var+=3;
}

5 MISRA C 2012

5-128

void func(void) {
 increment1();
 increment2();
 increment3();
}

Second source file:

/* file2.c */
#include "file.h"

void increment1(void) { /* Compliant */
 var++;
}

In this example:

• The definition of increment1 is compliant because increment1 is defined with
external linkage and called in a different file.

• The declaration of increment2 is noncompliant because increment2 is defined with
external linkage but called in the same file and nowhere else.

• The declaration of increment3 is compliant because increment3 is defined with
internal linkage (with the static specifier) and called in the same file and nowhere
else.

Check Information
Group: Declarations and Definitions
Category: Advisory
AGC Category: Advisory
Language: C90, C99
CERT C: DCL15-C, DCL19-C

See Also

Topics
“Avoid Violations of MISRA C 2012 Rules 8.x”
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”

 MISRA C:2012 Rule 8.7

5-129

https://www.securecoding.cert.org/confluence/x/BoMRAQ
https://www.securecoding.cert.org/confluence/x/DADAAQ

“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-130

MISRA C:2012 Rule 8.8
The static storage class specifier shall be used in all declarations of objects and functions
that have internal linkage

Description

Rule Definition
The static storage class specifier shall be used in all declarations of objects and functions
that have internal linkage.

Rationale
If you do not use the static specifier consistently in all declarations of objects with
internal linkage, you might declare the same object with external and internal linkage.

In this situation, the linkage follows the earlier specification that is visible (C99 Standard,
Section 6.2.2). For instance, if the earlier specification indicates internal linkage, the
object has internal linkage even though the latter specification indicates external linkage.
If you notice the latter specification alone, you might expect otherwise.

Polyspace Specification
The rule checker detects situations where:

• The same object is declared multiple times with different storage specifiers.
• The same function is declared and defined with different storage specifiers.

Message in Report
The static storage class specifier shall be used in all declarations of objects and functions
that have internal linkage.

 MISRA C:2012 Rule 8.8

5-131

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Examples
Linkage Conflict Between Variable Declarations
static int foo = 0;
extern int foo; /* Non-compliant */

extern int hhh;
static int hhh; /* Non-compliant */

In this example, the first line defines foo with internal linkage. The first line is compliant
because the example uses the static keyword. The second line does not use static in
the declaration, so the declaration is noncompliant. By comparison, the third line declares
hhh with an extern keyword creating external linkage. The fourth line declares hhh with
internal linkage, but this declaration conflicts with the first declaration of hhh.

One possible correction is to use static and extern consistently:

static int foo = 0;
static int foo;

extern int hhh;
extern int hhh;

Linkage Conflict Between Function Declaration and Definition
static int fee(void); /* Compliant - declaration: internal linkage */
int fee(void){ /* Non-compliant */
 return 1;
}

static int ggg(void); /* Compliant - declaration: internal linkage */
extern int ggg(void){ /* Non-compliant */
 return 1 + x;
}

5 MISRA C 2012

5-132

This example shows two internal linkage violations. Because fee and ggg have internal
linkage, you must use a static class specifier to be compliant with MISRA.

Check Information
Group: Declarations and Definitions
Category: Required
AGC Category: Required
Language: C90, C99
CERT C: DCL15-C, DCL36-C

See Also

Topics
“Avoid Violations of MISRA C 2012 Rules 8.x”
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 8.8

5-133

https://www.securecoding.cert.org/confluence/x/BoMRAQ
https://www.securecoding.cert.org/confluence/x/hoAg

MISRA C:2012 Rule 8.9
An object should be defined at block scope if its identifier only appears in a single
function

Description

Rule Definition
An object should be defined at block scope if its identifier only appears in a single
function.

Rationale
If you define an object at block scope, you or someone else is less likely to access the
object inadvertently outside the block.

Polyspace Specification
The rule checker flags static objects that are accessed in one function only but declared
at file scope.

Message in Report
An object should be defined at block scope if its identifier only appears in a single
function.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

5 MISRA C 2012

5-134

Examples

Object Declared at File Scope but Used in One Function
static int ctr; /* Non compliant */

int checkStatus(void);
void incrementCount(void);

void incrementCount(void) {
 ctr=0;
 while(1) {
 if(checkStatus())
 ctr++;
 }
}

In this example, the declaration of ctr is noncompliant because it is declared at file scope
but used only in the function incrementCount. Declare ctr in the body of
incrementCount to be MISRA C-compliant.

Check Information
Group: Declarations and Definitions
Category: Advisory
AGC Category: Advisory
Language: C90, C99
CERT C: DCL19-C

See Also

Topics
“Avoid Violations of MISRA C 2012 Rules 8.x”
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 8.9

5-135

https://www.securecoding.cert.org/confluence/x/DADAAQ

Introduced in R2014b

5 MISRA C 2012

5-136

MISRA C:2012 Rule 8.10
An inline function shall be declared with the static storage class

Description

Rule Definition
An inline function shall be declared with the static storage class.

Rationale
If you call an inline function that is declared with external linkage but not defined in the
same translation unit, the function might not be inlined. You might not see the reduction
in execution time that you expect from inlining.

If you want to make an inline function available to several translation units, you can still
define it with the static specifier. In this case, place the definition in a header file.
Include the header file in all the files where you want the function inlined.

Polyspace Specification
The rule checker flags definitions that contain the inline specifier without an
accompanying static specifier.

Message in Report
An inline function shall be declared with the static storage class.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

 MISRA C:2012 Rule 8.10

5-137

Examples

Inlining Functions with External Linkage
inline double mult(int val);
inline double mult(int val) { /* Non compliant */
 return val * 2.0;
}

static inline double div(int val);
static inline double div(int val) { /* Compliant */
 return val / 2.0;
}

In this example, the definition of mult is noncompliant because it is inlined without the
static storage specifier.

Check Information
Group: Declarations and Definitions
Category: Required
AGC Category: Required
Language: C99

See Also
MISRA C:2012 Rule 5.9

Topics
“Avoid Violations of MISRA C 2012 Rules 8.x”
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-138

MISRA C:2012 Rule 8.11
When an array with external linkage is declared, its size should be explicitly specified

Description

Rule Definition
When an array with external linkage is declared, its size should be explicitly specified.

Rationale
Although it is possible to declare an array with an incomplete type and access its
elements, it is safer to state the size of the array explicitly. If you provide size information
for each declaration, a code reviewer can check multiple declarations for their
consistency. With size information, a static analysis tool can perform array bounds
analysis without analyzing more than one unit.

Polyspace Specification
The rule checker flags arrays declared with the extern specifier if the declaration does
not explicitly specify the array size.

Message in Report
Size of array array_name should be explicitly stated. When an array with external
linkage is declared, its size should be explicitly specified.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

 MISRA C:2012 Rule 8.11

5-139

Examples

Array Declarations
extern int32_t array1[10]; /* Compliant */
extern int32_t array2[]; /* Non-compliant */

In this example, two arrays are declared array1 and array2. array1 has external
linkage (the extern keyword) and a size of 10. array2 also has external linkage, but no
specified size. array2 is noncompliant because for arrays with external linkage, you must
explicitly specify a size.

Check Information
Group: Declarations and Definitions
Category: Advisory
AGC Category: Advisory
Language: C90, C99
CERT C: ARR02-C

See Also

Topics
“Avoid Violations of MISRA C 2012 Rules 8.x”
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-140

https://www.securecoding.cert.org/confluence/x/HQEOAQ

MISRA C:2012 Rule 8.12
Within an enumerator list, the value of an implicitly-specified enumeration constant shall
be unique

Description

Rule Definition
Within an enumerator list, the value of an implicitly-specified enumeration constant shall
be unique.

Rationale
An implicitly specified enumeration constant has a value one greater than its predecessor.
If the first enumeration constant is implicitly specified, then its value is 0. An explicitly
specified enumeration constant has the specified value.

If implicitly and explicitly specified constants are mixed within an enumeration list, it is
possible for your program to replicate values. Such replications can be unintentional and
can cause unexpected behavior.

Polyspace Specification
The rule checker flags an enumeration if it has an implicitly specified enumeration
constant with the same value as another enumeration constant.

Message in Report
The constant constant1 has same value as the constant constant2.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

 MISRA C:2012 Rule 8.12

5-141

Examples

Replication of Value in Implicitly Specified Enum Constants
enum color1 {red_1, blue_1, green_1}; /* Compliant */
enum color2 {red_2 = 1, blue_2 = 2, green_2 = 3}; /* Compliant */
enum color3 {red_3 = 1, blue_3, green_3}; /* Compliant */
enum color4 {red_4, blue_4, green_4 = 1}; /* Non Compliant */
enum color5 {red_5 = 2, blue_5, green_5 = 2}; /* Compliant */
enum color6 {red_6 = 2, blue_6, green_6 = 2, yellow_6}; /* Non Compliant */

Compliant situations:

• color1: All constants are implicitly specified.
• color2: All constants are explicitly specified.
• color3: Though there is a mix of implicit and explicit specification, all constants have

unique values.
• color5: The implicitly specified constants have unique values.

Noncompliant situations:

• color4: The implicitly specified constant blue_4 has the same value as green_4.
• color6: The implicitly specified constant blue_6 has the same value as yellow_6.

Check Information
Group: Declarations and Definitions
Category: Required
AGC Category: Required
Language: C90, C99
CERT C: INT09-C

See Also

Topics
“Avoid Violations of MISRA C 2012 Rules 8.x”
“Check for Coding Rule Violations”

5 MISRA C 2012

5-142

https://www.securecoding.cert.org/confluence/x/Rg4

“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 8.12

5-143

MISRA C:2012 Rule 8.13
A pointer should point to a const-qualified type whenever possible

Description
Rule Definition
A pointer should point to a const-qualified type whenever possible.

Rationale
This rule ensures that you do not inadvertently use pointers to modify objects.

Polyspace Specification
The rule checker flags a pointer to a non-const function parameter if the pointer does
not modify the addressed object. The assumption is that the pointer is not meant to
modify the object and so must point to a const-qualified type.

Message in Report
A pointer should point to a const-qualified type whenever possible.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Examples
Pointer That Should Point to const-Qualified Types
#include <string.h>

5 MISRA C 2012

5-144

typedef unsigned short uint16_t;

uint16_t ptr_ex(uint16_t *p) { /* Non-compliant */
 return *p;
}

char last_char(char * const s){ /* Non-compliant */
 return s[strlen(s) - 1u];
}

uint16_t first(uint16_t a[5]){ /* Non-compliant */
 return a[0];
}

This example shows three different noncompliant pointer parameters.

• In the ptr_ex function, p does not modify an object. However, the type to which p
points is not const-qualified, so it is noncompliant.

• In last_char, the pointer s is const-qualified but the type it points to is not. This
parameter is noncompliant because s does not modify an object.

• The function first does not modify the elements of the array a. However, the element
type is not const-qualified, so a is also noncompliant.

One possible correction is to add const qualifiers to the definitions.

#include <string.h>

typedef unsigned short uint16_t;

uint16_t ptr_ex(const uint16_t *p){ /* Compliant */
 return *p;
}

char last_char(const char * const s){ /* Compliant */
 return s[strlen(s) - 1u];
}

uint16_t first(const uint16_t a[5]) { /* Compliant */
 return a[0];
}

 MISRA C:2012 Rule 8.13

5-145

Check Information
Group: Declarations and Definitions
Category: Advisory
AGC Category: Advisory
Language: C90, C99
CERT C: DCL13-C

See Also

Topics
“Avoid Violations of MISRA C 2012 Rules 8.x”
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-146

https://www.securecoding.cert.org/confluence/x/p4Lu

MISRA C:2012 Rule 8.14
The restrict type qualifier shall not be used

Description

Rule Definition
The restrict type qualifier shall not be used.

Rationale
When you use a restrict qualifier carefully, it improves the efficiency of code generated
by a compiler. It can also improve static analysis. However, when using the restrict
qualifier, it is difficult to make sure that the memory areas operated on by two or more
pointers do not overlap.

Polyspace Specification
The rule checker flags all uses of the restrict qualifier.

Message in Report
The restrict type qualifier shall not be used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

 MISRA C:2012 Rule 8.14

5-147

Examples

Use of restrict Qualifier
void f(int n, int * restrict p, int * restrict q)
{
}

In this example, both uses of the restrict qualifier are flagged.

Check Information
Group: Declarations and Definitions
Category: Required
AGC Category: Advisory
Language: C99
CERT C: EXP43-C
ISO/IEC TS 17961 ID: restrict

See Also

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-148

https://www.securecoding.cert.org/confluence/x/QQBLBw

MISRA C:2012 Rule 9.1
The value of an object with automatic storage duration shall not be read before it has
been set

Description
Message in Report:

Rule Definition
The value of an object with automatic storage duration shall not be read before it has
been set.

Rationale
A variable with an automatic storage duration is allocated memory at the beginning of an
enclosing code block and deallocated at the end. All non-global variables have this
storage duration, except those declared static or extern.

Variables with automatic storage duration are not automatically initialized and have
indeterminate values. Therefore, you must not read such a variable before you have set
its value through a write operation.

Polyspace Specification
The Polyspace analysis checks some of the violations as non-initialized variables. For
more information, see Non-initialized variable.

Polyspace Bug Finder and Polyspace Code Prover check this coding rule differently. The
analyses can produce different results. In Code Prover, you can also see a difference in
results based on your choice for the option Verification level (-to). See “Check
for Coding Rule Violations”.

 MISRA C:2012 Rule 9.1

5-149

Message in Report
The value of an object with automatic storage duration shall not be read before it has
been set.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Initialization
Category: Mandatory
AGC Category: Mandatory
Language: C90, C99
ISO/IEC TS 17961 ID: uninitref

See Also
MISRA C:2012 Rule 15.1 | MISRA C:2012 Rule 15.3

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-150

MISRA C:2012 Rule 9.2
The initializer for an aggregate or union shall be enclosed in braces

Description

Rule Definition
The initializer for an aggregate or union shall be enclosed in braces.

Rationale
The rule applies to both objects and subobjects. For example, when initializing a structure
that contains an array, the values assigned to the structure must be enclosed in braces.
Within these braces, the values assigned to the array must be enclosed in another pair of
braces.

Enclosing initializers in braces improves clarity of code that contains complex data
structures such as multidimensional arrays and arrays of structures.

Tip To avoid nested braces for subobjects, use the syntax {0}, which sets all values to
zero.

Message in Report
The initializer for an aggregate or union shall be enclosed in braces.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

 MISRA C:2012 Rule 9.2

5-151

Examples

Initialization of Two-dimensional Arrays
void initialize(void) {
 int x[4][2] = {{0,0},{1,0},{0,1},{1,1}}; /* Compliant */
 int y[4][2] = {{0},{1,0},{0,1},{1,1}}; /* Compliant */
 int z[4][2] = {0}; /* Compliant */
 int w[4][2] = {0,0,1,0,0,1,1,1}; /* Non-compliant */
}

In this example, the rule is not violated when:

• Initializers for each row of the array are enclosed in braces.
• The syntax {0} initializes all elements to zero.

The rule is violated when a separate pair of braces is not used to enclose the initializers
for each row.

Check Information
Group: Initialization
Category: Required
AGC Category: Readability
Language: C90, C99

See Also

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-152

MISRA C:2012 Rule 9.3
Arrays shall not be partially initialized

Description

Rule Definition
Arrays shall not be partially initialized.

Rationale
Providing an explicit initialization for each array element makes it clear that every
element has been considered.

Message in Report
Arrays shall not be partially initialized.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Examples

Partial and Complete Initializations
void func(void) {
 int x[3] = {0,1,2}; /* Compliant */
 int y[3] = {0,1}; /* Non-compliant */
 int z[3] = {0}; /* Compliant - exception */
 int a[30] = {[1] = 1,[15]=1}; /* Compliant - exception */
 int b[30] = {{1} = 1, 1}; /* Non-compliant */

 MISRA C:2012 Rule 9.3

5-153

 char c[20] = "Hello World"; /* Compliant - exception */
}

In this example, the rule is not violated when each array element is explicitly initialized.

The rule is violated when some elements of the array are implicitly initialized. Exceptions
include the following:

• The initializer has the form {0}, which initializes all elements to zero.
• The array initializer consists only of designated initializers. Typically, you use this

approach for sparse initialization.
• The array is initialized using a string literal.

Check Information
Group: Initialization
Category: Required
AGC Category: Readability
Language: C90, C99

See Also

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-154

MISRA C:2012 Rule 9.4
An element of an object shall not be initialized more than once

Description

Rule Definition
An element of an object shall not be initialized more than once.

Rationale
Designated initializers allow explicitly initializing elements of objects such as arrays in
any order. However, using designated initializers, one can inadvertently initialize the
same element twice and therefore overwrite the first initialization.

Message in Report
An element of an object shall not be initialized more than once.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Examples

Array Initialization Using Designated Initializers
void func(void) {
 int a[5] = {-2,-1,0,1,2}; /* Compliant */
 int b[5] = {[0]=-2, [1]=-1, [2]=0, [3]=1, [4]=2};
 /* Compliant */
 int c[5] = {[0]=-2, [1]=-1, [1]=0, [3]=1, [4]=2};

 MISRA C:2012 Rule 9.4

5-155

 /* Non-compliant */
}

In this example, the rule is violated when the array element c[1] is initialized twice using
a designated initializer.

Structure Initialization Using Designated Initializers
struct myStruct {
 int a;
 int b;
 int c;
 int d;
};

void func(void) {
 struct myStruct struct1 = {-4,-2,2,4}; /* Compliant */
 struct myStruct struct2 = {.a=-4, .b=-2, .c=2, .d=4};
 /* Compliant */
 struct myStruct struct3 = {.a=-4, .b=-2, .b=2, .d=4};
 /* Non-compliant */
}

In this example, the rule is violated when struct3.b is initialized twice using a
designated initializer.

Check Information
Group: Initialization
Category: Required
AGC Category: Required
Language: C99

See Also

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

5 MISRA C 2012

5-156

Introduced in R2014b

 MISRA C:2012 Rule 9.4

5-157

MISRA C:2012 Rule 9.5
Where designated initializers are used to initialize an array object the size of the array
shall be specified explicitly

Description

Rule Definition
Where designated initializers are used to initialize an array object the size of the array
shall be specified explicitly.

Rationale
If the size of an array is not specified explicitly, it is determined by the highest index of
the elements that are initialized. When using long designated initializers, it might not be
immediately apparent which element has the highest index.

Message in Report
Where designated initializers are used to initialize an array object the size of the array
shall be specified explicitly.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Examples

Using Designated Initializers Without Specifying Array Size
int a[5] = {[0]= 1, [2] = 1, [4]= 1, [1] = 1}; /* Compliant */
int b[] = {[0]= 1, [2] = 1, [4]= 1, [1] = 1}; /* Non-compliant */

5 MISRA C 2012

5-158

int c[] = {[0]= 1, [1] = 1, [2]= 1, [3]=0, [4] = 1}; /* Non-compliant */

void display(int);

void main() {
 func(a,5);
 func(b,5);
 func(c,5);
}

void func(int* arr, int size) {
 for(int i=0; i<size; i++)
 display(arr[i]);
}

In this example, the rule is violated when the arrays b and c are initialized using
designated initializers but the array size is not specified.

Check Information
Group: Initialization
Category: Required
AGC Category: Readability
Language: C99
CERT C: ARR02-C

See Also

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 9.5

5-159

https://www.securecoding.cert.org/confluence/x/HQEOAQ

MISRA C:2012 Rule 10.1
Operands shall not be of an inappropriate essential type

Description
Rule Definition
Operands shall not be of an inappropriate essential type.

Rationale

An essential type category defines the essential type of an object or expression.

Essential type category Standard types
Essentially Boolean bool or _Bool (defined in stdbool.h)

If you define a boolean type through a typedef, you must
specify this type name before coding rules checking. For
more information, see Effective boolean types (-
boolean-types).

Essentially character char
Essentially enum named enum
Essentially signed signed char, signed short, signed int, signed long,

signed long long
Essentially unsigned unsigned char, unsigned short, unsigned int, unsigned

long, unsigned long long
Essentially floating float, double, long double

For operands of some operators, you cannot use certain essential types. In the table
below, each row represents an operator/operand combination. If the essential type
column is not empty for that row, there is a MISRA restriction when using that type as the
operand. The number in the table corresponds to the rationale list after the table.

5 MISRA C 2012

5-160

Operation Essential type category of arithmetic operand

Operator Operand Boolean character enum signed unsigne
d floating

[] integer 3 4 1
+ (unary) 3 4 5
- (unary) 3 4 5 8

+ - either 3 5
* / either 3 4 5
% either 3 4 5 1

< > <= >= either 3
== != either

! && || any 2 2 2 2 2
<< >> left 3 4 5,6 6 1
<< >> right 3 4 7 7 1

~ & | ^ any 3 4 5,6 6 1
?: 1st 2 2 2 2 2

?: 2nd and
3rd

1 An expression of essentially floating type for these operands is a constraint violation.
2 When an operand is interpreted as a Boolean value, use an expression of essentially

Boolean type.
3 When an operand is interpreted as a numeric value, do not use an operand of

essentially Boolean type.
4 When an operand is interpreted as a numeric value, do not use an operand of

essentially character type. The numeric values of character data are implementation-
defined.

5 In an arithmetic operation, do not use an operand of essentially enum type. An enum
object uses an implementation-defined integer type. An operation involving an enum
object can therefore yield a result with an unexpected type.

6 Perform only shift and bitwise operations on operands of essentially unsigned type.
When you use shift and bitwise operations on essentially signed types, the resulting
numeric value is implementation-defined.

 MISRA C:2012 Rule 10.1

5-161

7 To avoid undefined behavior on negative shifts, use an essentially unsigned right-
hand operand.

8 For the unary minus operator, do not use an operand of essentially unsigned type.
The implemented size of int determines the signedness of the result.

Message in Report
The operand_name operand of the operator_name operator is of an inappropriate
essential type category category_name.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Examples

Violation of Rule 10.1, Rationale 2: Inappropriate Operand
Types for Operators That Take Essentially Boolean Operands
typedef unsigned char boolean;

extern float f32a;
extern char cha;
extern signed char s8a;
extern unsigned char u8a;
enum enuma { a1, a2, a3 } ena;

extern boolean bla, blb, rbla;

void foo(void) {

 rbla = cha && bla; /* Non-compliant: cha is essentially char */
 enb = ena ? a1 : a2; /* Non-compliant: ena is essentially enum */
 rbla = s8a && bla; /* Non-compliant: s8a is essentially signed char */
 ena = u8a ? a1 : a2; /* Non-compliant: u8a is essentially unsigned char */
 rbla = f32a && bla; /* Non-compliant: f32a is essentially float */

 rbla = bla && blb; /* Compliant */

5 MISRA C 2012

5-162

 ru8a = bla ? u8a : u8b; /* Compliant */

}

In the noncompliant examples, rule 10.1 is violated because:

• The operator && expects only essentially Boolean operands. However, at least one of
the operands used has a different type.

• The first operand of ?: is expected to be essentially Boolean. However, a different
operand type is used.

Note For Polyspace to detect the rule violation, you must define the type name boolean
as an effective Boolean type. For more information, see Effective boolean types (-
boolean-types).

Violation of Rule 10.1, Rationale 3: Inappropriate Boolean
Operands
typedef unsigned char boolean;

enum enuma { a1, a2, a3 } ena;
enum { K1 = 1, K2 = 2 }; /* Essentially signed */
extern char cha, chb;
extern boolean bla, blb, rbla;
extern signed char rs8a, s8a;

void foo(void) {

 rbla = bla * blb; /* Non-compliant - Boolean used as a numeric value */
 rbla = bla > blb; /* Non-compliant - Boolean used as a numeric value */

 rbla = bla && blb; /* Compliant */
 rbla = cha > chb; /* Compliant */
 rbla = ena > a1; /* Compliant */
 rbla = u8a > 0U; /* Compliant */
 rs8a = K1 * s8a; /* Compliant - K1 obtained from anonymous enum */

}

 MISRA C:2012 Rule 10.1

5-163

In the noncompliant examples, rule 10.1 is violated because the operators * and > do not
expect essentially Boolean operands. However, the operands used here are essentially
Boolean.

Note For Polyspace to detect the rule violation, you must define the type name boolean
as an effective Boolean type. For more information, see Effective boolean types (-
boolean-types).

Violation of Rule 10.1, Rationale 4: Inappropriate Character
Operands
extern char rcha, cha, chb;
extern unsigned char ru8a, u8a;

void foo(void) {

 rcha = cha & chb; /* Non-compliant - char type used as a numeric value */
 rcha = cha << 1; /* Non-compliant - char type used as a numeric value */

 ru8a = u8a & 2U; /* Compliant */
 ru8a = u8a << 2U; /* Compliant */

}

In the noncompliant examples, rule 10.1 is violated because the operators & and << do
not expect essentially character operands. However, at least one of the operands used
here has essentially character type.

Violation of Rule 10.1, Rationale 5: Inappropriate Enum
Operands
typedef unsigned char boolean;

enum enuma { a1, a2, a3 } rena, ena, enb;

void foo(void) {

 ena--; /* Non-Compliant - arithmetic operation with enum type*/
 rena = ena * a1; /* Non-Compliant - arithmetic operation with enum type*/
 ena += a1; /* Non-Compliant - arithmetic operation with enum type*/

5 MISRA C 2012

5-164

}

In the noncompliant examples, rule 10.1 is violated because the arithmetic operators --,
* and += do not expect essentially enum operands. However, at least one of the operands
used here has essentially enum type.

Violation of Rule 10.1, Rationale 6: Inappropriate Signed
Operand for Bitwise Operations
extern signed char s8a;
extern unsigned char ru8a, u8a;

void foo(void) {

 ru8a = s8a & 2; /* Non-compliant - bitwise operation on signed type */
 ru8a = 2 << 3U; /* Non-compliant - shift operation on signed type */

 ru8a = u8a << 2U; /* Compliant */

}

In the noncompliant examples, rule 10.1 is violated because the & and << operations must
not be performed on essentially signed operands. However, the operands used here are
signed.

Violation of Rule 10.1, Rationale 7: Inappropriate Signed Right
Operand for Shift Operations
extern signed char s8a;
extern unsigned char ru8a, u8a;

void foo(void) {

 ru8a = u8a << s8a; /* Non-compliant - shift magnitude uses signed type */
 ru8a = u8a << -1; /* Non-compliant - shift magnitude uses signed type */

 ru8a = u8a << 2U; /* Compliant */
 ru8a = u8a << 1; /* Compliant - exception */

}

 MISRA C:2012 Rule 10.1

5-165

In the noncompliant examples, rule 10.1 is violated because the operation << does not
expect an essentially signed right operand. However, the right operands used here are
signed.

Check Information
Group: The Essential Type Model
Category: Required
AGC Category: Advisory
Language: C90, C99
CERT C: EXP46-C, INT02-C, INT07-C, INT13-C, INT16-C, INT31-C, STR04-C

See Also
MISRA C:2012 Rule 10.2

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”
“Essential Types in MISRA C: 2012 Rules 10.x”

5 MISRA C 2012

5-166

https://www.securecoding.cert.org/confluence/x/g4FtAg
https://www.securecoding.cert.org/confluence/x/QgE
https://www.securecoding.cert.org/confluence/x/-As
https://www.securecoding.cert.org/confluence/x/BoAD
https://www.securecoding.cert.org/confluence/x/DgDAAQ
https://www.securecoding.cert.org/confluence/x/RQE
https://www.securecoding.cert.org/confluence/x/JABi

MISRA C:2012 Rule 10.2
Expressions of essentially character type shall not be used inappropriately in addition and
subtraction operations

Description

Rule Definition
Expressions of essentially character type shall not be used inappropriately in addition and
subtraction operations.

Rationale
Essentially character type expressions are char variables. Do not use character data
arithmetically because the data does not represent numeric values.

Message in Report
• The operand_name operand of the + operator applied to an expression of essentially

character type shall have essentially signed or unsigned type.
• The right operand of the - operator applied to an expression of essentially character

type shall have essentially signed or unsigned or character type.
• The left operand of the - operator shall have essentially character type if the right

operand has essentially character type.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: The Essential Type Model

 MISRA C:2012 Rule 10.2

5-167

Category: Required
AGC Category: Advisory
Language: C90, C99
CERT C: STR04-C

See Also
MISRA C:2012 Rule 10.1

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”
“Essential Types in MISRA C: 2012 Rules 10.x”

5 MISRA C 2012

5-168

https://www.securecoding.cert.org/confluence/x/JABi

MISRA C:2012 Rule 10.3
The value of an expression shall not be assigned to an object with a narrower essential
type or of a different essential type category

Description

Rule Definition
The value of an expression shall not be assigned to an object with a narrower essential
type or of a different essential type category.

Rationale
The use of implicit conversions between types can lead to unintended results, including
possible loss of value, sign, or precision.

Message in Report
• The expression is assigned to an object with a different essential type category.
• The expression is assigned to an object with a narrower essential type.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: The Essential Type Model
Category: Required
AGC Category: Advisory
Language: C90, C99
CERT C: INT02-C, INT07-C, INT31-C, FLP06-C, STR04-C

 MISRA C:2012 Rule 10.3

5-169

https://www.securecoding.cert.org/confluence/x/QgE
https://www.securecoding.cert.org/confluence/x/-As
https://www.securecoding.cert.org/confluence/x/RQE
https://www.securecoding.cert.org/confluence/x/YAAV
https://www.securecoding.cert.org/confluence/x/JABi

ISO/IEC TS 17961 ID: intoflow

See Also
MISRA C:2012 Rule 10.4 | MISRA C:2012 Rule 10.5 | MISRA C:2012 Rule
10.6

Topics
“Check for Coding Rule Violations”
“Justify Coding Rule Violations Using Code Prover Checks” (Polyspace Code Prover)
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”
“Essential Types in MISRA C: 2012 Rules 10.x”

5 MISRA C 2012

5-170

MISRA C:2012 Rule 10.4
Both operands of an operator in which the usual arithmetic conversions are performed
shall have the same essential type category

Description

Rule Definition
Both operands of an operator in which the usual arithmetic conversions are performed
shall have the same essential type category.

Rationale
The use of implicit conversions between types can lead to unintended results, including
possible loss of value, sign, or precision.

Polyspace Specification
Polyspace does not produce a violation of this rule:

• If one of the operands is the constant zero.
• If one of the operands is a signed constant and the other operand is unsigned, and the

signed constant has the same representation as its unsigned equivalent.

For instance, the statement u8b = u8a + 3;, where u8a and u8b are unsigned
char variables, does not violate the rule because the constants 3 and 3U have the
same representation.

Message in Report
Operands of operator_name operator shall have the same essential type category.

 MISRA C:2012 Rule 10.4

5-171

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: The Essential Type Model
Category: Required
AGC Category: Advisory
Language: C90, C99
CERT C: INT02-C, INT07-C, INT18-C, INT31-C, STR04-C
ISO/IEC TS 17961 ID: intoflow

See Also
MISRA C:2012 Rule 10.3 | MISRA C:2012 Rule 10.7

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”
“Essential Types in MISRA C: 2012 Rules 10.x”

5 MISRA C 2012

5-172

https://www.securecoding.cert.org/confluence/x/QgE
https://www.securecoding.cert.org/confluence/x/-As
https://www.securecoding.cert.org/confluence/x/AxE
https://www.securecoding.cert.org/confluence/x/RQE
https://www.securecoding.cert.org/confluence/x/JABi

MISRA C:2012 Rule 10.5
The value of an expression should not be cast to an inappropriate essential type

Description

Rule Definition
The value of an expression should not be cast to an inappropriate essential type.

Rationale
Converting Between Variable Types

 From
Boolean character enum signed unsigned floating

To

Boolean Avoid Avoid Avoid Avoid Avoid
character Avoid Avoid

enum Avoid Avoid Avoid Avoid Avoid Avoid
signed Avoid

unsigned Avoid
floating Avoid Avoid

Some inappropriate explicit casts are:

• In C99, the result of a cast of assignment to _Bool is always 0 or 1. This result is not
necessarily the case when casting to another type which is defined as essentially
Boolean.

• A cast to an essential enum type may result in a value that does not lie within the set
of enumeration constants for that type.

• A cast from essential Boolean to any other type is unlikely to be meaningful.
• Converting between floating and character types is not meaningful as there is no

precise mapping between the two representations.

 MISRA C:2012 Rule 10.5

5-173

Some acceptable explicit casts are:

• To change the type in which a subsequent arithmetic operation is performed.
• To truncate a value deliberately.
• To make a type conversion explicit in the interests of clarity.

Message in Report
The value of an expression should not be cast to an inappropriate essential type.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: The Essential Type Model
Category: Advisory
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 10.3 | MISRA C:2012 Rule 10.8

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”
“Essential Types in MISRA C: 2012 Rules 10.x”

5 MISRA C 2012

5-174

MISRA C:2012 Rule 10.6
The value of a composite expression shall not be assigned to an object with wider
essential type

Description

Rule Definition
The value of a composite expression shall not be assigned to an object with wider
essential type.

Rationale
A composite expression is a nonconstant expression using a composite operator. In the
Essential Type Model, composite operators are:

• Multiplicative (*, /, %)
• Additive (binary +, binary -)
• Bitwise (&, |, ^)
• Shift (<<, >>)
• Conditional (?, :)

If you assign the result of a composite expression to a larger type, the implicit conversion
can result in loss of value, sign, precision, or layout.

Message in Report
The composite expression is assigned to an object with a wider essential type.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

 MISRA C:2012 Rule 10.6

5-175

Check Information
Group: The Essential Type Model
Category: Required
AGC Category: Advisory
Language: C90, C99
CERT C: INT02-C, INT18-C, INT31-C

See Also
MISRA C:2012 Rule 10.3 | MISRA C:2012 Rule 10.7

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”
“Essential Types in MISRA C: 2012 Rules 10.x”

5 MISRA C 2012

5-176

https://www.securecoding.cert.org/confluence/x/QgE
https://www.securecoding.cert.org/confluence/x/AxE
https://www.securecoding.cert.org/confluence/x/RQE

MISRA C:2012 Rule 10.7
If a composite expression is used as one operand of an operator in which the usual
arithmetic conversions are performed then the other operand shall not have wider
essential type

Description

Rule Definition
If a composite expression is used as one operand of an operator in which the usual
arithmetic conversions are performed, then the other operand shall not have wider
essential type.

Rationale
A composite expression is a nonconstant expression using a composite operator. In the
Essential Type Model, composite operators are:

• Multiplicative (*, /, %)
• Additive (binary +, binary -)
• Bitwise (&, |, ^)
• Shift (<<, >>)
• Conditional (?, :)

Restricting implicit conversion on composite expressions mean that sequences of
arithmetic operations within expressions must use the same essential type. This
restriction reduces confusion and avoids loss of value, sign, precision, or layout. However,
this rule does not imply that all operands in an expression are of the same essential type.

Message in Report
• The right operand shall not have wider essential type than the left operand which is a

composite expression.

 MISRA C:2012 Rule 10.7

5-177

• The left operand shall not have wider essential type than the right operand which is a
composite expression.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: The Essential Type Model
Category: Required
AGC Category: Advisory
Language: C90, C99
CERT C: INT02-C, INT18-C, INT31-C

See Also

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”
“Essential Types in MISRA C: 2012 Rules 10.x”

5 MISRA C 2012

5-178

https://www.securecoding.cert.org/confluence/x/QgE
https://www.securecoding.cert.org/confluence/x/AxE
https://www.securecoding.cert.org/confluence/x/RQE

MISRA C:2012 Rule 10.8
The value of a composite expression shall not be cast to a different essential type
category or a wider essential type

Description

Rule Definition
The value of a composite expression shall not be cast to a different essential type
category or a wider essential type.

Rationale
A composite expression is a non-constant expression using a composite operator. In the
Essential Type Model, composite operators are:

• Multiplicative (*, /, %)
• Additive (binary +, binary -)
• Bitwise (&, |, ^)
• Shift (<<, >>)
• Conditional (?, :)

Casting to a wider type is not permitted because the result may vary between
implementations. Consider this expression:

(uint32_t) (u16a +u16b);

On a 16-bit machine the addition is performed in 16 bits. The result is wrapped before it
is cast to 32 bits. On a 32-bit machine, the addition takes place in 32 bits and preserves
high-order bits that are lost on a 16-bit machine. Casting to a narrower type with the
same essential type category is acceptable as the explicit truncation of the results always
leads to the same loss of information.

For information on essential types, see MISRA C:2012 Rule 10.1.

 MISRA C:2012 Rule 10.8

5-179

Polyspace Specification
The rule checker raises a defect only if the result of a composite expression is cast to a
different or wider essential type.

For instance, in this example, a violation is shown in the first assignment to i but not the
second. In the first assignment, a composite expression i+1 is directly cast from a signed
to an unsigned type. In the second assignment, the composite expression is first cast to
the same type and then the result is cast to a different type.

typedef int int32_T;
typedef unsigned char uint8_T;
...
...
int32_T i;
i = (uint8_T)(i+1); /* Noncompliant */
i = (uint8_T)((int32_T)(i+1)); /* Compliant */

Message in Report
• The value of a composite expression shall not be cast to a different essential type

category.
• The value of a composite expression shall not be cast to a wider essential type.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Examples

Casting to Different or Wider Essential Type
extern unsigned short ru16a, u16a, u16b;
extern unsigned int u32a, ru32a;
extern signed int s32a, s32b;

void foo(void)
{

5 MISRA C 2012

5-180

 ru16a = (unsigned short) (u32a + u32a);/* Compliant */
 ru16a += (unsigned short) s32a; /* Compliant - s32a is not composite */
 ru32a = (unsigned int) (u16a + u16b); /* Noncompliant - wider essential type */
}

In this example, rule 10.8 is violated in the following cases:

• s32a and s32b are essentially signed variables. However, the result (s32a +
s32b) is cast to an essentially unsigned type.

• u16a and u16b are essentially unsigned short variables. However, the result
(s32a + s32b) is cast to a wider essential type, unsigned int.

Check Information
Group: The Essential Type Model
Category: Required
AGC Category: Advisory
Language: C90, C99
CERT C: INT02-C
ISO/IEC TS 17961 ID: ptrcomp

See Also
MISRA C:2012 Rule 10.5

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 10.8

5-181

https://www.securecoding.cert.org/confluence/x/QgE

MISRA C:2012 Rule 11.1
Conversions shall not be performed between a pointer to a function and any other type

Description

Rule Definition
Conversions shall not be performed between a pointer to a function and any other type.

Rationale
The rule forbids the following two conversions:

• Conversion from a function pointer to any other type. This conversion causes
undefined behavior.

• Conversion from a function pointer to another function pointer, if the function pointers
have different argument and return types.

The conversion is forbidden because calling a function through a pointer with
incompatible type results in undefined behavior.

Polyspace Specification
Polyspace considers both explicit and implicit casts when checking this rule. However,
casts from NULL or (void*)0 do not violate this rule.

Message in Report
Conversions shall not be performed between a pointer to a function and any other type.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

5 MISRA C 2012

5-182

Examples

Cast between two function pointers
typedef void (*fp16) (short n);
typedef void (*fp32) (int n);

#include <stdlib.h> /* To obtain macro NULL */

void func(void) { /* Exception 1 - Can convert a null pointer
 * constant into a pointer to a function */
 fp16 fp1 = NULL; /* Compliant - exception */
 fp16 fp2 = (fp16) fp1; /* Compliant */
 fp32 fp3 = (fp32) fp1; /* Non-compliant */
 if (fp2 != NULL) {} /* Compliant - exception */
 fp16 fp4 = (fp16) 0x8000; /* Non-compliant - integer to
 * function pointer */}

In this example, the rule is violated when:

• The pointer fp1 of type fp16 is cast to type fp32. The function pointer types fp16
and fp32 have different argument types.

• An integer is cast to type fp16.

The rule is not violated when function pointers fp1 and fp2 are cast to NULL.

Check Information
Group: Pointer Type Conversions
Category: Required
AGC Category: Required
Language: C90, C99
CERT C: DCL07-C, EXP36-C, EXP37-C

See Also

Topics
“Check for Coding Rule Violations”

 MISRA C:2012 Rule 11.1

5-183

https://www.securecoding.cert.org/confluence/x/LoAg
https://www.securecoding.cert.org/confluence/x/tgAV
https://www.securecoding.cert.org/confluence/x/VQBc

“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-184

MISRA C:2012 Rule 11.2
Conversions shall not be performed between a pointer to an incomplete type and any
other type

Description

Rule Definition
Conversions shall not be performed between a pointer to an incomplete type and any
other type.

Rationale
An incomplete type is a type that does not contain sufficient information to determine its
size. For example, the statement struct s; describes an incomplete type because the
fields of s are not defined. The size of a variable of type s cannot be determined.

Conversions to or from a pointer to an incomplete type result in undefined behavior.
Typically, a pointer to an incomplete type is used to hide the full representation of an
object. This encapsulation is broken if another pointer is implicitly or explicitly cast to
such a pointer.

Message in Report
Conversions shall not be performed between a pointer to an incomplete type and any
other type.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

 MISRA C:2012 Rule 11.2

5-185

Examples

Casts from incomplete type
struct s *sp;
struct t *tp;
short *ip;
struct ct *ctp1;
struct ct *ctp2;

void foo(void) {

 ip = (short *) sp; /* Non-compliant */
 sp = (struct s *) 1234; /* Non-compliant */
 tp = (struct t *) sp; /* Non-compliant */
 ctp1 = (struct ct *) ctp2; /* Compliant */

 /* You can convert a null pointer constant to
 * a pointer to an incomplete type */
 sp = NULL; /* Compliant - exception */

 /* A pointer to an incomplete type may be converted into void */
 struct s *f(void);
 (void) f(); /* Compliant - exception */

}

In this example, types s, t and ct are incomplete. The rule is violated when:

• The variable sp with an incomplete type is cast to a basic type.
• The variable sp with an incomplete type is cast to a different incomplete type t.

The rule is not violated when:

• The variable ctp2 with an incomplete type is cast to the same incomplete type.
• The NULL pointer is cast to the variable sp with an incomplete type.
• The return value of f with incomplete type is cast to void.

5 MISRA C 2012

5-186

Check Information
Group: Pointer Type Conversions
Category: Required
AGC Category: Required
Language: C90, C99
CERT C: EXP36-C
ISO/IEC TS 17961 ID: ptrcomp

See Also
MISRA C:2012 Rule 11.5

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 11.2

5-187

https://www.securecoding.cert.org/confluence/x/tgAV

MISRA C:2012 Rule 11.3
A cast shall not be performed between a pointer to object type and a pointer to a different
object type

Description
Rule Definition
A cast shall not be performed between a pointer to object type and a pointer to a different
object type.

Rationale
If a pointer to an object is cast into a pointer to a different object, the resulting pointer
can be incorrectly aligned. The incorrect alignment causes undefined behavior.

Even if the conversion produces a pointer that is correctly aligned, the behavior can be
undefined if the pointer is used to access an object.

Exception: You can convert a pointer to object type into a pointer to one of the following
types:

• char
• signed char
• unsigned char

Message in Report
A cast shall not be performed between a pointer to object type and a pointer to a different
object type.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

5 MISRA C 2012

5-188

Examples

Noncompliant: Cast to Pointer Pointing to Object of Wider
Type
signed char *p1;
unsigned int *p2;

void foo(void){
 p2 = (unsigned int *) p1; /* Non-compliant */
}

In this example, p1 can point to a signed char object. However, p1 is cast to a pointer
that points to an object of wider type, unsigned int.

Noncompliant: Cast to Pointer Pointing to Object of Narrower
Type
extern unsigned int read_value (void);
extern void display (unsigned int n);

void foo (void){
 unsigned int u = read_value ();
 unsigned short *hi_p = (unsigned short *) &u; /* Non-compliant */
 *hi_p = 0;
 display (u);
}

In this example, u is an unsigned int variable. &u is cast to a pointer that points to an
object of narrower type, unsigned short.

On a big-endian machine, the statement *hi_p = 0 attempts to clear the high bits of the
memory location that &u points to. But, from the result of display(u), you might find
that the high bits have not been cleared.

Compliant: Cast Adding a Type Qualifier
const short *p;
const volatile short *q;
void foo (void){

 MISRA C:2012 Rule 11.3

5-189

 q = (const volatile short *) p; /* Compliant */
}

In this example, both p and q can point to short objects. The cast between them adds a
volatile qualifier only and is therefore compliant.

Check Information
Group: Pointer Type Conversions
Category: Required
AGC Category: Required
Language: C90, C99
CERT C: EXP36-C, EXP39-C
ISO/IEC TS 17961 ID: alignconv, ptrcomp

See Also
MISRA C:2012 Rule 11.4 | MISRA C:2012 Rule 11.5 | MISRA C:2012 Rule
11.8

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-190

https://www.securecoding.cert.org/confluence/x/tgAV
https://www.securecoding.cert.org/confluence/x/-QFqAQ

MISRA C:2012 Rule 11.4
A conversion should not be performed between a pointer to object and an integer type

Description

Rule Definition
A conversion should not be performed between a pointer to object and an integer type.

Rationale
Conversion between integers and pointers can cause errors or undefined behavior.

• If an integer is cast to a pointer, the resulting pointer can be incorrectly aligned. The
incorrect alignment causes undefined behavior.

• If a pointer is cast to an integer, the resulting value can be outside the allowed range
for the integer type.

Polyspace Specification
Casts or implicit conversions from NULL or (void*)0 do not generate a warning.

Message in Report
A conversion should not be performed between a pointer to object and an integer type.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

 MISRA C:2012 Rule 11.4

5-191

Examples

Casts between pointer and integer
#include <stdbool.h>

typedef unsigned char uint8_t;
typedef char char_t;
typedef unsigned short uint16_t;
typedef signed int int32_t;

typedef _Bool bool_t;
uint8_t *PORTA = (uint8_t *) 0x0002; /* Non-compliant */

void foo(void) {

 char_t c = 1;
 char_t *pc = &c; /* Compliant */

 uint16_t ui16 = 7U;
 uint16_t *pui16 = &ui16; /* Compliant */
 pui16 = (uint16_t *) ui16; /* Non-compliant */

 uint16_t *p;
 int32_t addr = (int32_t) p; /* Non-compliant */
 bool_t b = (bool_t) p; /* Non-compliant */
 enum etag { A, B } e = (enum etag) p; /* Non-compliant */
}

In this example, the rule is violated when:

• The integer 0x0002 is cast to a pointer.

If the integer defines an absolute address, it is more common to assign the address to
a pointer in a header file. To avoid the assignment being flagged, you can then exclude
headers files from coding rules checking. For more information, see Do not
generate results for (-do-not-generate-results-for).

• The pointer p is cast to integer types such as int32_t, bool_t or enum etag.

The rule is not violated when the address &ui16 is assigned to a pointer.

5 MISRA C 2012

5-192

Check Information
Group: Pointer Type Conversions
Category: Advisory
AGC Category: Advisory
Language: C90, C99
CERT C: INT36-C
ISO/IEC TS 17961 ID: intptrconv

See Also
MISRA C:2012 Rule 11.3 | MISRA C:2012 Rule 11.7 | MISRA C:2012 Rule
11.9

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 11.4

5-193

https://www.securecoding.cert.org/confluence/x/XAAV

MISRA C:2012 Rule 11.5
A conversion should not be performed from pointer to void into pointer to object

Description
Rule Definition
A conversion should not be performed from pointer to void into pointer to object.

Rationale
If a pointer to void is cast into a pointer to an object, the resulting pointer can be
incorrectly aligned. The incorrect alignment causes undefined behavior. However, such a
cast can sometimes be necessary, for example, when using memory allocation functions.

Polyspace Specification
Casts or implicit conversions from NULL or (void*)0 do not generate a warning.

Message in Report
A conversion should not be performed from pointer to void into pointer to object.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Examples
Cast from Pointer to void
void foo(void) {

5 MISRA C 2012

5-194

 unsigned int u32a = 0;
 unsigned int *p32 = &u32a;
 void *p;
 unsigned int *p16;

 p = p32; /* Compliant - pointer to uint32_t
 * into pointer to void */
 p16 = p; /* Non-compliant */

 p = (void *) p16; /* Compliant */
 p32 = (unsigned int *) p; /* Non-compliant */
}

In this example, the rule is violated when the pointer p of type void* is cast to pointers
to other types.

The rule is not violated when p16 and p32, which are pointers to non-void types, are
cast to void*.

Check Information
Group: Pointer Type Conversions
Category: Advisory
AGC Category: Advisory
Language: C90, C99
CERT C: EXP36-C

See Also
MISRA C:2012 Rule 11.2 | MISRA C:2012 Rule 11.3

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 11.5

5-195

https://www.securecoding.cert.org/confluence/x/tgAV

MISRA C:2012 Rule 11.6
A cast shall not be performed between pointer to void and an arithmetic type

Description

Rule Definition
A cast shall not be performed between pointer to void and an arithmetic type.

Rationale
Conversion between integer types and pointers to void can cause errors or undefined
behavior.

• If an integer type is cast to a pointer, the resulting pointer can be incorrectly aligned.
The incorrect alignment causes undefined behavior.

• If a pointer is cast to an arithmetic type, the resulting value can be outside the allowed
range for the type.

Conversion between non-integer arithmetic types and pointers to void is undefined.

Polyspace Specification
Casts or implicit conversions from NULL or (void*)0 do not generate a warning.

Message in Report
A cast shall not be performed between pointer to void and an arithmetic type.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

5 MISRA C 2012

5-196

Examples

Casts Between Pointer to void and Arithmetic Types
void foo(void) {

 void *p;
 unsigned int u;
 unsigned short r;

 p = (void *) 0x1234u; /* Non-compliant - undefined */
 u = (unsigned int) p; /* Non-compliant - undefined */

 p = (void *) 0; /* Compliant - Exception */

}

In this example, p is a pointer to void. The rule is violated when:

• An integer value is cast to p.
• p is cast to an unsigned int type.

The rule is not violated if an integer constant with value 0 is cast to a pointer to void.

Check Information
Group: Pointer Type Conversions
Category: Required
AGC Category: Required
Language: C90, C99

See Also

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 11.6

5-197

Introduced in R2014b

5 MISRA C 2012

5-198

MISRA C:2012 Rule 11.7
A cast shall not be performed between pointer to object and a non-integer arithmetic type

Description

Rule Definition
A cast shall not be performed between pointer to object and a non-integer arithmetic
type.

Rationale
This rule covers types that are essentially Boolean, character, enum or floating.

• If an essentially Boolean, character or enum variable is cast to a pointer, the resulting
pointer can be incorrectly aligned. The incorrect alignment causes undefined behavior.
If a pointer is cast to one of those types, the resulting value can be outside the allowed
range for the type.

• Casts to or from a pointer to a floating type results in undefined behavior.

Message in Report
A cast shall not be performed between pointer to object and a non-integer arithmetic
type.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

 MISRA C:2012 Rule 11.7

5-199

Examples

Casts from Pointer to Non-Integer Arithmetic Types
int foo(void) {

 short *p;
 float f;
 long *l;

 f = (float) p; /* Non-compliant */
 p = (short *) f; /* Non-compliant */

 l = (long *) p; /* Compliant */
}

In this example, the rule is violated when:

• The pointer p is cast to float.
• A float variable is cast to a pointer to short.

The rule is not violated when the pointer p is cast to long*.

Check Information
Group: Pointer Type Conversions
Category: Required
AGC Category: Required
Language: C90, C99
CERT C: EXP36-C

See Also
MISRA C:2012 Rule 11.4

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

5 MISRA C 2012

5-200

https://www.securecoding.cert.org/confluence/x/tgAV

Introduced in R2014b

 MISRA C:2012 Rule 11.7

5-201

MISRA C:2012 Rule 11.8
A cast shall not remove any const or volatile qualification from the type pointed to by a
pointer

Description

Rule Definition
A cast shall not remove any const or volatile qualification from the type pointed to by a
pointer.

Rationale
This rule forbids:

• Casts from a pointer to a const object to a pointer that does not point to a const
object.

• Casts from a pointer to a volatile object to a pointer that does not point to a
volatile object.

Such casts violate type qualification. For example, the const qualifier indicates the read-
only status of an object. If a cast removes the qualifier, the object is no longer read-only.

Polyspace Specification
Polyspace flags both implicit and explicit conversions that violate this rule.

Message in Report
A cast shall not remove any const or volatile qualification from the type pointed to by a
pointer.

5 MISRA C 2012

5-202

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Examples

Casts That Remove Qualifiers
void foo(void) {

 /* Cast on simple type */
 unsigned short x;
 unsigned short * const cpi = &x; /* const pointer */
 unsigned short * const *pcpi; /* pointer to const pointer */
 unsigned short **ppi;
 const unsigned short *pci; /* pointer to const */
 volatile unsigned short *pvi; /* pointer to volatile */
 unsigned short *pi;

 pi = cpi; /* Compliant - no cast required */
 pi = (unsigned short *) pci; /* Non-compliant */
 pi = (unsigned short *) pvi; /* Non-compliant */
 ppi = (unsigned short **)pcpi; /* Non-compliant */
}

In this example:

• The variables pci and pcpi have the const qualifier in their type. The rule is violated
when the variables are cast to types that do not have the const qualifier.

• The variable pvi has a volatile qualifier in its type. The rule is violated when the
variable is cast to a type that does not have the volatile qualifier.

Even though cpi has a const qualifier in its type, the rule is not violated in the
statement p=cpi;. The assignment does not cause a type conversion because both p and
cpi have type unsigned short.

 MISRA C:2012 Rule 11.8

5-203

Check Information
Group: Pointer Type Conversions
Category: Required
AGC Category: Required
Language: C90, C99
CERT C: EXP05-C, EXP32-C

See Also
MISRA C:2012 Rule 11.3

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-204

https://www.securecoding.cert.org/confluence/x/VAE
https://www.securecoding.cert.org/confluence/x/hAY

MISRA C:2012 Rule 11.9
The macro NULL shall be the only permitted form of integer null pointer constant

Description
Rule Definition
The macro NULL shall be the only permitted form of integer null pointer constant.

Rationale
The following expressions require the use of a null pointer constant:

• Assignment to a pointer
• The == or != operation, where one operand is a pointer
• The ?: operation, where one of the operands on either side of : is a pointer

Using NULL rather than 0 makes it clear that a null pointer constant was intended.

Message in Report
The macro NULL shall be the only permitted form of integer null pointer constant.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Examples
Using 0 for Pointer Assignments and Comparisons
void main(void) {

 MISRA C:2012 Rule 11.9

5-205

 int *p1 = 0; /* Non-compliant */
 int *p2 = (void *) 0; /* Compliant */

#define MY_NULL_1 0
#define MY_NULL_2 (void *) 0

 if (p1 == MY_NULL_1) /* Non-compliant */
 { }
 if (p2 == MY_NULL_2) /* Compliant */
 { }

}

In this example, the rule is violated when the constant 0 is used instead of (void*) 0 for
pointer assignments and comparisons.

Check Information
Group: Pointer Type Conversions
Category: Required
AGC Category: Readability
Language: C90, C99

See Also
MISRA C:2012 Rule 11.4

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-206

MISRA C:2012 Rule 12.1
The precedence of operators within expressions should be made explicit

Description

Rule Definition
The precedence of operators within expressions should be made explicit.

Rationale
The C language has a large number of operators and their precedence is not intuitive.
Inexperienced programmers can easily make mistakes. Remove any ambiguity by using
parentheses to explicitly define operator precedence.

The following table list the MISRA C definition of operator precedence for this rule.

Description Operator and Operand Precede
nce

Primary identifier, constant, string literal, (expression) 16
Postfix [] () (function call) . -> ++(post-increment) --(post-

decrement) () {}(C99: compound literals)
15

Unary ++(post-increment) --(post-decrement) & * + - ~ !
sizeof defined (preprocessor)

14

Cast () 13
Multiplicative * / % 12
Additive + - 11
Bitwise shift << >> 10
Relational <> <= >= 9
Equality == != 8
Bitwise AND & 7

 MISRA C:2012 Rule 12.1

5-207

Description Operator and Operand Precede
nce

Bitwise XOR ^ 6
Bitwise OR | 5
Logical AND && 4
Logical OR || 3
Conditional ?: 2
Assignment = *= /= += -= <<= >>= &= ^= |= 1
Comma , 0

Message in Report
Operand of logical %s is not a primary expression. The precedence of operators within
expressions should be made explicit.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Examples

Ambiguous Precedence in Multi-Operation Expressions
int a, b, c, d, x;

void foo(void) {
 x = sizeof a + b; /* Non-compliant - MISRA-12.1 */

 x = a == b ? a : a - b; /* Non-compliant - MISRA-12.1 */

 x = a << b + c ; /* Non-compliant - MISRA-12.1 */

 if (a || b && c) { } /* Non-compliant - MISRA-12.1 */

5 MISRA C 2012

5-208

 if ((a>x) && (b>x) || (c>x)) { } /* Non-compliant - MISRA-12.1 */
}

This example shows various violations of MISRA rule 12.1. In each violation, if you do not
know the order of operations, the code could execute unexpectedly.

To comply with this MISRA rule, add parentheses around individual operations in the
expressions. One possible solution is shown here.

int a, b, c, d, x;

void foo(void) {
 x = sizeof(a) + b;

 x = (a == b) ? a : (a - b);

 x = a << (b + c);

 if ((a || b) && c) { }

 if (((a>x) && (b>x)) || (c>x)) { }
}

Ambiguous Precedence In Preprocessing Expressions
if defined X && X + Y > Z /* Non-compliant - MISRA-12.1 */
endif

if ! defined X && defined Y /* Non-compliant - MISRA-12.1 */
endif

In this example, two violations of MISRA rule 12.1 are shown in preprocessing code. In
each violation, if you do not know the correct order of operations, the results can be
unexpected and cause problems.

To comply with this MISRA rule, add parentheses around individual operations in the
expressions. One possible solution is shown here.

if defined (X) && ((X + Y) > Z)
endif

 MISRA C:2012 Rule 12.1

5-209

if ! defined (X) && defined (Y)
endif

Compliant Expressions Without Parentheses
int a, b, c, x;
struct {int a; } s, *ps, *pp[2];

void foo(void) {
 ps = &s

 pp[i]-> a; /* Compliant - no need to write (pp[i])->a */
 ps++; / Compliant - no need to write *(p++) */

 x = f (a + b, c); /* Compliant - no need to write f ((a+b),c) */

 x = a, b; /* Compliant - parsed as (x = a), b */

 if (a && b && c){ /* Compliant - all operators have
 * the same precedence */
}

In this example, the expressions shown have multiple operations. However, these
expressions are compliant because operator precedence is already clear.

Check Information
Group: Expressions
Category: Advisory
AGC Category: Advisory
Language: C90, C99
CERT C: EXP00-C

See Also
MISRA C:2012 Rule 12.2 | MISRA C:2012 Rule 12.3 | MISRA C:2012 Rule
12.4

Topics
“Check for Coding Rule Violations”

5 MISRA C 2012

5-210

https://www.securecoding.cert.org/confluence/x/_wI

“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 12.1

5-211

MISRA C:2012 Rule 12.2
The right hand operand of a shift operator shall lie in the range zero to one less than the
width in bits of the essential type of the left hand operand

Description

Rule Definition
The right hand operand of a shift operator shall lie in the range zero to one less than the
width in bits of the essential type of the left hand operand.

Rationale
Consider the following statement:

var = abc << num;

If abc is a 16-bit integer, then num must be in the range 0–15, (nonnegative and less than
16). If num is negative or greater than 16, then the shift behavior is undefined.

Polyspace Specification
In Polyspace, the numbers that are manipulated in preprocessing directives are 64 bits
wide. The valid shift range is between 0 and 63. When bitfields are within a complex
expression, Polyspace extends this check onto the bitfield field width or the width of the
base type.

Message in Report
• Shift amount is bigger than size.
• Shift amount is negative.
• The right operand of a shift operator shall lie in the range zero to one less than the

width in bits of the essential type of the left operand.

5 MISRA C 2012

5-212

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Expressions
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 12.1

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 12.2

5-213

MISRA C:2012 Rule 12.3
The comma operator should not be used

Description

Rule Definition
The comma operator should not be used.

Rationale
The comma operator can be detrimental to readability. You can often write the same code
in another form.

Message in Report
The comma operator should not be used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Examples

Comma Usage in C Code
typedef signed int abc, xyz, jkl;

static void func1 (abc, xyz, jkl); /* Compliant - case 1 */

int foo(void)
{

5 MISRA C 2012

5-214

 volatile int rd = 1; /* Compliant - case 2*/
 int var=0, foo=0, k=0, n=2, p, t[10]; /* Compliant - case 3*/

 int abc = 0, xyz = abc + 1; /* Compliant - case 4*/
 int jkl = (abc + xyz, abc + xyz); /* Not compliant - case 1*/

 var = 1, foo += var, kkk = 3; /* Not compliant - case 2*/
 var = (kkk = 1, foo = 2); /* Not compliant - case 3*/

 for (var = 0, ptr = &t[0]; var < num; ++var, ++ptr){}
 /* Not compliant - case 4*/

 if ((abc,xyz)<0) { return 1; } /* Not compliant - case 5*/
}

In this example, the code shows various uses of commas in C code.

Case Reason for noncompliance
1 When reading the code, it is not immediately obvious what jkl is

initialized to. For example, you could infer that jkl has a value
abc+xyz, (abc+xyz)*(abc+xyz), f((abc+xyz),(abc
+xyz)), and so on.

2 When reading the code, it is not immediately obvious whether
foo has a value 0 or 1 after the statement.

3 When reading the code, it is not immediately obvious what value
is assigned to var.

4 When reading the code, it is not immediately obvious which
values control the for loop.

5 When reading the code, it is not immediately obvious whether the
if statement depends on abc, xyz, or both.

Case Reason for compliance
1 Using commas to call functions with variables is allowed.
2 Comma operator is not used.
3 & 4 When using the comma for initialization, the variables and their

values are immediately obvious.

 MISRA C:2012 Rule 12.3

5-215

Check Information
Group: Expressions
Category: Advisory
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 12.1

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

5 MISRA C 2012

5-216

MISRA C:2012 Rule 12.4
Evaluation of constant expressions should not lead to unsigned integer wrap-around

Description
Rule Definition
Evaluation of constant expressions should not lead to unsigned integer wrap-around.

Rationale
Unsigned integer expressions do not strictly overflow, but instead wraparound. Although
there may be good reasons to use modulo arithmetic at run time, intentional use at
compile time is less likely.

Message in Report
Evaluation of constant expressions should not lead to unsigned integer wrap-around.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Expressions
Category: Advisory
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 12.1

 MISRA C:2012 Rule 12.4

5-217

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

5 MISRA C 2012

5-218

MISRA C:2012 Rule 12.5
The sizeof operator shall not have an operand which is a function parameter declared
as “array of type”

Description

Rule Definition
The sizeof operator shall not have an operand which is a function parameter declared
as “array of type”.

Rationale
The sizeof operator acting on an array normally returns the array size in bytes. For
instance, in the following code, sizeof(arr) returns the size of arr in bytes.

int32_t arr[4];
size_t numberOfElements = sizeof (arr) / sizeof(arr[0]);

However, when the array is a function parameter, it degenerates to a pointer. The sizeof
operator acting on the array returns the corresponding pointer size and not the array
size.

The use of sizeof operator on an array that is a function parameter typically indicates
an unintended programming error.

Message in Report
The sizeof operator shall not have an operand which is a function parameter declared
as “array of type”.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

 MISRA C:2012 Rule 12.5

5-219

Examples

Incorrect Use of sizeof Operator
int32_t glbA[] = { 1, 2, 3, 4, 5 };
void f (int32_t A[4])
{
 uint32_t numElements = sizeof(A) / sizeof(int32_t); /* Non-compliant */
 uint32_t numElements_glbA = sizeof(glbA) / sizeof(glbA[0]); /* Compliant */
}

In this example, the variable numElements always has the same value of 1, irrespective
of the number of members that appear to be in the array (4 in this case), because A has
type int32_t * and not int32_t[4].

The variable numElements_glbA has the expected vale of 5 because the sizeof
operator acts on the global array glbA.

Check Information
Group: Expressions
Category: Mandatory
AGC Category: Mandatory
Language: C90, C99
CERT C: EXP01-C, ARR01-C
ISO/IEC TS 17961 ID: sizeofptr

See Also

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2017a

5 MISRA C 2012

5-220

https://www.securecoding.cert.org/confluence/x/6wE

MISRA C:2012 Rule 13.1
Initializer lists shall not contain persistent side effects

Description

Rule Definition
Initializer lists shall not contain persistent side effects.

Rationale
C99 permits initializer lists with expressions that can be evaluated only at run-time.
However, the order in which elements of the list are evaluated is not defined. If one
element of the list modifies the value of a variable which is used in another element, the
ambiguity in order of evaluation causes undefined values. Therefore, this rule requires
that expressions occurring in an initializer list cannot modify the variables used in them.

Message in Report
Initializer lists shall not contain persistent side effects.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Examples

Initializers with Persistent Side Effect
volatile int v;
int x;
int y;

 MISRA C:2012 Rule 13.1

5-221

void f(void) {
 int arr[2] = {x+y,x-y}; /* Compliant */
 int arr2[2] = {v,0}; /* Non-compliant */
 int arr3[2] = {x++,y}; /* Non-compliant */
}

In this example, the rule is not violated in the first initialization because the initializer
does not modify either x or y. The rule is violated in the other initializations.

• In the second initialization, because v is volatile, the initializer can modify v.
• In the third initialization, the initializer modifies the variable x.

Check Information
Group: Side Effects
Category: Required
AGC Category: Required
Language: C99

See Also
MISRA C:2012 Rule 13.2

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-222

MISRA C:2012 Rule 13.2
The value of an expression and its persistent side effects shall be the same under all
permitted evaluation orders

Description

Rule Definition
The value of an expression and its persistent side effects shall be the same under all
permitted evaluation orders.

Rationale
If an expression results in different values depending on the order of evaluation, its value
becomes implementation-defined.

Polyspace Specification
An expression can have different values under the following conditions:

• The same variable is modified more than once in the expression, or is both read and
written.

• The expression allows more than one order of evaluation.

Therefore, this rule forbids expressions where a variable is modified more than once and
can cause different results under different orders of evaluation.

Message in Report
The value of 'XX' depends on the order of evaluation. The value of volatile 'XX' depends on
the order of evaluation because of multiple accesses.

 MISRA C:2012 Rule 13.2

5-223

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Examples

Variable Modified More Than Once in Expression
int a[10], b[10];
#define COPY_ELEMENT(index) (a[(index)]=b[(index)])

void main () {
 int i=0, k=0;

 COPY_ELEMENT (k); /* Compliant */
 COPY_ELEMENT (i++); /* Noncompliant */
}

In this example, the rule is violated by the statement COPY_ELEMENT(i++) because i++
occurs twice and the order of evaluation of the two expressions is unspecified.

Variable Modified and Used in Multiple Function Arguments
void f (unsigned int param1, unsigned int param2) {}

void main () {
 unsigned int i=0;
 f (i++, i); /* Non-compliant */
}

In this example, the rule is violated because it is unspecified whether the operation i++
occurs before or after the second argument is passed to f. The call f(i++,i) can
translate to either f(0,0) or f(0,1).

Check Information
Group: Side Effects
Category: Required

5 MISRA C 2012

5-224

AGC Category: Required
Language: C90, C99
CERT C: PRE31-C, EXP10-C, EXP30-C

See Also
MISRA C:2012 Dir 4.9 | MISRA C:2012 Rule 13.1 | MISRA C:2012 Rule 13.3 |
MISRA C:2012 Rule 13.4

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 13.2

5-225

https://www.securecoding.cert.org/confluence/x/agBi
https://www.securecoding.cert.org/confluence/x/WQD3
https://www.securecoding.cert.org/confluence/x/ZwE

MISRA C:2012 Rule 13.3
A full expression containing an increment (++) or decrement (--) operator should have no
other potential side effects other than that caused by the increment or decrement
operator

Description

Rule Definition
A full expression containing an increment (++) or decrement (--) operator should have no
other potential side effects other than that caused by the increment or decrement
operator.

Rationale
The rule is violated if the following happens in the same line of code:

• The increment or decrement operator acts on a variable.
• Another read or write operation is performed on the variable.

For example, the line y=x++ violates this rule. The ++ and = operator both act on x.

Although the operator precedence rules determine the order of evaluation, placing the ++
and another operator in the same line can reduce the readability of the code.

Message in Report
A full expression containing an increment (++) or decrement (--) operator should have no
other potential side effects other than that caused by the increment or decrement
operator.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

5 MISRA C 2012

5-226

Examples

Increment Operator Used in Expression with Other Side
Effects
int input(void);
int choice(void);
int operation(int, int);

int func() {
 int x = input(), y = input(), res;
 int ch = choice();
 if (choice == -1)
 return(x++);
 if (choice == 0) {
 res = x++ + y++;
 return(res); /* Non-compliant */
 }
 else if (choice == 1) {
 x++; /* Compliant */
 y++; /* Compliant */
 return (x+y);
 }
 else {
 res = operation(x++,y);
 return(res); /* Non-compliant */
 }
}

In this example, the rule is violated when the expressions containing the ++ operator have
side effects other than that caused by the operator. For example, in the expression
return(x++), the other side-effect is the return operation.

Check Information
Group: Side Effects
Category: Advisory
AGC Category: Readability
Language: C90, C99

 MISRA C:2012 Rule 13.3

5-227

See Also
MISRA C:2012 Rule 13.2

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-228

MISRA C:2012 Rule 13.4
The result of an assignment operator should not be used

Description
Rule Definition
The result of an assignment operator should not be used.

Rationale
The rule is violated if the following happens in the same line of code:

• The assignment operator acts on a variable.
• Another read or operation is performed on the result of the assignment.

For example, the line a[x]=a[x=y]; violates this rule. The [] operator acts on the result
of the assignment x=y.

Message in Report
The result of an assignment operator should not be used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Examples
Result of Assignment Used
int x, y, b, c, d;
int a[10];

 MISRA C:2012 Rule 13.4

5-229

unsigned int bool_var, false=0, true=1;

int foo(void) {

 x = y; /* Compliant - x is not used */

 a[x] = a[x = y]; /* Non-compliant - Value of x=y is used */

 if (bool_var = false) {}
 /* Non-compliant - bool_var=false is used */

 if (bool_var == false) {} /* Compliant */

 if ((0u == 0u) || (bool_var = true)) {}
 /* Non-compliant - even though (bool_var=true) is not evaluated */

 if ((x = f ()) != 0) {}
 /* Non-compliant - value of x=f() is used */

 a[b += c] = a[b];
 /* Non-compliant - value of b += c is used */

 b = c = d = 0; /* Non-compliant - value of d=0 and c=d=0 are used */

}

In this example, the rule is violated when the result of an assignment is used.

Check Information
Group: Side Effects
Category: Advisory
AGC Category: Advisory
Language: C90, C99
ISO/IEC TS 17961 ID: boolasgn

See Also
MISRA C:2012 Rule 13.2

5 MISRA C 2012

5-230

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 13.4

5-231

MISRA C:2012 Rule 13.5
The right hand operand of a logical && or || operator shall not contain persistent side
effects

Description
Rule Definition
The right hand operand of a logical && or || operator shall not contain persistent side
effects.

Rationale
The right operand of an || operator is not evaluated if the left operand is true. The right
operand of an && operator is not evaluated if the left operand is false. In these cases, if
the right operand modifies the value of a variable, the modification does not take place.
Following the operation, if you expect a modified value of the variable, the modification
might not always happen.

Polyspace Specification
• For this rule, Polyspace considers that all function calls have a persistent side effect.

If a pure function is flagged, before ignoring this rule violation, make sure that the
function has no side effects. For instance, floating-point functions such as abs() seem
to only return a value and have no other side effect. However, these functions make
use of the FPU Register Stack and can have side-effects in certain architectures, for
instance, certain Intel® architectures.

• If the right operand is a volatile variable, Polyspace does not flag this as a rule
violation.

Message in Report
The right hand operand of a && operator shall not contain side effects. The right hand
operand of a || operator shall not contain side effects.

5 MISRA C 2012

5-232

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Examples
Right Operand of Logical Operator with Persistent Side Effects
int check (int arg) {
 static int count;
 if(arg > 0) {
 count++; /* Persistent side effect */
 return 1;
 }
 else
 return 0;
}

int getSwitch(void);
int getVal(void);

void main(void) {
 int val = getVal();
 int mySwitch = getSwitch();
 int checkResult;

 if(mySwitch && check(val)) { /* Non-compliant */
 }

 checkResult = check(val);
 if(checkResult && mySwitch) { /* Compliant */
 }

 if(check(val) && mySwitch) { /* Compliant */
 }
}

In this example, the rule is violated when the right operand of the && operation contains a
function call. The function call has a persistent side effect because the static variable
count is modified in the function body. Depending on mySwitch, this modification might
or might not happen.

 MISRA C:2012 Rule 13.5

5-233

The rule is not violated when the left operand contains a function call. Alternatively, to
avoid the rule violation, assign the result of the function call to a variable. Use this
variable in the logical operation in place of the function call.

In this example, the function call has the side effect of modifying a static variable.
Polyspace flags all function calls when used on the right-hand side of a logical && or ||
operator, even when the function does not have a side effect. Manually inspect your
function body to see if it has side effects. If the function does not have side effects, add a
comment and justification in your Polyspace result explaining why you retained your code.

Check Information
Group: Side Effects
Category: Required
AGC Category: Required
Language: C90, C99

See Also

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-234

MISRA C:2012 Rule 13.6
The operand of the sizeof operator shall not contain any expression which has potential
side effects

Description

Rule Definition
The operand of the sizeof operator shall not contain any expression which has potential
side effects.

Rationale
The argument of a sizeof operator is usually not evaluated at run time. If the argument
is an expression, you might wrongly expect that the expression is evaluated.

Polyspace Specification
The rule is not violated if the argument is a volatile variable.

Message in Report
The operand of the sizeof operator shall not contain any expression which has potential
side effects.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

 MISRA C:2012 Rule 13.6

5-235

Examples

Expressions in sizeof Operator
#include <stddef.h>
int x;
int y[40];
struct S {
 int a;
 int b;
};
struct S myStruct;

void main() {
 size_t sizeOfType;
 sizeOfType = sizeof(x); /* Compliant */
 sizeOfType = sizeof(y); /* Compliant */
 sizeOfType = sizeof(myStruct); /* Compliant */
 sizeOfType = sizeof(x++); /* Non-compliant */
}

In this example, the rule is violated when the expression x++ is used as argument of
sizeof operator.

Check Information
Group: Side Effects
Category: Mandatory
AGC Category: Mandatory
Language: C90, C99
CERT C: EXP44-C

See Also
MISRA C:2012 Rule 18.8

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”

5 MISRA C 2012

5-236

https://www.securecoding.cert.org/confluence/x/LQo

“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 13.6

5-237

MISRA C:2012 Rule 14.1
A loop counter shall not have essentially floating type

Description

Rule Definition
A loop counter shall not have essentially floating type.

Rationale
When using a floating-point loop counter, accumulation of rounding errors can result in a
mismatch between the expected and actual number of iterations. This rounding error can
happen when a loop step that is not a power of the floating point radix is rounded to a
value that can be represented by a float.

Even if a loop with a floating-point loop counter appears to behave correctly on one
implementation, it can give a different number of iteration on another implementation.

Polyspace Specification
If the for index is a variable symbol, Polyspace checks that it is not a float.

Message in Report
A loop counter shall not have essentially floating type.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

5 MISRA C 2012

5-238

Examples

for Loop Counters
int main(void){
 unsigned int counter = 0u;
 int result = 0;
 float foo;

 // Float loop counters
 for(float foo = 0.0f; foo < 1.0f; foo +=0.001f){
 /* Non-compliant - counter = 1000 at the end of the loop */
 ++counter;
 }

 float fff = 0.0f;
 for(fff = 0.0f; fff <12.0f; fff += 1.0f){ /* Non-compliant*/
 result++;
 }

 // Integer loop count
 for(unsigned int count = 0u; count < 1000u; ++count){ /* Compliant */
 foo = (float) count * 0.001f;
 }
}

In this example, the three for loops show three different loop counters. The first and
second for loops use float variables as loop counters, and therefore are not compliant.
The third loop uses the integer count as the loop counter. Even though count is used as
a float inside the loop, the variable remains an integer when acting as the loop index.
Therefore, this for loop is compliant.

while Loop Counters
int main(void){
 unsigned int u32a;
 float foo;

 foo = 0.0f;
 while (foo < 1.0f){
 foo += 0.001f; /* Non-compliant - foo used as a loop counter */
 }

 MISRA C:2012 Rule 14.1

5-239

 foo = read_float32();
 do{
 u32a = read_u32();
 }while(((float)u32a - foo) > 10.0f);
 /* Compliant - foo doesn't change in the loop */
 /* so cannot be a counter */
 return 1;
}

This example shows two while loops both of which use foo in the while-loop conditions.

The first while loop uses foo in the condition and inside the loop. Because foo changes,
floating-point rounding errors can cause unexpected behavior.

The second while loop does not use foo inside the loop, but does use foo inside the
while-condition. So foo is not the loop counter. The integer u32a is the loop counter
because it changes inside the loop and is part of the while condition. Because u32a is an
integer, the rounding error issue is not a concern, making this while loop compliant.

Check Information
Group: Control Statement Expressions
Category: Required
AGC Category: Advisory
Language: C90, C99
CERT C: FLP30-C

See Also
MISRA C:2012 Rule 14.2

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

5 MISRA C 2012

5-240

https://www.securecoding.cert.org/confluence/x/AoG_

MISRA C:2012 Rule 14.2
A for loop shall be well-formed

Description

Rule Definition
A for loop shall be well-formed.

Rationale
The for statement provides a general-purpose looping facility. Using a restricted form of
loop makes code easier to review and to analyze.

Polyspace Specification
Polyspace checks that:

• The for loop index (V) is a variable symbol.
• V is the last assigned variable in the first expression (if present).
• If the first expression exists, it contains an assignment of V.
• If the second expression exists, it is a comparison of V.
• If the third expression exists, it is an assignment of V.
• There are no direct assignments of the for loop index.

Message in Report
• 1st expression should be an assignment. The following kinds of for loops are allowed:

• all three expressions shall be present;
• the 2nd and 3rd expressions shall be present with prior initialization of the loop

counter;

 MISRA C:2012 Rule 14.2

5-241

• all three expressions shall be empty for a deliberate infinite loop.
• 3rd expression should be an assignment of a loop counter.
• 3rd expression : assigned variable should be the loop counter (counter).
• 3rd expression should be an assignment of loop counter (counter) only.
• 2nd expression should contain a comparison with loop counter (counter).
• Loop counter (counter) should not be modified in the body of the loop.
• Bad type for loop counter (counter).

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Examples

Altering the Loop Counter Inside the Loop
void foo(void){

 for(short index=0; index < 5; index++){ /* Non-compliant */
 index = index + 3; /* Altering the loop counter */
 }
}

In this example, the loop counter index changes inside the for loop. It is hard to
determine when the loop terminates.

One possible correction is to use an extra flag to terminate the loop early.

In this correction, the second clause of the for loop depends on the counter value, index
< 5, and upon an additional flag, !flag. With the additional flag, the for loop definition
and counter remain readable, and you can escape the loop early.

#define FALSE 0
#define TRUE 1

void foo(void){

5 MISRA C 2012

5-242

 int flag = FALSE;

 for(short index=0; (index < 5) && !flag; index++){ /* Compliant */
 if((index % 4) == 0){
 flag = TRUE; /* allows early termination of loop */
 }
 }
}

for Loops With Empty Clauses
void foo(void)
 for(short index = 0; ; index++) {} /* Non-compliant */

 for(short index = 0; index < 10;) {} /* Non-compliant */

 short index;
 for(; index < 10;) {} /* Non-compliant */

 for(; index < 10; i++) {} /* Compliant */

 for(;;){}
 /* Compliant - Exception all three clauses can be empty */
}

This example shows for loops definitions with a variety of missing clauses. To be
compliant, initialize the first clause variable before the for loop (line 9). However, you
cannot have a for loop without the second or third clause.

The one exception is a for loop with all three clauses empty, so as to allow for infinite
loops.

Check Information
Group: Control Statement Expressions
Category: Required
AGC Category: Readability
Language: C90, C99

 MISRA C:2012 Rule 14.2

5-243

See Also
MISRA C:2012 Rule 14.1 | MISRA C:2012 Rule 14.3 | MISRA C:2012 Rule
14.4

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

5 MISRA C 2012

5-244

MISRA C:2012 Rule 14.3
Controlling expressions shall not be invariant

Description

Rule Definition
Controlling expressions shall not be invariant.

Rationale
If the controlling expression, for example an if condition, has a constant value, the non-
changing value can point to a programming error.

Polyspace Specification
Polyspace Bug Finder and Polyspace Code Prover check this coding rule differently. The
analyses can produce different results.

Polyspace Bug Finder flags some violations of MISRA C 14.3 through the Dead code and
Useless if checkers.

Polyspace Code Prover does not use gray code to flag MISRA C 14.3 violations. In Code
Prover, you can also see a difference in results based on your choice for the option
Verification level (-to). See “Check for Coding Rule Violations”.

Message in Report
• Boolean operations whose results are invariant shall not be permitted.
• Expression is always true.
• Boolean operations whose results are invariant shall not be permitted.
• Expression is always false.
• Controlling expressions shall not be invariant.

 MISRA C:2012 Rule 14.3

5-245

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Control Statement Expressions
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 2.1 | MISRA C:2012 Rule 14.2

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

5 MISRA C 2012

5-246

MISRA C:2012 Rule 14.4
The controlling expression of an if statement and the controlling expression of an
iteration-statement shall have essentially Boolean type

Description

Rule Definition
The controlling expression of an if statement and the controlling expression of an
iteration-statement shall have essentially Boolean type

Rationale
Strong typing requires the controlling expression on an if statement or iteration
statement to have essentially Boolean type.

Polyspace Specification
Polyspace does not flag integer constants, for example if(2).

If your configuration includes the option -boolean-types, the number of warnings can
increase or decrease.

Message in Report
The controlling expression of an if statement and the controlling expression of an
iteration-statement shall have essentially Boolean type.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

 MISRA C:2012 Rule 14.4

5-247

Examples

Controlling Expression in if, while, and for
#include <stdbool.h>
#include <stdlib.h>

#define TRUE = 1

typedef _Bool bool_t;
extern bool_t flag;

void foo(void){
 int *p = 1;
 int *q = 0;
 int i = 0;
 while(p){} /* Non-compliant - p is a pointer */

 while(q != NULL){} /* Compliant */

 while(TRUE){} /* Compliant */

 while(flag){} /* Compliant */

 if(i){} /* Non-compliant - int32_t is not boolean */

 if(i != 0){} /* Compliant */

 for(int i=-10; i;i++){} /* Non-compliant - int32_t is not boolean */

 for(int i=0; i<10;i++){} /* Compliant */
}

This example shows various controlling expressions in while, if, and for statements.

The noncompliant statements (the first while, if, and for examples), use a single non-
Boolean variable. If you use a single variable as the controlling statement, it must be
essentially Boolean (lines 17 and 19). Boolean expressions are also compliant with
MISRA.

5 MISRA C 2012

5-248

Check Information
Group: Control Statement Expressions
Category: Required
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 14.2 | MISRA C:2012 Rule 20.8

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 14.4

5-249

MISRA C:2012 Rule 15.1
The goto statement should not be used

Description

Rule Definition
The goto statement should not be used.

Rationale
Unrestricted use of goto statements makes the program unstructured and difficult to
understand.

Message in Report
The goto statement should not be used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Examples

Use of goto Statements
void foo(void) {
 int i = 0, result = 0;

label1:
 for (i; i < 5; i++) {
 if (i > 2) goto label2; /* Non-compliant */

5 MISRA C 2012

5-250

 }

label2: {
 result++;
 goto label1; /* Non-compliant */
 }
}

In this example, the rule is violated when goto statements are used.

Check Information
Group: Control Flow
Category: Advisory
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 15.2 | MISRA C:2012 Rule 15.3 | MISRA C:2012 Rule
15.4

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 15.1

5-251

MISRA C:2012 Rule 15.2
The goto statement shall jump to a label declared later in the same function

Description

Rule Definition
The goto statement shall jump to a label declared later in the same function.

Rationale
Unrestricted use of goto statements makes the program unstructured and difficult to
understand. You can use a forward goto statement together with a backward one to
implement iterations. Restricting backward goto statements ensures that you use only
iteration statements provided by the language such as for or while to implement
iterations. This restriction reduces visual complexity of the code.

Message in Report
The goto statement shall jump to a label declared later in the same function.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Examples

Use of Backward goto Statements
void foo(void) {
 int i = 0, result = 0;

5 MISRA C 2012

5-252

label1:
 for (i; i < 5; i++) {
 if (i > 2) goto label2; /* Compliant */
 }

label2: {
 result++;
 goto label1; /* Non-compliant */
 }
}

In this example, the rule is violated when a goto statement causes a backward jump to
label1.

The rule is not violated when a goto statement causes a forward jump to label2.

Check Information
Group: Control Flow
Category: Required
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 15.1 | MISRA C:2012 Rule 15.3 | MISRA C:2012 Rule
15.4

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 15.2

5-253

MISRA C:2012 Rule 15.3
Any label referenced by a goto statement shall be declared in the same block, or in any
block enclosing the goto statement

Description

Rule Definition
Any label referenced by a goto statement shall be declared in the same block, or in any
block enclosing the goto statement.

Rationale
Unrestricted use of goto statements makes the program unstructured and difficult to
understand. Restricting use of goto statements to jump between blocks or into nested
blocks reduces visual code complexity.

Message in Report
Any label referenced by a goto statement shall be declared in the same block, or in any
block enclosing the goto statement.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Examples

goto Statements Jump Inside Block
void f1(int a) {
 if(a <= 0) {

5 MISRA C 2012

5-254

 goto L2; /* Non-compliant - L2 in different block*/
 }

 goto L1; /* Compliant - L1 in same block*/

 if(a == 0) {
 goto L1; /* Compliant - L1 in outer block*/
 }

 goto L2; /* Non-compliant - L2 in inner block*/

 L1: if(a > 0) {
 L2:;
 }
}

In this example, goto statements cause jumps to different labels. The rule is violated
when:

• The label occurs in a block different from the block containing the goto statement.

The block containing the label neither encloses nor is enclosed by the current block.
• The label occurs in a block enclosed by the block containing the goto statement.

The rule is not violated when:

• The label occurs in the same block as the block containing the goto statement..
• The label occurs in a block that encloses the block containing the goto statement..

goto Statements in switch Block
void f2 (int x, int z) {
 int y = 0;

 switch(x) {
 case 0:
 if(x == y) {
 goto L1; /* Non-compliant - switch-clauses are treated as blocks */
 }
 break;
 case 1:
 y = x;
 L1: ++x;

 MISRA C:2012 Rule 15.3

5-255

 break;
 default:
 break;
 }

}

In this example, the label for the goto statement appears to occur in a block that
encloses the block containing the goto statement. However, for the purposes of this rule,
the software considers that each case statement begins a new block. Therefore, the goto
statement violates the rule.

Check Information
Group: Control Flow
Category: Required
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 15.1 | MISRA C:2012 Rule 15.2 | MISRA C:2012 Rule
15.4 | MISRA C:2012 Rule 16.1

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-256

MISRA C:2012 Rule 15.4
There should be no more than one break or goto statement used to terminate any
iteration statement

Description

Rule Definition
There should be no more than one break or goto statement used to terminate any
iteration statement.

Rationale
If you use one break or goto statement in your loop, you have one secondary exit point
from the loop. Restricting number of exits from a loop in this way reduces visual
complexity of your code.

Message in Report
There should be no more than one break or goto statement used to terminate any
iteration statement.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Examples

break Statements in Inner and Outer Loops
volatile int stop;

 MISRA C:2012 Rule 15.4

5-257

int func(int *arr, int size, int sat) {
 int i,j;
 int sum = 0;
 for (i=0; i< size; i++) { /* Compliant */
 if(sum >= sat)
 break;
 for (j=0; j< i; j++) { /* Compliant */
 if(stop)
 break;
 sum += arr[j];
 }
 }
}

In this example, the rule is not violated in both the inner and outer loop because both
loops have one break statement each.

break and goto Statements in Loop
volatile int stop;

void displayStopMessage();

int func(int *arr, int size, int sat) {
 int i;
 int sum = 0;
 for (i=0; i< size; i++) { /* Non-compliant */
 if(sum >= sat)
 break;
 if(stop)
 goto L1;
 sum += arr[i];
 }

 L1: displayStopMessage();
}

In this example, the rule is violated because the for loop has one break statement and
one goto statement.

5 MISRA C 2012

5-258

goto Statement in Inner Loop and break Statement in Outer
Loop
volatile int stop;

void displayMessage();

int func(int *arr, int size, int sat) {
 int i,j;
 int sum = 0;
 for (i=0; i< size; i++) { /* Non-compliant */
 if(sum >= sat)
 break;
 for (j=0; j< i; j++) { /* Compliant */
 if(stop)
 goto L1;
 sum += arr[i];
 }
 }

 L1: displayMessage();
}

In this example, the rule is not violated in the inner loop because you can exit the loop
only through the one goto statement. However, the rule is violated in the outer loop
because you can exit the loop through either the break statement or the goto statement
in the inner loop.

Check Information
Group: Control Flow
Category: Advisory
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 15.1 | MISRA C:2012 Rule 15.2 | MISRA C:2012 Rule
15.3

 MISRA C:2012 Rule 15.4

5-259

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-260

MISRA C:2012 Rule 15.5
A function should have a single point of exit at the end

Description

Rule Definition
A function should have a single point of exit at the end.

Rationale
This rule requires that a return statement must occur as the last statement in the
function body. Otherwise, the following issues can occur:

• Code following a return statement can be unintentionally omitted.
• If a function that modifies some of its arguments has early return statements, when

reading the code, it is not immediately clear which modifications actually occur.

Message in Report
A function should have a single point of exit at the end.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Examples

More Than One return Statement in Function
#define MAX ((unsigned int)2147483647)
#define NULL (void*)0

 MISRA C:2012 Rule 15.5

5-261

typedef unsigned int bool_t;
bool_t false = 0;
bool_t true = 1;

bool_t f1(unsigned short n, char *p) { /* Non-compliant */
 if(n > MAX) {
 return false;
 }

 if(p == NULL) {
 return false;
 }

 return true;
}

In this example, the rule is violated because there are three return statements.

One possible correction is to store the return value in a variable and return this variable
just before the function ends.

#define MAX ((unsigned int)2147483647)
#define NULL (void*)0

typedef unsigned int bool_t;
bool_t false = 0;
bool_t true = 1;
bool_t return_value;

bool_t f2 (unsigned short n, char *p) { /* Compliant */
 return_value = true;
 if(n > MAX) {
 return_value = false;
 }

 if(p == NULL) {
 return_value = false;
 }

 return return_value;
}

5 MISRA C 2012

5-262

Check Information
Group: Control Flow
Category: Advisory
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 17.4

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 15.5

5-263

MISRA C:2012 Rule 15.6
The body of an iteration-statement or a selection-statement shall be a compound
statement

Description

Rule Definition
The body of an iteration-statement or a selection-statement shall be a compound-
statement.

Rationale
The rule applies to:

• Iteration statements such as while, do ... while or for.
• Selection statements such as if ... else or switch.

If the block of code associated with an iteration or selection statement is not contained in
braces, you can make mistakes about the association. For example:

• You can wrongly associate a line of code with an iteration or selection statement
because of its indentation.

• You can accidentally place a semicolon following the iteration or selection statement.
Because of the semicolon, the line following the statement is no longer associated with
the statement even though you intended otherwise.

Message in Report
• The else keyword shall be followed by either a compound statement, or another if

statement.
• An if (expression) construct shall be followed by a compound statement.
• The statement forming the body of a while statement shall be a compound statement.

5 MISRA C 2012

5-264

• The statement forming the body of a do ... while statement shall be a compound
statement.

• The statement forming the body of a for statement shall be a compound statement.
• The statement forming the body of a switch statement shall be a compound statement.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Examples

Iteration Block
int data_available = 1;
void f1(void) {
 while(data_available) /* Non-compliant */
 process_data();

 while(data_available) { /* Compliant */
 process_data();
 }
}

In this example, the second while block is enclosed in braces and does not violate the
rule.

Nested Selection Statements
void f1(void) {
 if(flag_1) /* Non-compliant */
 if(flag_2) /* Non-compliant */
 action_1();
 else /* Non-compliant */
 action_2();
}

 MISRA C:2012 Rule 15.6

5-265

In this example, the rule is violated because the if or else blocks are not enclosed in
braces. Unless indented as above, it is easy to associate the else statement with the
inner if.

One possible correction is to enclose each block associated with an if or else statement
in braces.

void f1(void) {
 if(flag_1) { /* Compliant */
 if(flag_2) { /* Compliant */
 action_1();
 }
 }
 else { /* Compliant */
 action_2();
 }
}

Spurious Semicolon After Iteration Statement
void f1(void) {
 while(flag_1); /* Non-compliant */
 {
 flag_1 = action_1();
 }
}

In this example, the rule is violated even though the while statement is followed by a
block in braces. The semicolon following the while statement causes the block to
dissociated from the while statement.

The rule helps detect such spurious semicolons.

Check Information
Group: Control Flow
Category: Required
AGC Category: Required
Language: C90, C99
CERT C: EXP19-C

5 MISRA C 2012

5-266

https://www.securecoding.cert.org/confluence/x/1QGMAg

See Also

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 15.6

5-267

MISRA C:2012 Rule 15.7
All if … else if constructs shall be terminated with an else statement

Description

Rule Definition
All if … else if constructs shall be terminated with an else statement.

Rationale
Unless there is a terminating else statement in an if...elseif...else construct,
during code review, it is difficult to tell if you considered all possible results for the if
condition.

Message in Report
All if … else if constructs shall be terminated with an else statement.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Examples

Missing else Block
int get_flag_1(void);
int get_flag_2(void);
void action_1(void);
void action_2(void);

5 MISRA C 2012

5-268

void f1(void) {
 int flag_1 = get_flag_1(), flag_2 = get_flag_2();
 if(flag_1) {
 action_1();
 }
 else if(flag_2) {
 /* Non-compliant */
 action_2();
 }
}

In this example, the rule is violated because the if ... else if construct does not
have a terminating else block.

To avoid the rule violation, add a terminating else block. The block can be empty.

int get_flag_1(void);
int get_flag_2(void);
void action_1(void);
void action_2(void);

void f1(void) {
 int flag_1 = get_flag_1(), flag_2 = get_flag_2();
 if(flag_1) {
 action_1();
 }
 else if(flag_2) {
 /* Non-compliant */
 action_2();
 }
 else {
 /* No statement required */
 /* ; is optional */
 }

}

Check Information
Group: Control Flow
Category: Required
AGC Category: Readability

 MISRA C:2012 Rule 15.7

5-269

Language: C90, C99

See Also
MISRA C:2012 Rule 16.5

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-270

MISRA C:2012 Rule 16.1
All switch statements shall be well-formed

Description

Rule Definition
All switch statements shall be well-formed

Rationale
The syntax for switch statements in C is not particularly rigorous and can allow complex,
unstructured behavior. This rule and other rules impose a simple consistent structure on
the switch statement.

Polyspace Specification
Following the MISRA specifications, the coding rules checker also raises a violation of
rule 16.1 if a switch statement violates one of these rules: 16.2, 16.3, 16.4, 16.5 or 16.6.

Message in Report
All messages in report file begin with "MISRA-C switch statements syntax normative
restriction."

• Initializers shall not be used in switch clauses.
• The child statement of a switch shall be a compound statement.
• All switch clauses shall appear at the same level.
• A switch clause shall only contain switch labels and switch clauses, and no other code.
• A switch statement shall only contain switch labels and switch clauses, and no other

code.

 MISRA C:2012 Rule 16.1

5-271

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Switch Statements
Category: Required
AGC Category: Advisory
Language: C90, C99
CERT C: DCL41-C

See Also
MISRA C:2012 Rule 15.3 | MISRA C:2012 Rule 16.2 | MISRA C:2012 Rule
16.3 | MISRA C:2012 Rule 16.4 | MISRA C:2012 Rule 16.5 | MISRA C:2012
Rule 16.6

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

5 MISRA C 2012

5-272

https://www.securecoding.cert.org/confluence/x/A4EzAg

MISRA C:2012 Rule 16.2
A switch label shall only be used when the most closely-enclosing compound statement is
the body of a switch statement

Description
Rule Definition
A switch label shall only be used when the most closely-enclosing compound statement is
the body of a switch statement

Rationale
The C Standard permits placing a switch label (for instance, case or default) before
any statement contained in the body of a switch statement. This flexibility can lead to
unstructured code. To prevent unstructured code, make sure a switch label appears only
at the outermost level of the body of a switch statement.

Message in Report
All messages in report file begin with "MISRA-C switch statements syntax normative
restriction."

• Initializers shall not be used in switch clauses.
• The child statement of a switch shall be a compound statement.
• All switch clauses shall appear at the same level.
• A switch clause shall only contain switch labels and switch clauses, and no other code.
• A switch statement shall only contain switch labels and switch clauses, and no other

code.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

 MISRA C:2012 Rule 16.2

5-273

Check Information
Group: Switch Statements
Category: Required
AGC Category: Advisory
Language: C90, C99
CERT C: MSC20-C

See Also
MISRA C:2012 Rule 16.1

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

5 MISRA C 2012

5-274

https://www.securecoding.cert.org/confluence/x/DgDFAQ

MISRA C:2012 Rule 16.3
An unconditional break statement shall terminate every switch-clause

Description

Rule Definition
An unconditional break statement shall terminate every switch-clause

Rationale
A switch-clause is a case containing at least one statement. Two consecutive labels
without an intervening statement is compliant with MISRA.

If you fail to end your switch-clauses with a break statement, then control flow “falls” into
the next statement. This next statement can be another switch-clause, or the end of the
switch. This behavior is sometimes intentional, but more often it is an error. If you add
additional cases later, an unterminated switch-clause can cause problems.

Polyspace Specification
Polyspace raises a warning for each noncompliant case clause.

Message in Report
An unconditional break statement shall terminate every switch-clause.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

 MISRA C:2012 Rule 16.3

5-275

Check Information
Group: Switch Statements
Category: Required
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 16.1

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

5 MISRA C 2012

5-276

MISRA C:2012 Rule 16.4
Every switch statement shall have a default label

Description

Rule Definition
Every switch statement shall have a default label

Rationale
The requirement for a default label is defensive programming. Even if your switch
covers all possible values, there is no guarantee that the input takes one of these values.
Statements following the default label take some appropriate action. If the default
label requires no action, use comments to describe why there are no specific actions.

Message in Report
Every switch statement shall have a default label.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Examples

Switch Statement Without default
short func1(short xyz){

 switch(xyz){ /* Non-compliant - default label is required */
 case 0:

 MISRA C:2012 Rule 16.4

5-277

 ++xyz;
 break;
 case 1:
 case 2:
 break;
 }
 return xyz;
}

In this example, the switch statement does not include a default label, and is therefore
noncompliant.

One possible correction is to use the default label to flag input errors. If your switch-
clauses cover all expected input, then the default cases flags any input errors.

short func1(short xyz){

 switch(xyz){ /* Compliant */
 case 0:
 ++xyz;
 break;
 case 1:
 case 2:
 break;
 default:
 errorflag = 1;
 break;
 }
 if (errorflag == 1)
 return errorflag;
 else
 return xyz;
}

Switch Statement for Enumerated Inputs
enum Colors{
 RED, GREEN, BLUE
};

enum Colors func2(enum Colors color){
 enum Colors next;

5 MISRA C 2012

5-278

 switch(color){ /* Non-compliant - default label is required */
 case RED:
 next = GREEN;
 break;
 case GREEN:
 next = BLUE;
 break;
 case BLUE:
 next = RED;
 break;
 }
 return next;
}

In this example, the switch statement does not include a default label, and is therefore
noncompliant. Even though this switch statement handles all values of the enumeration,
there is no guarantee that color takes one of the those values.

To be compliant, add the default label to the end of your switch. You can use this case
to flag unexpected inputs.

enum Colors{
 RED, GREEN, BLUE, ERROR
};

enum Colors func2(enum Colors color){
 enum Colors next;

 switch(color){ /* Compliant */
 case RED:
 next = GREEN;
 break;
 case GREEN:
 next = BLUE;
 break;
 case BLUE:
 next = RED;
 break;
 default:
 next = ERROR;
 break;
 }

 MISRA C:2012 Rule 16.4

5-279

 return next;
}

Check Information
Group: Switch Statements
Category: Required
AGC Category: Advisory
Language: C90, C99
ISO/IEC TS 17961 ID: swtchdflt

See Also
MISRA C:2012 Rule 2.1 | MISRA C:2012 Rule 16.1

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

5 MISRA C 2012

5-280

MISRA C:2012 Rule 16.5
A default label shall appear as either the first or the last switch label of a switch
statement

Description

Rule Definition
A default label shall appear as either the first or the last switch label of a switch
statement.

Rationale
Using this rule, you can easily locate the default label within a switch statement.

Message in Report
A default label shall appear as either the first or the last switch label of a switch
statement.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Examples

Default Case in switch Statements
void foo(int var){

 switch(var){
 default: /* Compliant - default is the first label */

 MISRA C:2012 Rule 16.5

5-281

 case 0:
 ++var;
 break;
 case 1:
 case 2:
 break;
 }

 switch(var){
 case 0:
 ++var;
 break;
 default: /* Non-compliant - default is mixed with the case labels */
 case 1:
 case 2:
 break;
 }

 switch(var){
 case 0:
 ++var;
 break;
 case 1:
 case 2:
 default: /* Compliant - default is the last label */
 break;
 }

 switch(var){
 case 0:
 ++var;
 break;
 case 1:
 case 2:
 break;
 default: /* Compliant - default is the last label */
 var = 0;
 break;
 }
}

This example shows the same switch statement several times, each with default in a
different place. As the first, third, and fourth switch statements show, default must be

5 MISRA C 2012

5-282

the first or last label. default can be part of a compound switch-clause (for instance, the
third switch example), but it must be the last listed.

Check Information
Group: Switch Statements
Category: Required
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 15.7 | MISRA C:2012 Rule 16.1

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 16.5

5-283

MISRA C:2012 Rule 16.6
Every switch statement shall have at least two switch-clauses

Description

Rule Definition
Every switch statement shall have at least two switch-clauses.

Rationale
A switch statement with a single path is redundant and can indicate a programming error.

Message in Report
Every switch statement shall have at least two switch-clauses.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Switch Statements
Category: Required
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 16.1

5 MISRA C 2012

5-284

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 16.6

5-285

MISRA C:2012 Rule 16.7
A switch-expression shall not have essentially Boolean type

Description

Rule Definition
A switch-expression shall not have essentially Boolean type

Rationale
The C Standard requires the controlling expression to a switch statement to have an
integer type. Because C implements Boolean values with integer types, it is possible to
have a Boolean expression control a switch statement. For controlling flow with Boolean
types, an if-else construction is more appropriate.

Polyspace Specification
If your configuration uses the -boolean-types option, the number of reported violations
can increase.

Message in Report
A switch-expression shall not have essentially Boolean type.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Switch Statements

5 MISRA C 2012

5-286

Category: Required
AGC Category: Advisory
Language: C90, C99

See Also

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 16.7

5-287

MISRA C:2012 Rule 17.1
The features of <stdarg.h> shall not be used

Description

Rule Definition
The features of <stdarg.h> shall not be used..

Rationale
The rule forbids use of va_list, va_arg, va_start, va_end, and va_copy.

You can use these features in ways where the behavior is not defined in the Standard. For
instance:

• You invoke va_start in a function but do not invoke the corresponding va_end
before the function block ends.

• You invoke va_arg in different functions on the same variable of type va_list.
• va_arg has the syntax type va_arg (va_list ap, type).

You invoke va_arg with a type that is incompatible with the actual type of the
argument retrieved from ap.

Message in Report
The features of <stdarg.h> shall not be used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

5 MISRA C 2012

5-288

Examples

Use of va_start, va_list, va_arg, and va_end
#include<stdarg.h>
void f2(int n, ...) {
 int i;
 double val;
 va_list vl; /* Non-compliant */

 va_start(vl, n); /* Non-compliant */

 for(i = 0; i < n; i++)
 {
 val = va_arg(vl, double); /* Non-compliant */
 }

 va_end(vl); /* Non-compliant */
}

In this example, the rule is violated because va_start, va_list, va_arg and va_end
are used.

Undefined Behavior of va_arg

#include <stdarg.h>
void h(va_list ap) { /* Non-compliant */
 double y;

 y = va_arg(ap, double); /* Non-compliant */
}

void g(unsigned short n, ...) {
 unsigned int x;
 va_list ap; /* Non-compliant */

 va_start(ap, n); /* Non-compliant */
 x = va_arg(ap, unsigned int); /* Non-compliant */

 h(ap);

 MISRA C:2012 Rule 17.1

5-289

 /* Undefined - ap is indeterminate because va_arg used in h () */
 x = va_arg(ap, unsigned int); /* Non-compliant */

}

void f(void) {
 /* undefined - uint32_t:double type mismatch when g uses va_arg () */
 g(1, 2.0, 3.0);
}

In this example, va_arg is used on the same variable ap of type va_list in both
functions g and h. In g, the second argument is unsigned int and in h, the second
argument is double. This type mismatch causes undefined behavior.

Check Information
Group: Function
Category: Required
AGC Category: Required
Language: C90, C99
CERT C: DCL10-C, DCL11-C, ERR00-C

See Also

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-290

https://www.securecoding.cert.org/confluence/x/QwA1
https://www.securecoding.cert.org/confluence/x/IwA_
https://www.securecoding.cert.org/confluence/x/DwBl

MISRA C:2012 Rule 17.2
Functions shall not call themselves, either directly or indirectly

Description

Rule Definition
Functions shall not call themselves, either directly or indirectly.

Rationale
Variables local to a function are stored in the call stack. If a function calls itself directly or
indirectly several times, the available stack space can be exceeded, causing serious
failure. Unless the recursion is tightly controlled, it is difficult to determine the maximum
stack space required.

Message in Report
Message in Report: Function XX shall not call itself either directly or indirectly.
Function XX is called indirectly by YY.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Examples

Direct and Indirect Recursion
void foo1(void) { /* Non-compliant - Indirect recursion foo1->foo2->foo1... */
 foo2();
 foo1(); /* Non-compliant - Direct recursion */

 MISRA C:2012 Rule 17.2

5-291

}

void foo2(void) {
 foo1();
}

In this example, the rule is violated because of:

• Direct recursion foo1 → foo1.
• Indirect recursion foo1 → foo2 → foo1.

Check Information
Group: Function
Category: Required
AGC Category: Required
Language: C90, C99
CERT C: MEM05-C

See Also
Polyspace Results
Number of Recursions | Number of Direct Recursions

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-292

https://www.securecoding.cert.org/confluence/x/bAAV

MISRA C:2012 Rule 17.3
A function shall not be declared implicitly

Description

Rule Definition
A function shall not be declared implicitly.

Rationale
An implicit declaration occurs when you call a function before declaring or defining it.
When you declare a function explicitly before calling it, the compiler can match the
argument and return types with the parameter types in the declaration. If an implicit
declaration occurs, the compiler makes assumptions about the argument and return
types. For instance, it assumes a return type of int. The assumptions might not agree
with what you expect and cause undesired type conversions.

Message in Report
Function 'XX' has no complete visible prototype at call.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Examples

Function Not Declared Before Call
#include <math.h>

 MISRA C:2012 Rule 17.3

5-293

extern double power3 (double val, int exponent);
int getChoice(void);

double func() {
 double res;
 int ch = getChoice();
 if(ch == 0) {
 res = power(2.0, 10); /* Non-compliant */
 }
 else if(ch==1) {
 res = power2(2.0, 10); /* Non-compliant */
 }
 else {
 res = power3(2.0, 10); /* Compliant */
 return res;
 }
}

double power2 (double val, int exponent) {
 return (pow(val, exponent));
}

In this example, the rule is violated when a function that is not declared is called in the
code. Even if a function definition exists later in the code, the rule violation occurs.

The rule is not violated when the function is declared before it is called in the code. If the
function definition exists in another file and is available only during the link phase, you
can declare the function in one of the following ways:

• Declare the function with the extern keyword in the current file.
• Declare the function in a header file and include the header file in the current file.

Check Information
Group: Function
Category: Mandatory
AGC Category: Mandatory
Language: C90
CERT C: DCL31-C, DCL36-C, EXP37-C
ISO/IEC TS 17961 ID: argcomp

5 MISRA C 2012

5-294

https://www.securecoding.cert.org/confluence/x/tgDI
https://www.securecoding.cert.org/confluence/x/hoAg
https://www.securecoding.cert.org/confluence/x/VQBc

See Also
MISRA C:2012 Rule 8.2 | MISRA C:2012 Rule 8.4

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 17.3

5-295

MISRA C:2012 Rule 17.4
All exit paths from a function with non-void return type shall have an explicit return
statement with an expression

Description
Rule Definition
All exit paths from a function with non-void return type shall have an explicit return
statement with an expression.

Rationale
If a non-void function does not explicitly return a value but the calling function uses the
return value, the behavior is undefined. To prevent this behavior:

1 You must provide return statements with an explicit expression.
2 You must ensure that during run time, at least one return statement executes.

Message in Report
Missing return value for non-void function 'XX'.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Examples
Missing Return Statement Along Certain Execution Paths
int absolute(int v) {
 if(v < 0) {

5 MISRA C 2012

5-296

 return v;
 }
}

In this example, the rule is violated because a return statement does not exist on all
execution paths. If v >= 0, then the control returns to the calling function without an
explicit return value.

Return Statement Without Explicit Expression
#define SIZE 10
int table[SIZE];

unsigned short lookup(unsigned short v) {
 if((v < 0) || (v > SIZE)) {
 return;
 }
 return table[v];
}

In this example, the rule is violated because the return statement in the if block does
not have an explicit expression.

Check Information
Group: Function
Category: Mandatory
AGC Category: Mandatory
Language: C90, C99

See Also
MISRA C:2012 Rule 15.5

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 17.4

5-297

Introduced in R2014b

5 MISRA C 2012

5-298

MISRA C:2012 Rule 17.5
The function argument corresponding to a parameter declared to have an array type shall
have an appropriate number of elements

Description

Rule Definition
The function argument corresponding to a parameter declared to have an array type shall
have an appropriate number of elements.

Rationale
If you use an array declarator for a function parameter instead of a pointer, the function
interface is clearer because you can state the minimum expected array size. If you do not
state a size, the expectation is that the function can handle an array of any size. In such
cases, the size value is typically another parameter of the function, or the array is
terminated with a sentinel value.

However, it is legal in C to specify an array size but pass an array of smaller size. This
rule prevents you from passing an array of size smaller than the size you declared.

Message in Report
The function argument corresponding to a parameter declared to have an array type shall
have an appropriate number of elements.

The argument type has actual_size elements whereas the parameter type expects
expected_size elements.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

 MISRA C:2012 Rule 17.5

5-299

Examples

Incorrect Array Size Passed to Function
void func(int arr[4]);

int main() {
 int arrSmall[3] = {1,2,3};
 int arr[4] = {1,2,3,4};
 int arrLarge[5] ={1,2,3,4,5};

 func(arrSmall); /* Non-compliant */
 func(arr); /* Compliant */
 func(arrLarge); /* Compliant */

 return 0;
}

In this example, the rule is violated when arrSmall, which has size 3, is passed to func,
which expects at least 4 elements.

Check Information
Group: Functions
Category: Advisory
AGC Category: Readability
Language: C90. C99

See Also
MISRA C:2012 Rule 17.6

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2015b

5 MISRA C 2012

5-300

MISRA C:2012 Rule 17.6
The declaration of an array parameter shall not contain the static keyword between the []

Description
Rule Definition
The declaration of an array parameter shall not contain the static keyword between the
[].

Rationale
If you use the static keyword within [] for an array parameter of a function, you can
inform a C99 compiler that the array contains a minimum number of elements. The
compiler can use this information to generate efficient code for certain processors.
However, in your function call, if you provide less than the specified minimum number,
the behavior is not defined.

Message in Report
The declaration of an array parameter shall not contain the static keyword between the
[].

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Examples
Use of static Keyword Within [] in Array Parameter
extern int arr1[20];
extern int arr2[10];

 MISRA C:2012 Rule 17.6

5-301

/* Non-compliant: static keyword used in array declarator */
unsigned int total (unsigned int n, unsigned int arr[static 20]) {
 unsigned int i;
 unsigned int sum = 0;

 for (i=0U; i < n; i++) {
 sum+= arr[i];
 }

 return sum;
}

void func (void) {
 int res, res2;
 res = total (10U, arr1); /* Non-compliant - behavior not defined */
 res2 = total (20U, arr2); /* Non-compliant, even if behavior is defined */
}

In this example, the rule is violated when the static keyword is used within [] in the
array parameter of function total. Even if you call total with array arguments where
the behavior is well-defined, the rule violation occurs.

Check Information
Group: Function
Category: Mandatory
AGC Category: Mandatory
Language: C99

See Also

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-302

MISRA C:2012 Rule 17.7
The value returned by a function having non-void return type shall be used

Description

Rule Definition
The value returned by a function having non-void return type shall be used.

Rationale
You can unintentionally call a function with a non-void return type but not use the return
value. Because the compiler allows the call, you might not catch the omission. This rule
forbids calls to a non-void function where the return value is not used. If you do not
intend to use the return value of a function, explicitly cast the return value to void.

Message in Report
The value returned by a function having non-void return type shall be used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Examples

Used and Unused Return Values
unsigned int cutOff(unsigned int val) {
 if (val > 10 && val < 100) {
 return val;
 }

 MISRA C:2012 Rule 17.7

5-303

 else {
 return 0;
 }
}

unsigned int getVal(void);

void func2(void) {
 unsigned int val = getVal(), res;
 cutOff(val); /* Non-compliant */
 res = cutOff(val); /* Compliant */
 (void)cutOff(val); /* Compliant */
}

In this example, the rule is violated when the return value of cutOff is not used
subsequently.

The rule is not violated when the return value is:

• Assigned to another variable.
• Explicitly cast to void.

Check Information
Group: Function
Category: Required
AGC Category: Readability
Language: C90, C99
CERT C: ERR33-C
ISO/IEC TS 17961 ID: liberr

See Also
MISRA C:2012 Rule 2.2

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

5 MISRA C 2012

5-304

https://www.securecoding.cert.org/confluence/x/w4C4Ag

Introduced in R2014b

 MISRA C:2012 Rule 17.7

5-305

MISRA C:2012 Rule 17.8
A function parameter should not be modified

Description

Rule Definition
A function parameter should not be modified.

Rationale
When you modify a parameter, the function argument corresponding to the parameter is
not modified. However, you or another programmer unfamiliar with C can expect by
mistake that the argument is also modified when you modify the parameter.

Message in Report
A function parameter should not be modified.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Examples

Function Parameter Modified
int input(void);

void func(int param1, int* param2) {

 param1 = input(); /* Non-compliant */

5 MISRA C 2012

5-306

 param2 = input(); / Compliant */
}

In this example, the rule is violated when the parameter param1 is modified.

The rule is not violated when the parameter is a pointer param2 and *param2 is
modified.

Check Information
Group: Functions
Category: Advisory
AGC Category: Readability
Language: C90, C99

See Also

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2015b

 MISRA C:2012 Rule 17.8

5-307

MISRA C:2012 Rule 18.1
A pointer resulting from arithmetic on a pointer operand shall address an element of the
same array as that pointer operand

Description

Rule Definition
A pointer resulting from arithmetic on a pointer operand shall address an element of the
same array as that pointer operand.

Rationale
Using an invalid array subscript can lead to erroneous behavior of the program. Run-time
derived array subscripts are especially troublesome because they cannot be easily
checked by manual review or static analysis.

The C Standard defines the creation of a pointer to one beyond the end of the array. The
rule permits the C Standard. Dereferencing a pointer to one beyond the end of an array
causes undefined behavior and is noncompliant.

Polyspace Specification
Polyspace flags this rule during the analysis as:

• Bug Finder — Array access out-of-bounds and Pointer access out-of-
bounds

• Code Prover — Illegally dereferenced pointer and Out of bounds array
index

Bug Finder and Code Prover check this rule differently and can show different results for
this rule. In Code Prover, you can also see a difference in results based on your choice for
the option Verification level (-to). See “Check for Coding Rule Violations”.

5 MISRA C 2012

5-308

Message in Report
A pointer resulting from arithmetic on a pointer operand shall address an element of the
same array as that pointer operand.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Pointers and Arrays
Category: Required
AGC Category: Required
Language: C90, C99
CERT C: EXP08-C, ARR30-C, ARR39-C
ISO/IEC TS 17961 ID: invptr, nullref

See Also
MISRA C:2012 Dir 4.1 | MISRA C:2012 Rule 18.4

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 18.1

5-309

https://www.securecoding.cert.org/confluence/x/eYAg
https://www.securecoding.cert.org/confluence/x/DYDXAg
https://www.securecoding.cert.org/confluence/x/HADXAQ

MISRA C:2012 Rule 18.2
Subtraction between pointers shall only be applied to pointers that address elements of
the same array

Description

Rule Definition
Subtraction between pointers shall only be applied to pointers that address elements of
the same array.

Rationale
This rule applies to expressions of the form pointer_expression1 -
pointer_expression2. The behavior is undefined if pointer_expression1 and
pointer_expression2:

• Do not point to elements of the same array,
• Or do not point to the element one beyond the end of the array.

Polyspace Specification
This rule is raised whenever the analysis detects a Subtraction or comparison
between pointers to different arrays.

Message in Report
Subtraction between pointers shall only be applied to pointers that address elements of
the same array.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

5 MISRA C 2012

5-310

Examples

Subtracting Pointers
#include <stddef.h>

void f1 (int32_t *ptr)
{
 int32_t a1[10];
 int32_t a2[10];
 int32_t *p1 = &a1[1];
 int32_t *p2 = &a2[10];
 ptrdiff_t diff1, diff2, diff3;

 diff1 = p1 - a1; // Compliant
 diff2 = p2 - a2; // Compliant
 diff3 = p1 - p2; // Non-compliant
}

In this example, the three subtraction expressions show the difference between compliant
and noncompliant pointer subtractions. The diff1 and diff2 subtractions are compliant
because the pointers point to the same array. The diff3 subtraction is not compliant
because p1 and p2 point to different arrays.

Check Information
Group: Pointers and Arrays
Category: Required
AGC Category: Required
Language: C90, C99
CERT C: EXP08-C, ARR36-C
ISO/IEC TS 17961 ID: ptrobj

See Also
MISRA C:2012 Dir 4.1 | MISRA C:2012 Rule 18.4

Topics
“Check for Coding Rule Violations”

 MISRA C:2012 Rule 18.2

5-311

https://www.securecoding.cert.org/confluence/x/eYAg
https://www.securecoding.cert.org/confluence/x/LIDp

“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

5 MISRA C 2012

5-312

MISRA C:2012 Rule 18.3
The relational operators >, >=, < and <= shall not be applied to objects of pointer type
except where they point into the same object

Description

Rule Definition
The relational operators >, >=, <, and <= shall not be applied to objects of pointer type
except where they point into the same object.

Rationale
If two pointers do not point to the same object, comparisons between the pointers
produces undefined behavior.

You can address the element beyond the end of an array, but you cannot access this
element.

Message in Report
The relational operators >, >=, < and <= shall not be applied to objects of pointer type
except where they point into the same object.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

 MISRA C:2012 Rule 18.3

5-313

Examples

Pointer and Array Comparisons
void f1(void){
 int arr1[10];
 int arr2[10];
 int *ptr1 = arr1;

 if(ptr1 < arr2){} /* Non-compliant */
 if(ptr1 < arr1){} /* Compliant */
}

In this example, ptr1 is a pointer to arr1. To be compliant with rule 18.3, you can
compare only ptr1 with arr1. Therefore, the comparison between ptr1 and arr2 is
noncompliant.

Structure Comparisons
struct limits{
 int lower_bound;
 int upper_bound;
};

void func2(void){
 struct limits lim_1 = { 2, 5 };
 struct limits lim_2 = { 10, 5 };

 if(&lim_1.lower_bound <= &lim_2.upper_bound){} /* Non-compliant *
 if(&lim_1.lower_bound <= &lim_1.upper_bound){} /* Compliant */
}

This example defines two limits structures, lim1 and lim2, and compares the
elements. To be compliant with rule 18.3, you can compare only the structure elements
within a structure. The first comparison compares the lower_bound of lim1 and the
upper_bound of lim2. This comparison is noncompliant because the
lim_1.lower_bound and lim_2.upper_bound are elements of two different
structures.

5 MISRA C 2012

5-314

Check Information
Group: Pointers and Arrays
Category: Required
AGC Category: Required
Language: C90, C99
CERT C: EXP08-C
ISO/IEC TS 17961 ID: ptrobj

See Also
MISRA C:2012 Dir 4.1

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 18.3

5-315

https://www.securecoding.cert.org/confluence/x/eYAg

MISRA C:2012 Rule 18.4
The +, -, += and -= operators should not be applied to an expression of pointer type

Description

Rule Definition
The +, -, += and -= operators should not be applied to an expression of pointer type.

Rationale
The preferred form of pointer arithmetic is using the array subscript syntax ptr[expr].
This syntax is clear and less prone to error than pointer manipulation. With pointer
manipulation, any explicitly calculated pointer value has the potential to access
unintended or invalid memory addresses. Array indexing can also access unintended or
invalid memory, but it is easier to review.

To a new C programmer, the expression ptr+1 can be mistakenly interpreted as one plus
the address of ptr. However, the new memory address depends on the size, in bytes, of
the pointer’s target. This confusion can lead to unexpected behavior.

When used with caution, pointer manipulation using ++ can be more natural (for instance,
sequentially accessing locations during a memory test).

Polyspace Specification
Polyspace flags operations on pointers, for example, Pointer + Integer, Integer +
Pointer, Pointer - Integer.

Message in Report
The +, -, += and -= operators should not be applied to an expression of pointer type.

5 MISRA C 2012

5-316

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Examples
Pointers and Array Expressions
void fun1(void){
 unsigned char arr[10];
 unsigned char *ptr;
 unsigned char index = 0U;

 index = index + 1U; /* Compliant - rule only applies to pointers */

 arr[index] = 0U; /* Compliant */
 ptr = &arr[5]; /* Compliant */
 ptr = arr;
 ptr++; /* Compliant - increment operator not + */
 (ptr + 5) = 0U; / Non-compliant */
 ptr[5] = 0U; /* Compliant */
}

This example shows various operations with pointers and arrays. The only operation in
this example that is noncompliant is using the + operator directly with a pointer (line 12).

Adding Array Elements Inside a for Loop
void fun2(void){
 unsigned char array_2_2[2][2] = {{1U, 2U}, {4U, 5U}};
 unsigned char i = 0U;
 unsigned char j = 0U;
 unsigned char sum = 0U;

 for(i = 0u; i < 2U; i++){
 unsigned char *row = array_2_2[i];

 for(j = 0u; j < 2U; j++){
 sum += row[j]; /* Compliant */
 }

 MISRA C:2012 Rule 18.4

5-317

 }
}

In this example, the second for loop uses the array pointer row in an arithmetic
expression. However, this usage is compliant because it uses the array index form.

Pointers and Array Expressions
void fun3(unsigned char *ptr1, unsigned char ptr2[]){
 ptr1++; /* Compliant */
 ptr1 = ptr1 - 5; /* Non-compliant */
 ptr1 -= 5; /* Non-compliant */
 ptr1[2] = 0U; /* Compliant */

 ptr2++; /* Compliant */
 ptr2 = ptr2 + 3; /* Non-compliant */
 ptr2 += 3; /* Non-compliant */
 ptr2[3] = 0U; /* Compliant */
}

This example shows the offending operators used on pointers and arrays. Notice that the
same types of expressions are compliant and noncompliant for both pointers and arrays.

If ptr1 does not point to an array with at least six elements, and ptr2 does not point to
an array with at least 4 elements, this example violates rule 18.1.

Check Information
Group: Pointers and Arrays
Category: Advisory
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 18.1 | MISRA C:2012 Rule 18.2

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”

5 MISRA C 2012

5-318

“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 18.4

5-319

MISRA C:2012 Rule 18.5
Declarations should contain no more than two levels of pointer nesting

Description

Rule Definition
Declarations should contain no more than two levels of pointer nesting.

Rationale
The use of more than two levels of pointer nesting can seriously impair the ability to
understand the behavior of the code. Avoid this usage.

Message in Report
Declarations should contain no more than two levels of pointer nesting.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Examples

Pointer Nesting
typedef char *INTPTR;

void function(char ** arrPar[]) /* Non-compliant - 3 levels */
{
 char ** obj2; /* Compliant */
 char *** obj3; /* Non-compliant */

5 MISRA C 2012

5-320

 INTPTR * obj4; /* Compliant */
 INTPTR * const * const obj5; /* Non-compliant */
 char ** arr[10]; /* Compliant */
 char ** (*parr)[10]; /* Compliant */
 char * (**pparr)[10]; /* Compliant */
}

struct s{
 char * s1; /* Compliant */
 char ** s2; /* Compliant */
 char *** s3; /* Non-compliant */
};

struct s * ps1; /* Compliant */
struct s ** ps2; /* Compliant */
struct s *** ps3; /* Non-compliant */

char ** (*pfunc1)(void); /* Compliant */
char ** (**pfunc2)(void); /* Compliant */
char ** (***pfunc3)(void); /* Non-compliant */
char *** (**pfunc4)(void); /* Non-compliant */

This example shows various pointer declarations and nesting levels. Any pointer with
more than two levels of nesting is considered noncompliant.

Check Information
Group: Pointers and Arrays
Category: Advisory
AGC Category: Readability
Language: C90, C99

See Also

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 18.5

5-321

MISRA C:2012 Rule 18.6
The address of an object with automatic storage shall not be copied to another object that
persists after the first object has ceased to exist

Description

Rule Definition
The address of an object with automatic storage shall not be copied to another object that
persists after the first object has ceased to exist.

Rationale
The address of an object becomes indeterminate when the lifetime of that object expires.
Any use of an indeterminate address results in undefined behavior.

Polyspace Specification
Polyspace flags a violation when assigning an address to a global variable, returning a
local variable address, or returning a parameter address.

Message in Report
The address of an object with automatic storage shall not be copied to another object that
persists after the first object has ceased to exist.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

5 MISRA C 2012

5-322

Examples

Address of Local Variables
char *func(void){
 char local_auto;
 return &local_auto /* Non-compliant
 * &local_auto is indeterminate */
}

In this example, because local_auto is a local variable, after the function returns, the
address of local_auto is indeterminate.

Copying Pointer Addresses to Local Variables
char *sp;

void f(unsigned short u){
 g(&u);
}

void g(unsigned short *p){
 sp = p; /* Non-compliant
 * the parameter u from f is copied to static sp */
}

void h(void){
 static unsigned short *q;

 unsigned short x =0u;
 q = &x; /* Non-compliant -
 * &x stored in object with greater lifetime */
}

In this example, the function g stores a copy of its pointer parameter p. If p always points
to an object with static storage duration, then the code is compliant with this rule.
However, in this example, p points to an object with automatic storage duration. In such a
case, copying the parameter p is noncompliant.

 MISRA C:2012 Rule 18.6

5-323

Check Information
Group: Pointers and Arrays
Category: Required
AGC Category: Required
Language: C90, C99
CERT C: DCL30-C, MEM30-C
ISO/IEC TS 17961 ID: addrescape

See Also

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

5 MISRA C 2012

5-324

https://www.securecoding.cert.org/confluence/x/bQ4
https://www.securecoding.cert.org/confluence/x/vAE

MISRA C:2012 Rule 18.7
Flexible array members shall not be declared

Description

Rule Definition
Flexible array members shall not be declared.

Rationale
Flexible array members are usually used with dynamic memory allocation. Dynamic
memory allocation is banned by Directive 4.12 and Rule 21.3 on page 5-367.

Message in Report
Flexible array members shall not be declared.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Pointers and Arrays
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 21.3

 MISRA C:2012 Rule 18.7

5-325

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

5 MISRA C 2012

5-326

MISRA C:2012 Rule 18.8
Variable-length array types shall not be used

Description

Rule Definition
Variable-length array types shall not be used.

Rationale
When the size of an array declared in a block or function prototype is not an integer
constant expression, you specify variable array types. Variable array types are typically
implemented as a variable size object stored on the stack. Using variable type arrays can
make it impossible to determine statistically the amount of memory for the stack requires.

If the size of a variable-length array is negative or zero, the behavior is undefined.

If a variable-length array must be compatible with another array type, then the size of the
array types must be identical and positive integers. If your array does not meet these
requirements, the behavior is undefined.

If you use a variable-length array type in a sizeof, it is uncertain if the array size is
evaluated or not.

Message in Report
Variable-length array types shall not be used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

 MISRA C:2012 Rule 18.8

5-327

Check Information
Group: Pointers and Arrays
Category: Required
AGC Category: Required
Language: C99

See Also
MISRA C:2012 Rule 13.6

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

5 MISRA C 2012

5-328

MISRA C:2012 Rule 19.1
An object shall not be assigned or copied to an overlapping object

Description
Rule Definition
An object shall not be assigned or copied to an overlapping object.

Rationale
When you assign an object to another object with overlapping memory, the behavior is
undefined. The exceptions are:

• You assign an object to another object with exactly overlapping memory and
compatible type.

• You copy one object to another using memmove.

Message in Report
• An object shall not be assigned or copied to an overlapping object.
• Destination and source of XX overlap, the behavior is undefined.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Examples
Assignment of Union Members
void func (void) {
 union {

 MISRA C:2012 Rule 19.1

5-329

 short i;
 int j;
 } a = {0}, b = {1};

 a.j = a.i; /* Non-compliant */
 a = b; /* Compliant */
}

In this example, the rule is violated when a.i is assigned to a.j because the two
variables have overlapping regions of memory.

Assignment of Array Segments
#include <string.h>

int arr[10];

void func(void) {
 memcpy (&arr[5], &arr[4], 2u * sizeof(arr[0])); /* Non-compliant */
 memcpy (&arr[5], &arr[4], sizeof(arr[0])); /* Compliant */
 memcpy (&arr[1], &arr[4], 2u * sizeof(arr[0])); /* Compliant */
}

In this example, memory equal to twice sizeof(arr[0]) is the memory space taken up
by two array elements. If that memory space begins from &a[4] and &a[5], the two
memory regions overlap. The rule is violated when the memcpy function is used to copy
the contents of these two overlapping memory regions.

Check Information
Group: Overlapping Storage
Category: Mandatory
AGC Category: Mandatory
Language: C90, C99

See Also
MISRA C:2012 Rule 19.2

Topics
“Check for Coding Rule Violations”

5 MISRA C 2012

5-330

“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 19.1

5-331

MISRA C:2012 Rule 19.2
The union keyword should not be used

Description

Rule Definition
The union keyword should not be used.

Rationale
If you write to a union member and read the same union member, the behavior is well-
defined. But if you read a different member, the behavior depends on the relative sizes of
the members. For instance:

• If you read a union member with wider memory size, the value you read is unspecified.
• Otherwise, the value is implementation-dependant.

Message in Report
The union keyword should not be used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Examples

Possible Problems with union Keyword
unsigned int zext(unsigned int s)
{

5 MISRA C 2012

5-332

 union /* Non-compliant */
 {
 unsigned int ul;
 unsigned short us;
 } tmp;

 tmp.us = s;
 return tmp.ul; /* Unspecified value */
}

In this example, the 16-bit short field tmp.us is written but the wider 32-bit int field
tmp.ul is read. Using the union keyword can cause such unspecified behavior.
Therefore, the rule forbids using the union keyword.

Check Information
Group: Overlapping Storage
Category: Advisory
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 19.1

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 19.2

5-333

MISRA C:2012 Rule 20.1
#include directives should only be preceded by preprocessor directives or comments

Description

Rule Definition
#include directives should only be preceded by preprocessor directives or comments.

Rationale
For better code readability, group all #include directives in a file at the top of the file.
Undefined behavior can occur if you use #include to include a standard header file
within a declaration or definition, or if you use part of the Standard Library before
including the related standard header files.

Polyspace Specification
Polyspace flags text that precedes a #include directive. Polyspace ignores preprocessor
directives, comments, spaces, or "new lines".

Message in Report
#include directives should only be preceded by preprocessor directives or comments.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Preprocessing Directives

5 MISRA C 2012

5-334

Category: Advisory
AGC Category: Advisory
Language: C90, C99

See Also

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 20.1

5-335

MISRA C:2012 Rule 20.2
The ', " or \ characters and the /* or // character sequences shall not occur in a header file
name

Description

Rule Definition
The ', " or \ characters and the /* or // character sequences shall not occur in a header file
name.

Rationale
The program’s behavior is undefined if:

• You use ', ", \, /* or // between < > delimiters in a header name preprocessing
token.

• You use ', \, /* or // between " delimiters in a header name preprocessing token.

Although \ results in undefined behavior, many implementations accept / in its place.

Polyspace Specification
Polyspace flags the characters ', ", \, /* or // between < and > in #include
<filename>.

Polyspace flags the characters ', \, /* or // between " and " in #include
"filename".

Message in Report
The ', "or \ characters and the /* or // character sequences shall not occur in a header file
name.

5 MISRA C 2012

5-336

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Preprocessing Directives
Category: Required
AGC Category: Required
Language: C90, C99

See Also

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 20.2

5-337

MISRA C:2012 Rule 20.3
The #include directive shall be followed by either a <filename> or \"filename\" sequence

Description

Rule Definition
The #include directive shall be followed by either a <filename> or "filename" sequence.

Rationale
This rule applies only after macro replacement.

The behavior is undefined if an #include directive does not use one of the following
forms:

• #include <filename>
• #include "filename"

Message in Report
• ‘#include' expects \"FILENAME\" or <FILENAME>
• ‘#include_next' expects \"FILENAME\" or <FILENAME>
• ‘#include' does not expect string concatenation.
• ‘#include_next' does not expect string concatenation.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

5 MISRA C 2012

5-338

Check Information
Group: Preprocessing Directives
Category: Required
AGC Category: Required
Language: C90, C99

See Also

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 20.3

5-339

MISRA C:2012 Rule 20.4
A macro shall not be defined with the same name as a keyword

Description

Rule Definition
A macro shall not be defined with the same name as a keyword.

Rationale
Using macros to change the meaning of keywords can be confusing. The behavior is
undefined if you include a standard header while a macro is defined with the same name
as a keyword.

Message in Report
• The macro macro_name shall not be redefined.
• The macro macro_name shall not be undefined.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Examples

Redefining int keyword
#define int some_other_type
 /* Non-compliant - int keyword behavior altered */
#include <stdlib.h>
...

5 MISRA C 2012

5-340

In this example, the #define violates Rule 20.4 because it alters the behavior of the int
keyword. The inclusion of the standard header results in undefined behavior.

One possible correction is to use a different keyword:

#define int_mine some_other_type
#include <stdlib.h>
...

Redefining keywords versus statements
#define while(E) for (; (E) ;) /* Non-compliant - while redefined*/
#define unless(E) if (!(E)) /* Compliant*/

#define seq(S1, S2) do{ S1; S2;} while(false) /* Compliant*/
#define compound(S) {S;} /* Compliant*/
...

In this example, it is noncompliant to redefine the keyword while, but it is compliant to
define a macro that expands to statements.

Redefining keywords in different standards
#define inline

In this example, redefining inline is compliant in C90, but not in C99 because inline is
not a keyword in C90.

Check Information
Group: Preprocessing Directives
Category: Required
AGC Category: Required
Languages: C90, C99
ISO/IEC TS 17961 ID: resident

See Also
MISRA C:2012 Rule 21.1

 MISRA C:2012 Rule 20.4

5-341

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

5 MISRA C 2012

5-342

MISRA C:2012 Rule 20.5
#undef should not be used

Description

Rule Definition
#undef should not be used.

Rationale
#undef can make the software unclear which macros exist at a particular point within a
translation unit.

Message in Report
#undef shall not be used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Preprocessing Directives
Category: Advisory
AGC Category: Readability
Language: C90, C99

 MISRA C:2012 Rule 20.5

5-343

See Also

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

5 MISRA C 2012

5-344

MISRA C:2012 Rule 20.6
Tokens that look like a preprocessing directive shall not occur within a macro argument

Description
Rule Definition
Tokens that look like a preprocessing directive shall not occur within a macro argument.

Rationale
An argument containing sequences of tokens that otherwise act as preprocessing
directives leads to undefined behavior.

Polyspace Specification
Polyspace looks for the # character in a macro arguments (outside a string or character
constant).

Message in Report
Macro argument shall not look like a preprocessing directive.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Examples
Macro Expansion Causing Non-Compliance
#define M(A) printf (#A)

 MISRA C:2012 Rule 20.6

5-345

#include <stdio.h>

void foo(void){
 M(
#ifdef SW /* Non-compliant */
 "Message 1"
#else
 "Message 2" /* Compliant - SW not defined */
#endif /* Non-compliant */
);
}

This example shows a macro definition and the macro usage. #ifdef SW and #endif are
noncompliant because they look like a preprocessing directive. Polyspace does not flag
#else "Message 2" because after macro expansion, Polyspace knows SW is not defined.
The expanded macro is printf ("\"Message 2\"");

Check Information
Group: Preprocessing Directives
Category: Required
AGC Category: Required
Language: C90, C99

See Also

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

5 MISRA C 2012

5-346

MISRA C:2012 Rule 20.7
Expressions resulting from the expansion of macro parameters shall be enclosed in
parentheses

Description
Rule Definition
Expressions resulting from the expansion of macro parameters shall be enclosed in
parentheses.

Rationale
If you do not use parentheses, then it is possible that operator precedence does not give
the results that you want when macro substitution occurs.

If you are not using a macro parameter as an expression, then the parentheses are not
necessary because no operators are involved in the macro.

Message in Report
Expanded macro parameter param shall be enclosed in parentheses.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Examples
Macro Expressions
#define mac1(x, y) (x * y)
#define mac2(x, y) ((x) * (y))

 MISRA C:2012 Rule 20.7

5-347

void foo(void){
 int r;

 r = mac1(1 + 2, 3 + 4); /* Non-compliant */
 r = mac1((1 + 2), (3 + 4)); /* Compliant */

 r = mac2(1 + 2, 3 + 4); /* Compliant */
}

In this example, mac1 and mac2 are two defined macro expressions. The definition of
mac1 does not enclose the arguments in parentheses. In line 7, the macro expands to r =
(1 + 2 * 3 + 4); This expression can be (1 + (2 * 3) + 4) or (1 + 2) * (3
+ 4). However, without parentheses, the program does not know the intended
expression. Line 8 uses parentheses, so the line expands to (1 + 2) * (3 + 4). This
macro expression is compliant.

The definition of mac2 does enclose the argument in parentheses. Line 10 (the same
macro arguments in line 7) expands to (1 + 2) * (3 + 4). This macro and macro
expression are compliant.

Check Information
Group: Preprocessing Directives
Category: Required
AGC Category: Required
Language: C90, C99
CERT C: PRE01-C

See Also
MISRA C:2012 Dir 4.9

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

5 MISRA C 2012

5-348

https://www.securecoding.cert.org/confluence/x/CgU

MISRA C:2012 Rule 20.8
The controlling expression of a #if or #elif preprocessing directive shall evaluate to 0 or 1

Description

Rule Definition
The controlling expression of a #if or #elif preprocessing directive shall evaluate to 0 or
1.

Rationale
Strong typing requires that conditional inclusion preprocessing directives, #if or #elif,
have a controlling expression that evaluates to a Boolean value.

Message in Report
The controlling expression of a #if or #elif preprocessing directive shall evaluate to 0 or
1.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Preprocessing Directives
Category: Required
AGC Category: Advisory
Language: C90, C99

 MISRA C:2012 Rule 20.8

5-349

See Also
MISRA C:2012 Rule 14.4

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

5 MISRA C 2012

5-350

MISRA C:2012 Rule 20.9
All identifiers used in the controlling expression of #if or #elif preprocessing directives
shall be #define’d before evaluation

Description

Rule Definition
All identifiers used in the controlling expression of #if or #elif preprocessing directives
shall be #define’d before evaluation.

Rationale
If attempt to use a macro identifier in a preprocessing directive, and you have not defined
that identifier, then the preprocessor assumes that it has a value of zero. This value might
not meet developer expectations.

Message in Report
Identifier is not defined.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Examples

Macro Identifiers
#if M == 0 /* Non-compliant - Not defined */
#endif

 MISRA C:2012 Rule 20.9

5-351

#if defined (M) /* Compliant - M is not evaluate */
#if M == 0 /* Compliant - M is known to be defined */
#endif
#endif

#if defined (M) && (M == 0) /* Compliant
 * if M defined, M evaluated in (M == 0) */
#endif

This example shows various uses of M in preprocessing directives. The second and third
#if clauses check to see if the software defines M before evaluating M. The first #if
clause does not check to see if M is defined, and because M is not defined, the statement is
noncompliant.

Check Information
Group: Preprocessing Directives
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Dir 4.9

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

5 MISRA C 2012

5-352

MISRA C:2012 Rule 20.10
The # and ## preprocessor operators should not be used

Description

Rule Definition
The # and ## preprocessor operators should not be used.

Rationale
The order of evaluation associated with multiple #, multiple ##, or a mix of # and ##
preprocessor operators is unspecified. In some cases, it is therefore not possible to
predict the result of macro expansion.

The use of ## can result in obscured code.

Message in Report
The # and ## preprocessor operators should not be used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Preprocessing Directives
Category: Advisory
AGC Category: Advisory
Language: C90, C99

 MISRA C:2012 Rule 20.10

5-353

See Also
MISRA C:2012 Rule 1.3 | MISRA C:2012 Rule 20.11

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

5 MISRA C 2012

5-354

MISRA C:2012 Rule 20.11
A macro parameter immediately following a # operator shall not immediately be followed
by a ## operator

Description

Rule Definition
A macro parameter immediately following a # operator shall not immediately be followed
by a ## operator.

Rationale
The order of evaluation associated with multiple #, multiple ##, or a mix of # and ##
preprocessor operators, is unspecified. Rule 20.10 discourages the use of # and ##. The
result of a # operator is a string literal. It is extremely unlikely that pasting this result to
any other preprocessing token results in a valid token.

Message in Report
The ## preprocessor operator shall not follow a macro parameter following a #
preprocessor operator.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

 MISRA C:2012 Rule 20.11

5-355

Examples

Use of # and ##
#define A(x) #x /* Compliant */
#define B(x, y) x ## y /* Compliant */
#define C(x, y) #x ## y /* Non-compliant */

In this example, you can see three uses of the # and ## operators. You can use these
preprocessing operators alone (line 1 and line 2), but using # then ## is noncompliant
(line 3).

Check Information
Group: Preprocessing Directives
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 20.10

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

5 MISRA C 2012

5-356

MISRA C:2012 Rule 20.12
A macro parameter used as an operand to the # or ## operators, which is itself subject
to further macro replacement, shall only be used as an operand to these operators

Description

Rule Definition
A macro parameter used as an operand to the # or ## operators, which is itself subject
to further macro replacement, shall only be used as an operand to these operators.

Rationale
The parameter to # or ## is not expanded prior to being used. The same parameter
appearing elsewhere in the replacement text is expanded. If the macro parameter is itself
subject to macro replacement, its use in mixed contexts within a macro replacement
might not meet developer expectations.

Message in Report
Expanded macro parameter param1 is also an operand of op operator.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Preprocessing Directives
Category: Required
AGC Category: Required
Language: C90, C99

 MISRA C:2012 Rule 20.12

5-357

See Also

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

5 MISRA C 2012

5-358

MISRA C:2012 Rule 20.13
A line whose first token is # shall be a valid preprocessing directive

Description

Rule Definition
A line whose first token is # shall be a valid preprocessing directive

Rationale
You typically use a preprocessing directive to conditionally exclude source code until a
corresponding #else, #elif, or #endif directive is encountered. If your compiler does
not detect a preprocessing directive because it is malformed or invalid, you can end up
excluding more code than you intended.

If all preprocessing directives are syntactically valid, even in excluded code, this
unintended code exclusion cannot happen.

Message in Report
Directive is not syntactically meaningful.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Preprocessing Directives
Category: Required
AGC Category: Required
Language: C90, C99

 MISRA C:2012 Rule 20.13

5-359

See Also

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

5 MISRA C 2012

5-360

MISRA C:2012 Rule 20.14
All #else, #elif and #endif preprocessor directives shall reside in the same file as the #if,
#ifdef or #ifndef directive to which they are related

Description

Rule Definition
All #else, #elif and #endif preprocessor directives shall reside in the same file as the #if,
#ifdef or #ifndef directive to which they are related.

Rationale
When conditional compilation directives include or exclude blocks of code and are spread
over multiple files, confusion arises. If you terminate an #if directive within the same
file, you reduce the visual complexity of the code and the chances of an error.

If you terminate #if directives within the same file, you can use #if directives in
included files

Message in Report
• '#else' not within a conditional.
• '#elseif' not within a conditional.
• '#endif' not within a conditional.

Unterminated conditional directive.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

 MISRA C:2012 Rule 20.14

5-361

Check Information
Group: Preprocessing Directives
Category: Required
AGC Category: Required
Language: C90, C99

See Also

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

5 MISRA C 2012

5-362

MISRA C:2012 Rule 21.1
#define and #undef shall not be used on a reserved identifier or reserved macro name

Description

Rule Definition
#define and #undef shall not be used on a reserved identifier or reserved macro name.

Rationale
Reserved identifiers and reserved macro names are intended for use by the
implementation. Removing or changing the meaning of a reserved macro can result in
undefined behavior. This rule applies to the following:

• Identifiers or macro names beginning with an underscore
• Identifiers in file scope described in the C Standard Library (ISO/IEC 9899:1999,

Section 7, "Library")
• Macro names described in the C Standard Library as being defined in a standard

header (ISO/IEC 9899:1999, Section 7, "Library").

Message in Report
• The macro macro_name shall not be redefined.
• The macro macro_name shall not be undefined.
• The macro macro_name shall not be defined.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

 MISRA C:2012 Rule 21.1

5-363

Examples

Defining or Undefining Reserved Identifiers
#undef __LINE__ /* Non-compliant - begins with _ */
#define _Guard_H 1 /* Non-compliant - begins with _ */
#undef _ BUILTIN_sqrt /* Non-compliant - implementation may
 * use _BUILTIN_sqrt for other purposes,
 * e.g. generating a sqrt instruction */
#define defined /* Non-compliant - reserved identifier */
#define errno my_errno /* Non-compliant - library identifier */
#define isneg(x) ((x) < 0) /* Compliant - rule doesn't include
 * future library directions */

Check Information
Group: Standard Libraries
Category: Required
AGC Category: Required
Languages: C90, C99
CERT C: DCL37-C
ISO/IEC TS 17961 ID: resident

See Also
MISRA C:2012 Rule 20.4

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-364

https://www.securecoding.cert.org/confluence/x/-4AzAg

MISRA C:2012 Rule 21.2
A reserved identifier or macro name shall not be declared

Description

Rule Definition
A reserved identifier or macro name shall not be declared.

Rationale
The Standard allows implementations to treat reserved identifiers specially. If you reuse
reserved identifiers, you can cause undefined behavior.

Polyspace Specification
• If you define a macro name that corresponds to a standard library macro, object, or

function, rule 21.1 is violated.
• The rule considers tentative definitions as definitions.

Message in Report
Identifier 'XX' shall not be reused.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Standard Libraries
Category: Required

 MISRA C:2012 Rule 21.2

5-365

AGC Category: Required
Language: C90, C99
CERT C: DCL37-C
ISO/IEC TS 17961 ID: resident

See Also

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-366

https://www.securecoding.cert.org/confluence/x/-4AzAg

MISRA C:2012 Rule 21.3
The memory allocation and deallocation functions of <stdlib.h> shall not be used

Description

Rule Definition
The memory allocation and deallocation functions of <stdlib.h> shall not be used.

Rationale
Using memory allocation and deallocation routines can cause undefined behavior. For
instance:

• You free memory that you had not allocated dynamically.
• You use a pointer that points to a freed memory location.

Polyspace Specification
If you use names of dynamic heap memory allocation functions for macros, and you
expand the macros in the code, this rule is violated. It is assumed that rule 21.2 is not
violated.

Message in Report
• The macro <name> shall not be used.
• Identifier XX should not be used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

 MISRA C:2012 Rule 21.3

5-367

Examples

Use of malloc, calloc, realloc and free
#include <stdlib.h>

static int foo(void);

typedef struct struct_1 {
 int a;
 char c;
} S_1;

static int foo(void) {

 _S_1 * ad_1;
 int * ad_2;
 int * ad_3;

 ad_1 = (S_1*)calloc(100U, sizeof(S_1)); /* Non-compliant */
 ad_2 = malloc(100U * sizeof(int)); /* Non-compliant */
 ad_3 = realloc(ad_3, 60U * sizeof(long)); /* Non-compliant */

 free(ad_1); /* Non-compliant */
 free(ad_2); /* Non-compliant */
 free(ad_3); /* Non-compliant */

 return 1;
}

In this example, the rule is violated when the functions malloc, calloc, realloc and
free are used.

Check Information
Group: Standard Libraries
Category: Required
AGC Category: Required
Language: C90, C99
CERT C: API03-C
ISO/IEC TS 17961 ID: accfree, dblfree, insufmem

5 MISRA C 2012

5-368

https://www.securecoding.cert.org/confluence/x/VgGNAQ

See Also
MISRA C:2012 Rule 18.7

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 21.3

5-369

MISRA C:2012 Rule 21.4
The standard header file <setjmp.h> shall not be used

Description

Rule Definition
The standard header file <setjmp.h> shall not be used.

Rationale
Using setjmp and longjmp, you can bypass normal function call mechanisms and cause
undefined behavior.

Polyspace Specification
If the longjmp function is a macro and the macro is expanded in the code, this rule is
violated. It is assumed that rule 21.2 is not violated.

Message in Report
• The macro '<name> shall not be used.
• Identifier XX should not be used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Standard Libraries
Category: Required

5 MISRA C 2012

5-370

AGC Category: Required
Language: C90, C99

See Also

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 21.4

5-371

MISRA C:2012 Rule 21.5
The standard header file <signal.h> shall not be used

Description

Rule Definition
The standard header file <signal.h> shall not be used.

Rationale
Using signal handling functions can cause implementation-defined and undefined
behavior.

Polyspace Specification
If the signal function is a macro and the macro is expanded in the code, this rule is
violated. It is assumed that rule 21.2 is not violated.

Message in Report
• The macro '<name> shall not be used.
• Identifier XX should not be used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Standard Libraries
Category: Required

5 MISRA C 2012

5-372

AGC Category: Required
Language: C90, C99
ISO/IEC TS 17961 ID: accsig, asyncsig, sigcall

See Also

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 21.5

5-373

MISRA C:2012 Rule 21.6
The Standard Library input/output functions shall not be used

Description

Rule Definition
The Standard Library input/output functions shall not be used.

Rationale
This rule applies to the functions that are provided by <stdio.h> and in C99, their
character-wide equivalents provided by <wchar.h>. Using these functions can cause
unspecified, undefined and implementation-defined behavior.

Polyspace Specification
If the Standard Library function is a macro and the macro is expanded in the code, this
rule is violated. It is assumed that rule 21.2 is not violated.

Message in Report
• The macro '<name> shall not be used.
• Identifier XX should not be used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Standard Libraries

5 MISRA C 2012

5-374

Category: Required
AGC Category: Required
Language: C90, C99
ISO/IEC TS 17961 ID: invfmtstr, ioileave, taintformatio, usrfmt,
xfilepos

See Also

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 21.6

5-375

MISRA C:2012 Rule 21.7
The atof, atoi, atol, and atoll functions of <stdlib.h> shall not be used

Description

Rule Definition
The atof, atoi, atol, and atoll functions of <stdlib.h> shall not be used.

Rationale
When a string cannot be converted, the behavior of these functions can be undefined.

Polyspace Specification
If the function is a macro and the macro is expanded in the code, this rule is violated. It is
assumed that rule 21.2 is not violated.

Message in Report
• The macro '<name> shall not be used.
• Identifier XX should not be used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Standard Libraries
Category: Required
AGC Category: Required

5 MISRA C 2012

5-376

Language: C90, C99

See Also

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 21.7

5-377

MISRA C:2012 Rule 21.8
The library functions abort, exit, getenv and system of <stdlib.h> shall not be used

Description

Rule Definition
The library functions abort, exit, getenv and system of <stdlib.h> shall not be used.

Rationale
Using these functions can cause undefined and implementation-defined behaviors.

Polyspace Specification
In case the abort, exit, getenv, and system functions are actually macros, and the macros
are expanded in the code, this rule is detected as violated. It is assumed that rule 21.2 is
not violated.

Message in Report
• The macro '<name> shall not be used.
• Identifier XX should not be used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Standard Libraries
Category: Required

5 MISRA C 2012

5-378

AGC Category: Required
Language: C90, C99
ISO/IEC TS 17961 ID: libmod, libuse, syscall

See Also

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 21.8

5-379

MISRA C:2012 Rule 21.9
The library functions bsearch and qsort of <stdlib.h> shall not be used

Description

Rule Definition
The library functions bsearch and qsort of <stdlib.h> shall not be used.

Rationale
The comparison function in these library functions can behave inconsistently when the
elements being compared are equal. Also, the implementation of qsort can be recursive
and place unknown demands on the call stack.

Polyspace Specification
If the function is a macro and the macro is expanded in the code, this rule is violated. It is
assumed that rule 21.2 is not violated.

Message in Report
• The macro '<name> shall not be used.
• Identifier XX should not be used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Standard Libraries

5 MISRA C 2012

5-380

Category: Required
AGC Category: Required
Language: C90, C99

See Also

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 21.9

5-381

MISRA C:2012 Rule 21.10
The Standard Library time and date functions shall not be used

Description

Rule Definition
The Standard Library time and date functions shall not be used.

Rationale
Using these functions can cause unspecified, undefined and implementation-defined
behavior.

Polyspace Specification
If the function is a macro and the macro is expanded in the code, this rule is violated. It is
assumed that rule 21.2 is not violated.

Message in Report
• The macro '<name> shall not be used.
• Identifier XX should not be used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Standard Libraries
Category: Required

5 MISRA C 2012

5-382

AGC Category: Required
Language: C90, C99

See Also

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 21.10

5-383

MISRA C:2012 Rule 21.11
The standard header file <tgmath.h> shall not be used

Description

Rule Definition
The standard header file <tgmath.h> shall not be used.

Rationale
Using the facilities of this header file can cause undefined behavior.

Polyspace Specification
If the function is a macro and the macro is expanded in the code, this rule is violated. It is
assumed that rule 21.2 is not violated.

Message in Report
• The macro '<name> shall not be used.
• Identifier XX should not be used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

5 MISRA C 2012

5-384

Examples

Use of Function in tgmath.h
#include <tgmath.h>

float f1,res;

void func(void) {
 res = sqrt(f1); /* Non-compliant */
}

In this example, the rule is violated when the sqrt macro defined in tgmath.h is used.

For this example, one possible correction is to use the function sqrtf defined in math.h
for float arguments.

#include <math.h>

float f1, res;

void func(void) {
 res = sqrtf(f1);
}

Check Information
Group: Standard Libraries
Category: Required
AGC Category: Required
Language: C90, C99

See Also

Topics
“Check for Coding Rule Violations”

 MISRA C:2012 Rule 21.11

5-385

“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

5 MISRA C 2012

5-386

MISRA C:2012 Rule 21.12
The exception handling features of <fenv.h> should not be used

Description

Rule Definition
The exception handling features of <fenv.h> should not be used.

Rationale
In some cases, the values of the floating-point status flags are unspecified. Attempts to
access them can cause undefined behavior.

Message in Report
The exception handling features of <fenv.h> should not be used

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Examples

Use of Features in <fenv.h>
#include <fenv.h>

void func(float x, float y) {
 float z;

 feclearexcept(FE_DIVBYZERO); /* Non-compliant */

 MISRA C:2012 Rule 21.12

5-387

 z = x/y;

 if(fetestexcept (FE_DIVBYZERO)) { /* Non-compliant */
 }
 else {
#pragma STDC FENV_ACCESS ON
 z=x*y;
 if(z>x) {
#pragma STDC FENV_ACCESS OFF
 if(fetestexcept (FE_OVERFLOW)) { /* Non-compliant */
 }
 }
 }
}

In this example, the rule is violated when the identifiers feclearexcept and
fetestexcept, and the macros FE_DIVBYZERO and FE_OVERFLOW are used.

Check Information
Group: Standard libraries
Category: Advisory
AGC Category: Advisory
Language: C99

See Also

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2015b

5 MISRA C 2012

5-388

MISRA C:2012 Rule 21.13
Any value passed to a function in <ctype.h> shall be representable as an unsigned
char or be the value EOF

Description

Rule Definition
Any value passed to a function in <ctype.h> shall be representable as an unsigned
char or be the value EOF.

Rationale
Functions in <ctype.h> have a well-defined behavior only for int arguments whose
value is within the range of unsigned char or the negative value equivalent of EOF. The
use of other values results in undefined behavior.

Polyspace Specification
Polyspace considers that the negative value equivalent of EOF is -1 and does not raise a
violation if you pass -1 as argument to a function in ctype.h.

Message in Report
Any value passed to a function in <ctype.h> shall be representable as an unsigned
char or be the value EOF.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

 MISRA C:2012 Rule 21.13

5-389

Examples

Invalid Arguments for Functions from <ctype.h>
bool_t f (uint8_t a)
{
 return (isdigit ((int32_t) a) /* Compliant */
 && isalpha ((int32_t) 'b') /* Compliant */
 && islower (EOF) /* Compliant */
 && isalpha (256)); /* Non-compliant */
}

In this example, the rule is violated when 256, which is an neither an unsigned char or
the value EOF, is passed as an input argument to the isalpha function.

Note The int casts in the above example are required to comply with Rule 10.3 on page
5-169.

Check Information
Group: Standard libraries
Category: Mandatory
AGC Category: Mandatory
Language: C90, C99
ISO/IEC TS 17961 ID: chrsgnext

See Also
MISRA C:2012 Rule 10.3

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2017a

5 MISRA C 2012

5-390

MISRA C:2012 Rule 21.14
The Standard Library function memcmp shall not be used to compare null terminated
strings

Description

Rule Definition
The Standard Library function memcmp shall not be used to compare null terminated
strings.

Rationale
If memcmp is used to compare two strings and the length of either string is less than the
number of bytes compared, the strings can appear different even when they are logically
the same. The characters after the null terminator are compared even though they do not
form part of the string.

For instance:

memcmp(string1, string2, sizeof(string1))

can compare bytes after the null terminator if string1 is longer than string2.

Message in Report
The Standard Library function memcmp shall not be used to compare null terminated
strings.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

 MISRA C:2012 Rule 21.14

5-391

Examples

Using memcmp for String Comparison
extern char buffer1[12];
extern char buffer2[12];
void f1 (void)
{
 (void) strcpy (buffer1, "abc");
 (void) strcpy (buffer2, "abc");
 if (memcmp (buffer1, buffer2, sizeof (buffer1)) != 0)
 {
 /* Non-compliant */
 }
}

In this example, the comparison in the if statement is noncompliant. The strings stored
in buffer1 and buffer2 can be reported different, but this difference comes from
uninitialized characters after the null terminators.

Check Information
Group: Standard libraries
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 21.15 | MISRA C:2012 Rule 21.16

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2017a

5 MISRA C 2012

5-392

MISRA C:2012 Rule 21.15
The pointer arguments to the Standard Library functions memcpy, memmove and memcmp
shall be pointers to qualified or unqualified versions of compatible types

Description

Rule Definition
The pointer arguments to the Standard Library functions memcpy, memmove and memcmp
shall be pointers to qualified or unqualified versions of compatible types.

Rationale
The functions

memcpy(arg1, arg2, num_bytes);
memmove(arg1, arg2, num_bytes);
memcmp(arg1, arg2, num_bytes);

perform a byte-by-byte copy, move or comparison between the memory locations that
arg1 and arg2 point to. A byte-by-byte copy, move or comparison is meaningful only if
arg1 and arg2 have compatible types.

Using pointers to different data types for arg1 and arg2 typically indicates a coding
error.

Message in Report
The pointer arguments to the Standard Library functions memcpy, memmove and memcmp
shall be pointers to qualified or unqualified versions of compatible types.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

 MISRA C:2012 Rule 21.15

5-393

Examples

Incompatible Argument Types for memcpy
void f (uint8_t s1[8], uint16_t s2[8])
{
 (void) memcpy (s1, s2, 8); /* Non-compliant */
}

In this example, s1 and s2 are pointers to different data types. The memcpy statement
copies eight bytes from one buffer to another.

Eight bytes represent the entire span of the buffer that s1 points to, but only part of the
buffer that s2 points to. Therefore, the memcpy statement copies only part of s2 to s1,
which might be unintended.

Check Information
Group: Standard libraries
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 21.14 | MISRA C:2012 Rule 21.16

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2017a

5 MISRA C 2012

5-394

MISRA C:2012 Rule 21.16
The pointer arguments to the Standard Library function memcmp shall point to either a
pointer type, an essentially signed type, an essentially unsigned type, an essentially
Boolean type or an essentially enum type

Description

Rule Definition
The pointer arguments to the Standard Library function memcmp shall point to either a
pointer type, an essentially signed type, an essentially unsigned type, an essentially
Boolean type or an essentially enum type.

Rationale
The Standard Library function

memcmp (lhs, rhs, num);

performs a byte-by-byte comparison of the first num bytes of the two objects that lhs and
rhs point to.

Do not use memcmp for a byte-by-byte comparison of the following.

Type Rationale
Structures If members of a structure have different data types, your compiler

introduces additional padding for data alignment in memory. The
content of these extra padding bytes is meaningless. If you perform a
byte-by-byte comparison of structures with memcmp, you compare even
the meaningless data stored in the padding. You might reach the false
conclusion that two data structures are not equal, even if their
corresponding members have the same value.

 MISRA C:2012 Rule 21.16

5-395

Type Rationale
Objects with
essentially
floating type

The same floating point value can be stored using different
representations. If you perform a byte-by-byte comparison of two
variables with memcmp, you can reach the false conclusion that the
variables are unequal even when they have the same value. The reason
is that the values are stored using two different representations.

Essentially char
arrays

Essentially char arrays are typically used to store strings. In strings, the
content in bytes after the null terminator is meaningless. If you perform
a byte-by-byte comparison of two strings with memcmp, you might reach
the false conclusion that two strings are not equal, even if the bytes
before the null terminator store the same value.

Message in Report
The pointer arguments to the Standard Library function memcmp shall point to either a
pointer type, an essentially signed type, an essentially unsigned type, an essentially
Boolean type or an essentially enum type.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Examples

Using memcmp for Comparison of Structures, Unions, and
essentially char Arrays
struct S;
bool_t f1 (struct S *s1, struct S *s2)
{
 return (memcmp (s1, s2, sizeof (struct S)) != 0); /* Non-compliant */
}

union U
{
uint32_t range;

5 MISRA C 2012

5-396

uint32_t height;
};
bool_t f2 (union U *u1, union U *u2)
{
 return (memcmp (u1, u2, sizeof (union U)) != 0); /* Non-compliant */
}

const char a[6] = "task";
bool_t f3 (const char b[6])
{
 return (memcmp (a, b, 6) != 0); /* Non-compliant */
}

In this example:

• Structures s1 and s2 are compared in the bool_t f1 function. The return value of
this function might indicate that s1 and s2 are different due to padding. This
comparison is noncompliant.

• Unions u1 and u2 are compared in the bool_t f2 function. The return value of this
function might indicate that u1 and u2 are the same due to unintentional comparison
of u1.range and u2.height, or u1.height and u2.range. This comparison is
noncompliant.

• Essentially char arrays a and b are compared in the bool_t f3 function. The return
value of this function might incorrectly indicate that the strings are different because
the length of a (four) is less than the number of bytes compared (six). This comparison
is noncompliant.

Check Information
Group: Standard libraries
Category: Required
AGC Category: Required
Language: C90, C99
CERT C: EXP42-C
ISO/IEC TS 17961 ID: padcomp

See Also
MISRA C:2012 Rule 21.14 | MISRA C:2012 Rule 21.15

 MISRA C:2012 Rule 21.16

5-397

https://www.securecoding.cert.org/confluence/x/CoDYBg

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2017a

5 MISRA C 2012

5-398

MISRA C:2012 Rule 21.17
Use of the string handling function from <string.h> shall not result in accesses beyond
the bounds of the objects referenced by their pointer parameters

Description

Rule Definition
Use of the string handling function from <string.h> shall not result in accesses beyond
the bounds of the objects referenced by their pointer parameters.

Rationale
Incorrect use of a string handling function might result in a read or write access beyond
the bounds of the function arguments, resulting in undefined behavior.

Message in Report
Use of the string handling function from <string.h> shall not result in accesses beyond
the bounds of the objects referenced by their pointer parameters.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Examples

Pointer Access Out of Bounds from strcpy Usage
char string[] = "Short";
void f1 (const char *str)
{

 MISRA C:2012 Rule 21.17

5-399

 (void) strcpy (string, "Too long to fit"); /* Non-compliant */
 if (strlen (str) < (sizeof (string) - 1u))
 {
 (void) strcpy (string, str); /* Compliant */
 }
}

size_t f2 (void)
{
 char text[5] = "Token";
 return strlen (text); /* Non-compliant */
}

In this example:

• The first use of strcpy is noncompliant because it attempts to write beyond the end
of its destination argument string.

• The second use of strcpy is compliant because it attempts to write to the destination
argument string only if the source argument str fits.

• The use of strlen is noncompliant. strlen computes the length of a string up to the
null terminator. The character array text has no null terminator.

Check Information
Group: Standard libraries
Category: Mandatory
AGC Category: Mandatory
Language: C90, C99
CERT C: STR32-C
ISO/IEC TS 17961 ID: nonnullcs

See Also
MISRA C:2012 Rule 21.18

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

5 MISRA C 2012

5-400

https://www.securecoding.cert.org/confluence/x/KgE

Introduced in R2017a

 MISRA C:2012 Rule 21.17

5-401

MISRA C:2012 Rule 21.18
The size_t argument passed to any function in <string.h> shall have an appropriate
value

Description

Rule Definition
The size_t argument passed to any function in <string.h> shall have an appropriate
value.

Rationale
The value must be positive and not greater than the size of the smallest object passed by
pointer to the function. For instance, suppose you use the strncmp function to compare
two strings lhs_string and rhs_string as follows:

strncmp (lhs_string, rhs_string, num)

The third argument num must be positive and must not be greater than the size of
lhs_string or rhs_string, whichever is smaller.

Otherwise, using the function can result in read or write access beyond the bounds of the
function argument.

Message in Report
The size_t argument passed to any function in <string.h> shall have an appropriate
value.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

5 MISRA C 2012

5-402

Examples

Incorrect size_t Argument for memcmp
char buf1[5] = "12345";
char buf2[10] = "1234567890";

void f (void)
{
 if (memcmp (buf1, buf2, 5) == 0)
 {
 /* Compliant */
 }
 if (memcmp (buf1, buf2, 6) == 0)
 {
 /* Non-compliant */
 }
}

In this example, the first if statement is compliant. The size_t argument is five, which
is same as the size of the smaller string, buf1.

By the same reasoning, the second if statement is noncompliant.

Check Information
Group: Standard libraries
Category: Mandatory
AGC Category: Mandatory
Language: C90, C99
ISO/IEC TS 17961 ID: libptr

See Also
MISRA C:2012 Rule 21.17

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”

 MISRA C:2012 Rule 21.18

5-403

“Software Quality Objective Subsets (C:2012)”

Introduced in R2017a

5 MISRA C 2012

5-404

MISRA C:2012 Rule 21.19
The pointers returned by the Standard Library functions localeconv, getenv,
setlocale or strerror shall only be used as if they have pointer to const-qualified
type

Description

Rule Definition
The pointers returned by the Standard Library functions localeconv, getenv,
setlocale or strerror shall only be used as if they have pointer to const-qualified
type.

Rationale
The C99 Standard states that if the program modifies the structure pointed to by the
value returned by localeconv, or the strings returned by getenv, setlocale or
strerro, undefined behavior occurs. Treating the pointers returned by the various
functions as if they were const-qualified allows an analysis tool to detect any attempt to
modify an object through one of the pointers. Assigning the return values of the functions
to const-qualified pointers results in the compiler issuing a diagnostic if an attempt is
made to modify an object.

Message in Report
The pointers returned by the Standard Library functions localeconv, getenv,
setlocale or strerror shall only be used as if they have pointer to const-qualified
type.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

 MISRA C:2012 Rule 21.19

5-405

Examples

Returning Pointers fromsetlocale and localeconv
void f1 (void)
{
 char *s1 = setlocale (LC_ALL, 0); /* Non-compliant */
 struct lconv *conv = localeconv (); /* Non-compliant */
 s1[1] = 'A'; /* Undefined behavior */
 conv->decimal_point = "^"; /* Undefined behavior */
}

void f2 (void)
{
 char str[128];
 (void) strcpy (str, setlocale (LC_ALL,0)); /* Compliant */
 const struct lconv *conv = localeconv (); /* Compliant */
 conv->decimanl_point = "^" /* Constraint violation */
}

void f3 (void)
{
const struct lconv *conv = localeconv (); /* Compliant */
conv->grouping[2] = 'x'; /* Non-compliant */
}

In the above example:

• The usage of setlocale and localeconv in the function f1 are non-compliant as
the returned pointers are assigned to non-const—qualified pointers.

Note The usage of setlocale and localeconv above are not constraint violations
and will therefore not be reported by a compiler. However, an analysis tool will be able
to report a violation.

• The usage of setlocale in the function f2 is compliant as strcpy takes a const
char * as its second parameter. The usage of localeconv in the function f2 is
compliant as the returned pointers are assigned to a const-qualified pointer. Any
attempt to modify an object through a pointer will be reported by a compiler or
analysis tool as this is a constraint violation.

5 MISRA C 2012

5-406

• The usage of a const-qualified pointer in the function f3 gives compile time
protection of the value returned by localeconv but the same is not true for the
strings it references. Modification of these strings can be detected by an analysis tool.

Check Information
Group: Standard libraries
Category: Mandatory
AGC Category: Mandatory
Language: C90, C99
CERT C: ENV30-C
ISO/IEC TS 17961 ID: libmod

See Also
MISRA C:2012 Rule 7.4 | MISRA C:2012 Rule 11.8 | MISRA C:2012 Rule 21.8

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2017a

 MISRA C:2012 Rule 21.19

5-407

https://www.securecoding.cert.org/confluence/x/XgAl

MISRA C:2012 Rule 21.20
The pointer returned by the Standard Library functions asctime, ctime, gmtime,
localtime, localeconv, getenv, setlocale or strerror shall not be used following
a subsequent call to the same function

Description

Rule Definition
The pointer returned by the Standard Library functions asctime, ctime, gmtime,
localtime, localeconv, getenv, setlocale or strerror shall not be used following
a subsequent call to the same function.

Rationale
The preceding functions return a pointer to an object within the Standard Library.
Implementation for this object can use a static buffer that can be modified by a second
call to the same function. Therefore the value accessed through a pointer before a
subsequent call to the same function can change unexpectedly.

Message in Report
The pointer returned by the Standard Library functions asctime, ctime, gmtime,
localtime, localeconv, getenv, setlocale or strerror shall not be used following
a subsequent call to the same function.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

5 MISRA C 2012

5-408

Examples

Use of Return Value from getenv After Another Call to getenv
void f1(void)
{
 const char *res1;
 const char *res2;
 char copy[128];
 res1 = setlocale (LC_ALL, 0);
 (void) strcpy (copy, res1);
 res2 = setlocale (LC_MONETARY, "French");
 printf ("%s\n", res1); /* Non-compliant */
 printf ("%s\n", copy); /* Compliant */
 printf ("%s\n", res2); /* Compliant */
}

In this example:

• The first printf statement is non-compliant because the pointer returned by
setlocale is used following a subsequent call to it when res2 is assigned.

• The second printf statement is compliant because the copy operation performed by
strcpy is made before a subsequent call to setlocale function is made.

• The third printf statement is compliant because there is no subsequent call to the
setlocale function is made before use.

Check Information
Group: Standard libraries
Category: Mandatory
AGC Category: Mandatory
Language: C90, C99
CERT C: ENV34-C
ISO/IEC TS 17961 ID: libuse

 MISRA C:2012 Rule 21.20

5-409

https://www.securecoding.cert.org/confluence/x/GAAa

See Also

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2017a

5 MISRA C 2012

5-410

MISRA C:2012 Rule 22.1
All resources obtained dynamically by means of Standard Library functions shall be
explicitly released

Description

Rule Definition
All resources obtained dynamically by means of Standard Library functions shall be
explicitly released.

Rationale
Resources are something that you must return to the system once you have used them.
Examples include dynamically allocated memory and file descriptors.

If you do not release resources explicitly as soon as possible, then a failure can occur due
to exhaustion of resources.

Message in Report
All resources obtained dynamically by means of Standard Library functions shall be
explicitly released.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

 MISRA C:2012 Rule 22.1

5-411

Examples

Dynamic Memory
#include<stdlib.h>

void performOperation(int);

int func1(int num) {
 int *arr1 = (int*) malloc(num * sizeof(int));

 return 0;
} /* Non-compliant - memory allocated to arr1 is not released */

int func2(int num) {
 int *arr2 = (int*) malloc(num * sizeof(int));

 free(arr2);
 return 0;
} /* Compliant - memory allocated to arr2 is released */

In this example, the rule is violated when memory dynamically allocated using the
malloc function is not freed using the free function before the end of scope.

File Pointers
#include <stdio.h>
void func1(void) {
 FILE *fp1;
 fp1 = fopen ("data1.txt", "w");
 fprintf (fp1, "*");

 fp1 = fopen ("data2.txt", "w"); /* Non-compliant */
 fprintf (fp1, "!");
 fclose (fp1);
}

void func2(void) {
 FILE *fp2;
 fp2 = fopen ("data1.txt", "w");

5 MISRA C 2012

5-412

 fprintf (fp2, "*");
 fclose(fp2);

 fp2 = fopen ("data2.txt", "w"); /* Compliant */
 fprintf (fp2, "!");
 fclose (fp2);
}

In this example, the file pointer fp1 is pointing to a file data1.txt. Before fp1 is
explicitly dissociated from the file stream of data1.txt, it is used to access another file
data2.txt. Therefore, the rule 22.1 is violated.

The rule is not violated in func2 because file data1.txt is closed and the file pointer
fp2 is explicitly dissociated from data1.txt before it is reused.

Check Information
Group: Resources
Category: Required
AGC Category: Required
Language: C90, C99
CERT C: MEM30-C, FIO42-C
ISO/IEC TS 17961 ID: fileclose

See Also
MISRA C:2012 Directive 4.13 | MISRA C:2012 Rule 21.3 | MISRA C:2012
Rule 21.6 | Resource leak

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2015b

 MISRA C:2012 Rule 22.1

5-413

https://www.securecoding.cert.org/confluence/x/vAE
https://www.securecoding.cert.org/confluence/x/GAGQBw

MISRA C:2012 Rule 22.2
A block of memory shall only be freed if it was allocated by means of a Standard Library
function

Description

Rule Definition
A block of memory shall only be freed if it was allocated by means of a Standard Library
function.

Rationale
The Standard Library functions that allocate memory are malloc, calloc and realloc.

You free a block of memory when you pass its address to the free or realloc function.
The following causes undefined behavior:

• You free a block of memory that you did not allocate.
• You free a block of memory that have already freed before.

Message in Report
A block of memory shall only be freed if it was allocated by means of a Standard Library
function.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

5 MISRA C 2012

5-414

Examples

Memory Not Allocated Is Freed
#include <stdlib.h>

void func1(void) {
 int x=0;
 int *ptr=&x;

 free(ptr);
 /* Non-compliant: ptr is not dynamically allocated */
}

In this example, the rule is violated because the free function operates on a pointer that
does not point to dynamically allocated memory.

Memory Freed Twice
#include <stdlib.h>

void func(int arrSize) {
 int *ptr = (int*) malloc(arrSize* sizeof(int));

 free(ptr); /* Block of memory freed once */
 free(ptr); /* Non-compliant - Block of memory freed twice */
}

In this example, the rule is violated when the free function operates on ptr twice
without a reallocation in between.

Check Information
Group: Resources
Category: Mandatory
AGC Category: Mandatory
Language: C90, C99
CERT C: MEM30-C, MEM34-C
ISO/IEC TS 17961 ID: dblfree, xfree

 MISRA C:2012 Rule 22.2

5-415

https://www.securecoding.cert.org/confluence/x/vAE
https://www.securecoding.cert.org/confluence/x/wQE

See Also
Deallocation of previously deallocated pointer | Invalid free of
pointer | MISRA C:2012 Directive 4.13 | MISRA C:2012 Rule 21.3

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2015b

5 MISRA C 2012

5-416

MISRA C:2012 Rule 22.3
The same file shall not be open for read and write access at the same time on different
streams

Description

Rule Definition
The same file shall not be open for read and write access at the same time on different
streams.

Rationale
If a file is both written and read via different streams, the behavior can be undefined.

Message in Report
The same file shall not be open for read and write access at the same time on different
streams.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Examples

Opening File That Is Open in Another Stream
#include <stdio.h>

void func(void) {
 FILE *fw = fopen("tmp.txt", "r+");

 MISRA C:2012 Rule 22.3

5-417

 FILE *fr = fopen("tmp.txt", "r"); /* Non-compliant: File open in stream fw*/
}

In this example, the rule is violated when the same file tmp.txt is opened in two
streams. The FILE pointers fw and fr point to two different streams here.

Check Information
Group: Resources
Category: Required
AGC Category: Required
Language: C

See Also
MISRA C:2012 Rule 21.6 | Resource leak

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2015b

5 MISRA C 2012

5-418

MISRA C:2012 Rule 22.4
There shall be no attempt to write to a stream which has been opened as read-only

Description

Rule Definition
There shall be no attempt to write to a stream which has been opened as read-only.

Rationale
The Standard does not specify the behavior if an attempt is made to write to a read-only
stream.

Message in Report
There shall be no attempt to write to a stream which has been opened as read-only.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Examples

Writing to File Opened as Read-Only
#include <stdio.h>

void func1(void) {
 FILE *fp1 = fopen("tmp.txt", "r");
 (void) fprintf(fp1, "Some text"); /* Non-compliant: Read-only stream */
 (void) fclose(fp1);

 MISRA C:2012 Rule 22.4

5-419

}

void func2(void) {
 FILE *fp2 = fopen("tmp.txt", "r+");
 (void) fprintf(fp2, "Some text"); /* Compliant */
 (void) fclose(fp2);
}

In this example, the file stream associated with fp1 is opened as read-only. The rule is
violated when the stream is written.

Check Information
Group: Resources
Category: Mandatory
AGC Category: Mandatory
Language: C90, C99

See Also
MISRA C:2012 Rule 21.6 | Writing to read-only resource

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2015b

5 MISRA C 2012

5-420

MISRA C:2012 Rule 22.5
A pointer to a FILE object shall not be dereferenced

Description

Rule Definition
A pointer to a FILE object shall not be dereferenced.

Rationale
The Standard states that the address of a FILE object used to control a stream can be
significant. Copying that object might not give the same behavior. This rule ensures that
you cannot perform such a copy.

Directly manipulating a FILE object might be incompatible with its use as a stream
designator.

Message in Report
A pointer to a FILE object shall not be dereferenced

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Examples

FILE* Pointer Dereferenced
#include <stdio.h>

 MISRA C:2012 Rule 22.5

5-421

void func(void) {
 FILE *pf1;
 FILE *pf2;
 FILE f3;

 pf2 = pf1; /* Compliant */
 f3 = *pf2; /* Non-compliant */
 pf2->_flags=0; /* Non-compliant */
 }

In this example, the rule is violated when the FILE* pointer pf2 is dereferenced.

Check Information
Group: Resources
Category: Mandatory
AGC Category: Mandatory
Language: C90, C99
ISO/IEC TS 17961 ID: filecpy

See Also
MISRA C:2012 Rule 21.6

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2015b

5 MISRA C 2012

5-422

MISRA C:2012 Rule 22.6
The value of a pointer to a FILE shall not be used after the associated stream has been
closed

Description

Rule Definition
The value of a pointer to a FILE shall not be used after the associated stream has been
closed.

Rationale
The Standard states that the value of a FILE* pointer is indeterminate after you close the
stream associated with it.

Message in Report
The value of a pointer to a FILE shall not be used after the associated stream has been
closed.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Examples

Use of FILE Pointer After Closing Stream
#include <stdio.h>

void func(void) {

 MISRA C:2012 Rule 22.6

5-423

 FILE *fp;
 void *ptr;

 fp = fopen("tmp","w");
 if(fp != NULL) {
 fclose(fp);
 fprintf(fp,"text");
 }
}

In this example, the stream associated with the FILE* pointer fp is closed with the
fclose function. The rule is violated FILE* pointer fp is used before the stream is re-
opened.

Check Information
Group: Resources
Category: Mandatory
AGC Category: Mandatory
Language: C90, C99

See Also
MISRA C:2012 Directive 4.13 | MISRA C:2012 Rule 21.6 | Use of
previously closed resource

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2015b

5 MISRA C 2012

5-424

MISRA C:2012 Rule 22.7
The macro EOF shall only be compared with the unmodified return value from any
Standard Library function capable of returning EOF

Description
Rule Definition
The macro EOF shall only be compared with the unmodified return value from any
Standard Library function capable of returning EOF.

Rationale
The EOF value may become indistinguishable from a valid character code if the value
returned is converted to another type. In such cases, testing the converted value against
EOF will not reliably identify if the end of the file has been reached or if an error has
occurred.

Message in Report
The macro EOF shall only be compared with the unmodified return value from any
Standard Library function capable of returning EOF.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Examples
Possibly Misleading Results from Comparison with EOF
void f1 (void)
{

 MISRA C:2012 Rule 22.7

5-425

 char ch;
 ch = (char) getchar ();
 if (EOF != (int32_t) ch) /* Non-compliant */
 {
 }
}

void f2 (void)
{
 char ch;
 ch = (char) getchar ();
 if (!feof (stdin)) /* Compliant */
 {
 }
}

void f3 (void)
{
 int32_t i_ch;
 i_ch = getchar ();
 if (EOF != i_ch) /* Compliant */
 {
 char ch;
 ch = (char) i_ch;
 }
}

In this example:

• The test in the f1 function is non-compliant. It will not be reliable as the return value
is cast to a narrower type before checking for EOF.

• The test in the f2 function is compliant. It shows how feof() can be used to check
for EOF when the return value from getchar() has been subjected to type
conversion.

• The test in the f3 function is compliant. It is reliable as the unconverted return value
is used when checking for EOF.

Check Information
Group: Resources
Category: Required
AGC Category: Required

5 MISRA C 2012

5-426

Language: C90, C99
CERT C: FIO34-C
ISO/IEC TS 17961 ID: chreof

See Also

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2017a

 MISRA C:2012 Rule 22.7

5-427

https://www.securecoding.cert.org/confluence/x/dwGKBw

MISRA C:2012 Rule 22.8
The value of errno shall be set to zero prior to a call to an errno-setting-function

Description

Rule Definition
The value of errno shall be set to zero prior to a call to an errno-setting-function.

Rationale
If an error occurs during a call to an errno-setting-function, the function writes a
nonzero value to errno. Otherwise, errno is not modified.

If you do not explicitly set errno to zero before a function call, it can contain values from
a previous call. Checking errno for nonzero values after the function call can give the
false impression that an error occurred.

Errno-setting functions include:

• ftell, fgetpos, fgetwc and related functions.
• strtoimax, strtol and related functions.

The wide-character equivalents such as wcstoimax and wcstol are also covered.

Message in Report
The value of errno shall be set to zero prior to a call to an errno-setting-function.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

5 MISRA C 2012

5-428

Examples

errno Not Reset Before Use
#include <stdlib.h>
#include <errno.h>

double val = 0.0;

void f (void)
{
 val = strtod("1.0",NULL); /* Non-compliant */
 if (0 == errno) /* Check errno for nonzero values */
 {
 val = strtod("1.0",NULL); /* Compliant - case 1*/
 if (0 == errno) /* Check errno for nonzero values */
 {
 }
 }
 else
 {
 errno = 0;
 val = strtod("1.0",NULL); /* Compliant - case 2*/
 if (0 == errno) /* Check errno for nonzero values */
 {
 }
 }
}

In this example, the rule is violated when strtod is called but errno is not reset prior to
the call.

The rule is not violated in the following cases:

• Case 1: errno is compared against zero and then strtod is called in the if(0 ==
errno) branch.

• Case 2: errno is explicitly set to zero and then strtod is called.

Check Information
Group: Resources

 MISRA C:2012 Rule 22.8

5-429

Category: Required
AGC Category: Required
Language: C90, C99
CERT C: ERR30-C
ISO/IEC TS 17961 ID: inverrno

See Also
MISRA C:2012 Rule 22.9 | MISRA C:2012 Rule 22.10

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2017a

5 MISRA C 2012

5-430

https://www.securecoding.cert.org/confluence/x/KwBl

MISRA C:2012 Rule 22.9
The value of errno shall be tested against zero after calling an errno-setting function

Description

Rule Definition
The value of errno shall be tested against zero after calling an errno-setting function.

Rationale
If an error occurs during a call to an errno-setting-function, the function writes a
nonzero value to errno. Otherwise, errno is not modified.

When errno is nonzero, the function return value is not likely to be correct. Before using
this return value, you must test errno for nonzero values.

Errno-setting functions include:

• ftell, fgetpos, fgetwc and related functions.
• strtoimax, strtol and related functions.

The wide-character equivalents such as wcstoimax and wcstol are also covered.

Message in Report
The value of errno shall be tested against zero after calling an errno-setting function.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

 MISRA C:2012 Rule 22.9

5-431

Examples

errno Not Tested After Function Call
#include <stdlib.h>
#include <errno.h>

void func(void);
double val = 0.0;

void f1 (void)
{
 errno = 0;
 val = strtod ("1.0", NULL); /* Non-compliant */
 func ();

 if (0 != errno)
 {
 }

 errno = 0;
 val = strtod ("1.0", NULL); /* Compliant */
 if (0 == errno)
 {
 func();
 }
}

In this example, the rule is violated when errno is not checked immediately after the first
call to strtod. Instead, a second function func is called. func might use the value in the
global variable val. The value can be incorrect if an error has occurred during the call to
strtod.

The rule is not violated when errno is checked before operations that potentially use the
return value of strtod.

Check Information
Group: Resources
Category: Required
AGC Category: Required
Language: C90, C99
CERT C: ERR33-C
ISO/IEC TS 17961 ID: inverrno

5 MISRA C 2012

5-432

https://www.securecoding.cert.org/confluence/x/w4C4Ag

See Also
MISRA C:2012 Rule 22.8 | MISRA C:2012 Rule 22.10

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2017a

 MISRA C:2012 Rule 22.9

5-433

MISRA C:2012 Rule 22.10
The value of errno shall only be tested when the last function to be called was an errno-
setting function

Description

Rule Definition
The value of errno shall only be tested when the last function to be called was an errno-
setting function.

Rationale
Besides the errno-setting functions, the Standard does not enforce that other functions
set errno on errors. Whether these functions set errno or not is implementation-
dependent.

To detect errors, if you check errno alone, the validity of this check also becomes
implementation-dependent. On implementations that do not require errno setting, even
if you check errno alone, you can overlook error conditions.

For a list of errno-setting functions, see MISRA C:2012 Rule 22.8.

Message in Report
The value of errno shall only be tested when the last function to be called was an errno-
setting function.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

5 MISRA C 2012

5-434

Examples

Incorrect Test of errno
void f (void)
{
 float64_t f64;
 errno = 0;
 f64 = atof ("A.12");
 if (0 == errno) /* Non-compliant */
 {
 }
 errno = 0;
 f64 = strtod ("A.12", NULL);
 if (0 == errno) /* Compliant */
 {
 }
}

In this example:

• The first if statement is noncompliant because atof may or may not set errno when
an error is detected. f64 may not have a valid value within this if statement.

• The second if statement is compliant because strtod is an errno-setting function.
f64 will have a valid value within this if statement.

Check Information
Group: Resources
Category: Required
AGC Category: Required
Language: C90, C99
CERT C: ERR30-C
ISO/IEC TS 17961 ID: inverrno

See Also
MISRA C:2012 Rule 22.8 | MISRA C:2012 Rule 22.9

 MISRA C:2012 Rule 22.10

5-435

https://www.securecoding.cert.org/confluence/x/KwBl

Topics
“Check for Coding Rule Violations”
“Polyspace MISRA C:2012 Checkers”
“Software Quality Objective Subsets (C:2012)”

Introduced in R2017a

5 MISRA C 2012

5-436

MISRA C++: 2008

6

MISRA C++:2008 Rule 0-1-1
A project shall not contain unreachable code

Description

Rule Definition
A project shall not contain unreachable code.

Rationale
This rule flags situations where a group of statements is unreachable because of syntactic
reasons. For instance, code following a return statement are always unreachable.

Unreachable code involve unnecessary maintenance and can often indicate programming
errors.

Polyspace Specification
Bug Finder and Code Prover check this coding rule differently. The analyses can produce
different results.

Message in Report
A project shall not contain unreachable code.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

6 MISRA C++: 2008

6-2

Examples

Unreachable statements
int func(int arg) {
 int temp = 0;
 switch(arg) {
 temp = arg; // Noncompliant
 case 1:
 {
 break;
 }
 default:
 {
 break;
 }
 }
 return arg;
 arg++; // Noncompliant
}

These statements are unreachable:

• Statements inside a switch statement that do not belong to a case or default
block.

• Statements after a return statement.

Check Information
Group: Language Independent Issues
Category: Required

Introduced in R2013b

 MISRA C++:2008 Rule 0-1-1

6-3

MISRA C++:2008 Rule 0-1-2
A project shall not contain infeasible paths

Description

Rule Definition
A project shall not contain infeasible paths.

Rationale
This rule flags situations where a group of statements is redundant because of
nonsyntactic reasons. For instance, an if condition is always true or false. Code that is
unreachable from syntactic reasons are flagged by rule 0-1-1.

Unreachable or redundant code involve unnecessary maintenance and can often indicate
programming errors.

Polyspace Specification
Bug Finder and Code Prover check this rule differently. The analysis can produce different
results.

• Bug Finder uses the Dead code and Useless if checkers to detect violations of this
rule.

• Code Prover does not use run-time checks to detect violations of this rule. Instead,
Code Prover detects the violations at compile time.

Message in Report
A project shall not contain infeasible paths.

6 MISRA C++: 2008

6-4

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Examples

Boolean Operations with Invariant Results
void func (unsigned int arg) {
 if (arg >= 0U) //Noncompliant
 arg = 1U;
 if (arg < 0U) //Noncompliant
 arg = 1U;
}

An unsigned int variable is nonnegative. Both if conditions involving the variable are
always true or always false and are therefore redundant.

Check Information
Group: Language Independent Issues
Category: Required

Introduced in R2013b

 MISRA C++:2008 Rule 0-1-2

6-5

MISRA C++:2008 Rule 0-1-3
A project shall not contain unused variables

Description

Rule Definition
A project shall not contain unused variables.

Polyspace Specification
The checker flags local or global variables that are declared or defined but not used
anywhere in the source files. This specification also applies to members of structures and
classes.

Message in Report
A project shall not contain unused variables.

Variable is never used or used only in unreachable code.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Examples

Use of Named Bit Field for Padding
#include <iostream>
struct S {
 unsigned char b1 : 3;

6 MISRA C++: 2008

6-6

 unsigned char pad: 1; //Noncompliant
 unsigned char b2 : 4;
};
void init(struct S S_obj)
{
 S_obj.b1 = 0;
 S_obj.b2 = 0;
}

In this example, the bit field pad is used for padding the structure. Therefore, the field is
never read or written and causes a violation of this rule. To avoid the violation, use an
unnamed field for padding.

struct S {
 unsigned char b1 : 3;
 unsigned char : 1;
 unsigned char b2 : 4;
};

Check Information
Group: Language Independent Issues
Category: Required

Introduced in R2018a

 MISRA C++:2008 Rule 0-1-3

6-7

MISRA C++:2008 Rule 0-1-5
A project shall not contain unused type declarations

Description

Rule Definition
A project shall not contain unused type declarations.

Rationale
If a type is declared but not used, when reviewing the code later, it is unclear if the type is
redundant or left unused by mistake.

Unused types can indicate coding errors. For instance, you declared a enumerated data
type for some specialized data but used an integer type for the data.

Message in Report
A project shall not contain unused type declarations.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Examples

Unused enum Declaration
enum switchValue {low, medium, high}; //Noncompliant

void operate(int userInput) {

6 MISRA C++: 2008

6-8

 switch(userInput) {
 case 0: // Turn on low setting
 break;
 case 1: // Turn on medium setting
 break;
 case 2: // Turn on high setting
 break;
 default: // Return error
 }
}

In this example, the enumerated type switchValue is not used. Perhaps the intention
was to use the type as switch input like this.

enum switchValue {low, medium, high}; //Compliant

void operate(switchValue userInput) {
 switch(userInput) {
 case low: // Turn on low setting
 break;
 case medium: // Turn on medium setting
 break;
 case high: // Turn on high setting
 break;
 default: // Return error
 }
}

Check Information
Group: Language Independent Issues
Category: Required

Introduced in R2018a

 MISRA C++:2008 Rule 0-1-5

6-9

MISRA C++:2008 Rule 0-1-7
The value returned by a function having a non- void return type that is not an overloaded
operator shall always be used

Description

Rule Definition
The value returned by a function having a non- void return type that is not an overloaded
operator shall always be used.

Rationale
The unused return value might indicate a coding error or oversight.

Overloaded operators are excluded from this rule because their usage must emulate built-
in operators which might not use their return value.

Polyspace Specification
Bug Finder and Code Prover check this coding rule differently. The analyses can produce
different results.

Message in Report
The value returned by a function having a non- void return type that is not an overloaded
operator shall always be used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

6 MISRA C++: 2008

6-10

Examples

Return Value Not Used
#include <iostream>
#include <new>

int assignMemory(int * ptr){
 int res = 1;
 ptr = new (std::nothrow) int;
 if(ptr==NULL) {
 res = 0;
 }
 return res;
}

void main() {
 int val;
 int status;

 assignMemory(&val); //Noncompliant
 status = assignMemory(&val); //Compliant
 (void)assignMemory(&val); //Compliant

}

The first call to the function assignMemory is noncompliant because the return value is
not used. The second and third calls use the return value. The return value from the
second call is assigned to a local variable.

The return value from the third call is cast to void. Casting to void indicates deliberate
non-use of the return value and cannot be a coding oversight.

Check Information
Group: Language Independent Issues
Category: Required

Introduced in R2013b

 MISRA C++:2008 Rule 0-1-7

6-11

MISRA C++:2008 Rule 0-1-9
There shall be no dead code

Description

Rule Definition
There shall be no dead code.

Rationale
If an operation is reachable but removing the operation does not affect program behavior,
the operation constitutes dead code. For instance, suppose that a variable is never read
following a write operation. The write operation is redundant.

The presence of dead code can indicate an error in the program logic. Because a compiler
can remove dead code, its presence can cause confusion for code reviewers.

Message in Report
There shall be no dead code.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Examples

Redundant Operations
#define ULIM 10000

6 MISRA C++: 2008

6-12

int func(int arg) {
 int res;
 res = arg*arg + arg;
 if (res > ULIM)
 res = 0; //Noncompliant
 return arg;
}

In this example, the operations involving res are redundant because the function func
returns its argument arg. All operations involving res can be removed without changing
the effect of the function.

The checker flags the last write operation on res because the variable is never read after
that point. The dead code can indicate an unintended coding error. For instance, you
intended to return the value of res instead of arg.

Check Information
Group: Language Independent Issues
Category: Required

Introduced in R2016b

 MISRA C++:2008 Rule 0-1-9

6-13

MISRA C++:2008 Rule 0-1-10
Every defined function shall be called at least once

Description

Rule Definition
Every defined function shall be called at least once.

Rationale
If a function with a definition is not called, it might indicate a serious coding error. For
instance, the function call is unreachable or a different function is called unintentionally.

Polyspace Specification
The checker detects situations where a static function is defined but not called at all in its
translation unit.

Message in Report
Every defined function shall be called at least once. The static function funcName is not
called.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

6 MISRA C++: 2008

6-14

Examples

Uncalled Static Function
static void func1() {
}

static void func2() { //Noncompliant
}

void func3();

int main() {
 func1();
 return 0;
}

The static function func2 is defined but not called.

The function func3 is not called either, however, it is only declared and not defined. The
absence of a call to func3 does not violate the rule.

Check Information
Group: Language Independent Issues
Category: Required

Introduced in R2013b

 MISRA C++:2008 Rule 0-1-10

6-15

MISRA C++:2008 Rule 0-1-11
There shall be no unused parameters (named or unnamed) in nonvirtual functions

Description
Rule Definition
There shall be no unused parameters (named or unnamed) in nonvirtual functions.

Rationale
Unused parameters often indicate later design changes. You perhaps removed all uses of
a specific parameter but forgot to remove the parameter from the parameter list.

Unused parameters constitute an unnecessary overhead. You can also inadvertently call
the function with a different number of arguments causing a parameter mismatch.

Message in Report
There shall be no unused parameters (named or unnamed) in non-virtual functions.

Function funcName has unused parameters.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Examples
Unused Parameters
typedef int (*callbackFn) (int a, int b);

6 MISRA C++: 2008

6-16

int callback_1 (int a, int b) { //Compliant
 return a+b;
}

int callback_2 (int a, int b) { //Noncompliant
 return a;
}

int callback_3 (int, int b) { //Compliant - flagged by Polyspace
 return b;
}

int getCallbackNumber();
int getInput();

void main() {
 callbackFn ptrFn;
 int n = getCallbackNumber();
 int x = getInput(), y = getInput();
 switch(n) {
 case 0: ptrFn = &callback_1; break;
 case 1: ptrFn = &callback_2; break;
 default: ptrFn = &callback_3; break;
 }

 (*ptrFn)(x,y);
}

In this example, the three functions callback_1, callback_2 and callback_3 are
used as callback functions. One of the three functions is called via a function pointer
depending on a value obtained at run time.

• Function callback_1 uses all its parameters and does not violate the rule.
• Function callback_2 does not use its parameter a and violates this rule.
• Function callback_3 also does not use its first parameter but it does not violate the

rule because the parameter is unnamed. However, Polyspace flags the unused
parameter as a rule violation. If you see a violation of this kind, justify the violation
with comments. See “Address Polyspace Results Through Bug Fixes or Comments”.

Check Information
Group: Language Independent Issues

 MISRA C++:2008 Rule 0-1-11

6-17

Category: Required

Introduced in R2016b

6 MISRA C++: 2008

6-18

MISRA C++:2008 Rule 0-1-12
There shall be no unused parameters (named or unnamed) in the set of parameters for a
virtual function and all the functions that override it

Description

Rule Definition
There shall be no unused parameters (named or unnamed) in the set of parameters for a
virtual function and all the functions that override it.

Rationale
Unused parameters often indicate later design changes. You perhaps removed all uses of
a specific parameter but forgot to remove the parameter from the parameter list.

Unused parameters constitute an unnecessary overhead. You can also inadvertently call
the function with a different number of arguments causing a parameter mismatch.

Polyspace Specification
Polyspace checks for unused parameters in virtual functions within single translation
units.

For instance, if a base class contains a virtual method with an unused parameter but the
derived class implementation of the method uses that parameter, the rule is not violated.
However, if the base class and derived class are defined in different files, the checker,
which operates file by file, flags a violation of this rule on the base class.

Message in Report
There shall be no unused parameters (named or unnamed) in the set of parameters for a
virtual function and all the functions that override it.

Function funcName has unused parameters.

 MISRA C++:2008 Rule 0-1-12

6-19

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Examples

Unused Parameter in Virtual Function
class base {
 public:
 virtual void assignVal (int arg1, int arg2) = 0; //Noncompliant
 virtual void assignAnotherVal (int arg1, int arg2) = 0;
};

class derived1: public base {
 public:
 virtual void assignVal (int arg1, int arg2) {
 arg1 = 0;
 }
 virtual void assignAnotherVal (int arg1, int arg2) {
 arg1 = 1;
 }
};

class derived2: public base {
 public:
 virtual void assignVal (int arg1, int arg2) {
 arg1 = 0;
 }
 virtual void assignAnotherVal (int arg1, int arg2) {
 arg2 = 1;
 }
};

In this example, the second parameter of the virtual method assignVal is not used in
any of the derived class implementations of the method.

On the other hand, the implementation of the virtual method assignAnotherVal in
derived class derived1 uses the first parameter of the method. The implementation in

6 MISRA C++: 2008

6-20

derived2 uses the second parameter. Both parameters of assignAnotherVal are used
and therefore the virtual method does not violate the rule.

Check Information
Group: Language Independent Issues
Category: Required

Introduced in R2016b

 MISRA C++:2008 Rule 0-1-12

6-21

MISRA C++:2008 Rule 0-2-1
An object shall not be assigned to an overlapping object

Description

Rule Definition
An object shall not be assigned to an overlapping object.

Rationale
When you assign an object to another object with overlapping memory, the behavior is
undefined.

The exceptions are:

• You assign an object to another object with exactly overlapping memory and
compatible type.

• You copy one object to another with memmove.

Message in Report
An object shall not be assigned to an overlapping object.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

6 MISRA C++: 2008

6-22

Examples

Assignment of Union Members
void func (void) {
 union {
 short i;
 int j;
 } a = {0}, b = {1};

 a.j = a.i; //Noncompliant
 a = b; //Compliant
}

In this example, the rule is violated when a.i is assigned to a.j because the two
variables have overlapping regions of memory.

Check Information
Group: Language Independent Issues
Category: Required

Introduced in R2016b

 MISRA C++:2008 Rule 0-2-1

6-23

MISRA C++:2008 Rule 1-0-1
All code shall conform to ISO/IEC 14882:2003 "The C++ Standard Incorporating
Technical Corrigendum 1"

Description

Rule Definition
All code shall conform to ISO/IEC 14882:2003 "The C++ Standard Incorporating
Technical Corrigendum 1".

Polyspace Specification
The checker reports compilation errors as detected by a compiler that strictly adheres to
the C++03 Standard (ISO/IEC 14882:2003).

Bug Finder and Code Prover check this coding rule differently. The analyses can produce
different results.

Message in Report
The message has two parts:

• Rule statement:

All code shall conform to ISO/IEC 14882:2003 "The C++ Standard Incorporating
Technical Corrigendum 1".

• Compilation error message such as:

Expected a ;

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

6 MISRA C++: 2008

6-24

Check Information
Group: General
Category: Required

Introduced in R2013b

 MISRA C++:2008 Rule 1-0-1

6-25

MISRA C++:2008 Rule 2-3-1
Trigraphs shall not be used

Description

Rule Definition
Trigraphs shall not be used.

Rationale
You denote trigraphs with two question marks followed by a specific third character (for
instance,'??-' represents a '~' (tilde) character and '??)' represents a ']'). These
trigraphs can cause accidental confusion with other uses of two question marks.

For instance, the string

"(Date should be in the form ??-??-??)"

is transformed to

"(Date should be in the form ~~]"

but this transformation might not be intended.

Message in Report
Trigraphs shall not be used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

6 MISRA C++: 2008

6-26

Check Information
Group: Lexical Conventions
Category: Required

Introduced in R2013b

 MISRA C++:2008 Rule 2-3-1

6-27

MISRA C++:2008 Rule 2-5-1
Digraphs should not be used

Description

Rule Definition
Digraphs should not be used.

Rationale
Digraphs are a sequence of two characters that are supposed to be treated as a single
character. The checker flags use of these digraphs:

• <%, indicating [
• %>, indicating]
• <:, indicating {
• :>, indicating }
• %:, indicating #
• %:%:

When developing or reviewing code with digraphs, the developer or reviewer can
incorrectly consider the digraph as a sequence of separate characters.

Message in Report
Digraphs should not be used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

6 MISRA C++: 2008

6-28

Check Information
Group: Lexical Conventions
Category: Advisory

Introduced in R2013b

 MISRA C++:2008 Rule 2-5-1

6-29

MISRA C++:2008 Rule 2-7-1
The character sequence /* shall not be used within a C-style comment

Description
Rule Definition
The character sequence /* shall not be used within a C-style comment.

Rationale
If your code contains a /* in a /* */ comment, it typically means that you have
inadvertently commented out code. See the example that follows.

Polyspace Specification
You cannot justify a violation of this rule using source code annotations.

Message in Report
The character sequence /* shall not be used within a C-style comment.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Examples
Use of /* in /* */ Comment
void foo() {
 /* Initializer functions

6 MISRA C++: 2008

6-30

 setup();
 /* Step functions */
}

In this example, the call to setup() is commented out because the ending */ is omitted,
perhaps inadvertently. The checker flags this issue by highlighting the /* in the /* */
comment.

Check Information
Group: Lexical Conventions
Category: Required

Introduced in R2013b

 MISRA C++:2008 Rule 2-7-1

6-31

MISRA C++:2008 Rule 2-10-1
Different identifiers shall be typographically unambiguous

Description
Rule Definition
Different identifiers shall be typographically unambiguous.

Rationale
When you use identifiers that are typographically close, you can confuse between them.

The identifiers should not differ by:

• The interchange of a lowercase letter with its uppercase equivalent.
• The presence or absence of the underscore character.
• The interchange of the letter O and the digit 0.
• The interchange of the letter I and the digit 1.
• The interchange of the letter I and the letter l.
• The interchange of the letter S and the digit 5.
• The interchange of the letter Z and the digit 2.
• The interchange of the letter n and the letter h.
• The interchange of the letter B and the digit 8.
• The interchange of the letters rn and the letter m.

Polyspace Specification
The rule checker does not consider the fully qualified names of variables when checking
this rule.

Bug Finder and Code Prover check this coding rule differently. The analyses can produce
different results.

6 MISRA C++: 2008

6-32

Message in Report
Different identifiers shall be typographically unambiguous.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Examples

Typographically Ambiguous Identifiers
void func(void) {
 int id1_numval;
 int id1_num_val; /* Non-compliant */

 int id2_numval;
 int id2_numVal; /* Non-compliant */

 int id3_lvalue;
 int id3_Ivalue; /* Non-compliant */

 int id4_xyz;
 int id4_xy2; /* Non-compliant */

 int id5_zerO;
 int id5_zer0; /* Non-compliant */

 int id6_rn;
 int id6_m; /* Non-compliant */
}

In this example, the rule is violated when identifiers that can be confused for each other
are used.

Check Information
Group: Lexical Conventions

 MISRA C++:2008 Rule 2-10-1

6-33

Category: Required

Introduced in R2013b

6 MISRA C++: 2008

6-34

MISRA C++:2008 Rule 2-10-2
Identifiers declared in an inner scope shall not hide an identifier declared in an outer
scope

Description

Rule Definition
Identifiers declared in an inner scope shall not hide an identifier declared in an outer
scope.

Rationale
The rule flags situations where the same identifier name is used in two variable
declarations, one in an outer scope and the other in an inner scope.

int var;
...
{
...
 int var;
...
}

All uses of the name in the inner scope refers to the variable declared in the inner scope.
However, a developer or code reviewer can incorrectly assume that the usage refers to
the variable declared in the outer scope.

Polyspace Specification
Bug Finder and Code Prover check this coding rule differently. The analyses can produce
different results.

The rule checker does not flag situations where the same identifier name is used in
different logical scopes:

 MISRA C++:2008 Rule 2-10-2

6-35

• The same name is used for a class data member and a variable outside the class.
• The same name is used for a method in a base and derived class.

Message in Report
Identifiers declared in an inner scope shall not hide an identifier declared in an outer
scope.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Examples

Local Variable Hiding Global Variable
int varInit = 1;

void doSomething(void);

void step(void) {
 int varInit = 0; //Noncompliant
 if(varInit)
 doSomething();
}

In this example, varInit defined in func hides the global variable varInit. The if
condition refers to the local varInit and the block is unreachable, but you might expect
otherwise.

Check Information
Group: Lexical Conventions
Category: Required

Introduced in R2013b

6 MISRA C++: 2008

6-36

MISRA C++:2008 Rule 2-10-3
A typedef name (including qualification, if any) shall be a unique identifier

Description
Rule Definition
A typedef name (including qualification, if any) shall be a unique identifier.

Rationale
The rule flags identifier declarations where the identifier name is the same as a previously
declared typedef name. When you use identifiers that are identical, you can confuse
between them.

Polyspace Specification
The checker does not flag situations where the conflicting names occur in different
namespaces.

Bug Finder and Code Prover check this coding rule differently. The analyses can produce
different results.

Message in Report
A typedef name (including qualification, if any) shall be a unique identifier.

Identifier typeName should not be reused.

Already used as typedef name (fileName lineNumber).

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

 MISRA C++:2008 Rule 2-10-3

6-37

Examples

Typedef Name Conflicting with Other Identifiers

namespace NS1 {
 typedef int WIDTH;
}

namespace NS2 {
 float WIDTH; //Compliant
}

void f1() {
 typedef int TYPE;
}

void f2() {
 float TYPE; //Noncompliant
}

In this example, the declaration of TYPE in f2() conflicts with a typedef declaration in
f1().

The checker does not flag the redeclaration of WIDTH because the two declarations
belong to different namespaces.

Check Information
Group: Lexical Conventions
Category: Required

Introduced in R2013b

6 MISRA C++: 2008

6-38

MISRA C++:2008 Rule 2-10-4
A class, union or enum name (including qualification, if any) shall be a unique identifier

Description
Rule Definition
A class, union or enum name (including qualification, if any) shall be a unique identifier.

Rationale
The rule flags identifier declarations where the identifier name is the same as a previously
declared class, union or typedef name. When you use identifiers that are identical, you
can confuse between them.

Polyspace Specification
The checker does not flag situations where the conflicting names occur in different
namespaces.

Bug Finder and Code Prover check this coding rule differently. The analyses can produce
different results.

Message in Report
A class, union or enum name (including qualification, if any) shall be a unique identifier.

Identifier tagName should not be reused.

Already used as tag name (fileName lineNumber).

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

 MISRA C++:2008 Rule 2-10-4

6-39

Examples

Typedef Name Conflicting with Other Identifiers
void f1() {
 class floatVar {};
}

void f2() {
 float floatVar; //Noncompliant
}

In this example, the declaration of floatVar in f2() conflicts with a class declaration in
f1().

Check Information
Group: Lexical Conventions
Category: Required

Introduced in R2013b

6 MISRA C++: 2008

6-40

MISRA C++:2008 Rule 2-10-5
The identifier name of a non-member object or function with static storage duration
should not be reused

Description

Rule Definition
The identifier name of a non-member object or function with static storage duration
should not be reused.

Rationale
The rule flags situations where the name of an identifier with static storage duration is
reused. The rule applies even if the identifiers belong to different namespaces because
the reuse leaves the chance that you mistake one identifier for the other.

Polyspace Specification
The rule checker flags redefined functions only when there is a declaration.

Bug Finder and Code Prover check this coding rule differently. The analyses can produce
different results.

Message in Report
The identifier name of a non-member object or function with static storage duration
should not be reused.

Identifier name should not be reused.

Already used as static identifier with static storage duration (fileName lineNumber).

 MISRA C++:2008 Rule 2-10-5

6-41

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Examples

Reuse of Identifiers in Different Namespaces
namespace NS1 {
 static int WIDTH;
}

namespace NS2 {
 float WIDTH; //Noncompliant
}

In this example, the identifier name WIDTH is reused in the two namespaces NS1 and NS2.

Check Information
Group: Lexical Conventions
Category: Advisory

Introduced in R2013b

6 MISRA C++: 2008

6-42

MISRA C++:2008 Rule 2-10-6
If an identifier refers to a type, it shall not also refer to an object or a function in the same
scope

Description

Rule Definition
If an identifier refers to a type, it shall not also refer to an object or a function in the same
scope.

Rationale
For compatibility with C, in C++, you are allowed to use the same name for a type and an
object or function. However, the name reuse can cause confusion during development or
code review.

Polyspace Specification
If the identifier is a function and the function is both declared and defined, then the
violation is reported only once.

Bug Finder and Code Prover check this coding rule differently. The analyses can produce
different results.

Message in Report
If an identifier refers to a type, it shall not also refer to an object or a function in the same
scope.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

 MISRA C++:2008 Rule 2-10-6

6-43

Examples

Reuse of Name for Type and Object
struct vector{
 int x;
 int y;
 int z;
}vector; //Noncompliant

In this example, the name vector is used both for the structured data type and for an
object of that type.

Check Information
Group: Lexical Conventions
Category: Required

Introduced in R2013b

6 MISRA C++: 2008

6-44

MISRA C++:2008 Rule 2-13-1
Only those escape sequences that are defined in ISO/IEC 14882:2003 shall be used

Description

Rule Definition
Only those escape sequences that are defined in ISO/IEC 14882:2003 shall be used.

Rationale
Escape sequences are certain special characters represented in string and character
literals. They are written with a backslash (\) followed by a character.

The C++ Standard (ISO/IEC 14882:2003, Sec. 2.13.2) defines a list of escape sequences.
See Escape Sequences. Use of escape sequences (backslash followed by character)
outside that list leads to undefined behavior.

Message in Report
Only those escape sequences that are defined in ISO/IEC 14882:2003 shall be used.

\char is not an ISO/IEC escape sequence.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

 MISRA C++:2008 Rule 2-13-1

6-45

https://en.cppreference.com/w/cpp/language/escape

Examples

Incorrect Escape Sequences
void func () {
 const char a[2] = "\k"; \\Noncompliant
 const char b[2] = "\b"; \\Compliant
}

In this example, \k is not a recognized escape sequence.

Check Information
Group: Lexical Conventions
Category: Required

Introduced in R2013b

6 MISRA C++: 2008

6-46

MISRA C++:2008 Rule 2-13-2
Octal constants (other than zero) and octal escape sequences (other than "\0") shall not
be used

Description

Rule Definition
Octal constants (other than zero) and octal escape sequences (other than "\0") shall not
be used.

Rationale
Octal constants are denoted by a leading zero. A developer or code reviewer can mistake
an octal constant as a decimal constant with a redundant leading zero.

Octal escape sequences beginning with \ can also cause confusion. Inadvertently
introducing an 8 or 9 in the digit sequence after \ breaks the escape sequence and
introduces a new digit. A developer or code reviewer can ignore this issue and continue to
treat the escape sequence as one digit.

Message in Report
Octal constants (other than zero) and octal escape sequences (other than "\0") shall not
be used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

 MISRA C++:2008 Rule 2-13-2

6-47

Examples

Use of Octal Constants and Octal Escape Sequences
void func(void) {
 int busData[6];

 busData[0] = 100;
 busData[1] = 108;
 busData[2] = 052; //Noncompliant
 busData[3] = 071; //Noncompliant
 busData[4] = '\109'; //Noncompliant
 busData[5] = '\100'; //Noncompliant

}

The checker flags all octal constants (other than zero) and all octal escape sequences
(other than \0).

In this example:

• The octal escape sequence contains the digit 9, which is not an octal digit. This escape
sequence has implementation-defined behavior.

• The octal escape sequence \100 represents the number 64, but the rule checker
forbids this use.

Check Information
Group: Lexical Conventions
Category: Required

Introduced in R2013b

6 MISRA C++: 2008

6-48

MISRA C++:2008 Rule 2-13-3
A "U" suffix shall be applied to all octal or hexadecimal integer literals of unsigned type

Description

Rule Definition
A "U" suffix shall be applied to all octal or hexadecimal integer literals of unsigned type.

Rationale
The signedness of a constant is determined from:

• Value of the constant.
• Base of the constant: octal, decimal or hexadecimal.
• Size of the various types.
• Any suffixes used.

Unless you use a suffix u or U, another developer looking at your code cannot determine
easily whether a constant is signed or unsigned.

Message in Report
A "U" suffix shall be applied to all octal or hexadecimal integer literals of unsigned type.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Lexical Conventions

 MISRA C++:2008 Rule 2-13-3

6-49

Category: Required

Introduced in R2013b

6 MISRA C++: 2008

6-50

MISRA C++:2008 Rule 2-13-4
Literal suffixes shall be upper case

Description

Rule Definition
Literal suffixes shall be upper case.

Rationale
Literal constants can end with the letter l (el). Enforcing literal suffixes to be upper case
removes potential confusion between the letter l and the digit 1.

For consistency, use upper case constants for other suffixes such as U (unsigned) and F
(float).

Message in Report
Literal suffixes shall be upper case.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Examples

Use of Literal Constants with Lower Case Suffix
const int a = 0l; //Noncompliant
const int b = 0L; //Compliant

 MISRA C++:2008 Rule 2-13-4

6-51

In this example, both a and b are assigned the same literal constant. However, from a
quick glance, one can mistakenly assume that a is assigned the value 01 (octal one).

Check Information
Group: Lexical Conventions
Category: Required

Introduced in R2013b

6 MISRA C++: 2008

6-52

MISRA C++:2008 Rule 2-13-5
Narrow and wide string literals shall not be concatenated

Description

Rule Definition
Narrow and wide string literals shall not be concatenated.

Rationale
Narrow string literals are enclosed in double quotes without a prefix. Wide string literals
are enclosed in double quotes with a prefix L outside the quotes. See string literals.

Concatenation of narrow and wide string literals can lead to undefined behavior.

Message in Report
Narrow and wide string literals shall not be concatenated.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Examples

Concatenation of Narrow and Wide String Literals
char array[] = "Hello" "World";
wchar_t w_array[] = L"Hello" L"World";
wchar_t mixed[] = "Hello" L"World"; //Noncompliant

 MISRA C++:2008 Rule 2-13-5

6-53

https://en.cppreference.com/w/cpp/language/string_literal

In this example, in the initialization of the array mixed, the narrow string literal "Hello"
is concatenated with the wide string literal L"World".

Check Information
Group: Lexical Conventions
Category: Required

Introduced in R2013b

6 MISRA C++: 2008

6-54

MISRA C++:2008 Rule 3-1-1
It shall be possible to include any header file in multiple translation units without
violating the One Definition Rule

Description

Rule Definition
It shall be possible to include any header file in multiple translation units without
violating the One Definition Rule.

Rationale
If a header file with variable or function definitions appears in multiple inclusion paths,
the header file violates the One Definition Rule possibly leading to unpredictable
behavior. For instance, a source file includes the header file include.h and another
header file, which also includes include.h.

Polyspace Specification
The rule checker flags variable and function definitions in header files.

Message in Report
It shall be possible to include any header file in multiple translation units without
violating the One Definition Rule.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

 MISRA C++:2008 Rule 3-1-1

6-55

Check Information
Group: Basic Concepts
Category: Required

Introduced in R2013b

6 MISRA C++: 2008

6-56

MISRA C++:2008 Rule 3-1-2
Functions shall not be declared at block scope

Description

Rule Definition
Functions shall not be declared at block scope.

Rationale
It is a good practice to place all declarations at the namespace level.

Additionally, if you declare a function at block scope, it is often not clear if the statement
is a function declaration or an object declaration with a call to the constructor.

Message in Report
Functions shall not be declared at block scope.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Examples

Function Declarations at Block Scope
class A {
};

void b1() {

 MISRA C++:2008 Rule 3-1-2

6-57

 void func(); //Noncompliant
 A a(); //Noncompliant
}

In this example, the declarations of func and a are in the block scope of b1.

The second function declaration can cause confusion because it is not clear if a is a
function that returns an object of type A or a is itself an object of type A.

Check Information
Group: Basic Concepts
Category: Required

Introduced in R2013b

6 MISRA C++: 2008

6-58

MISRA C++:2008 Rule 3-1-3
When an array is declared, its size shall either be stated explicitly or defined implicitly by
initialization

Description

Rule Definition
When an array is declared, its size shall either be stated explicitly or defined implicitly by
initialization.

Rationale
Though you can declare an incomplete array type and later complete the type, specifying
the array size during the first declaration makes the subsequent array access less error-
prone.

Message in Report
When an array is declared, its size shall either be stated explicitly or defined implicitly by
initialization.

Size of array arrayName should be explicitly stated.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

 MISRA C++:2008 Rule 3-1-3

6-59

Examples

Array Size Unspecified During Declaration
int array[10];
extern int array2[]; //Noncompliant
int array3[]= {0,1,2};
extern int array4[10];

In the declaration of array2, the array size is unspecified.

Check Information
Group: Basic Concepts
Category: Required

Introduced in R2013b

6 MISRA C++: 2008

6-60

MISRA C++:2008 Rule 3-2-1
All declarations of an object or function shall have compatible types

Description

Rule Definition
All declarations of an object or function shall have compatible types.

Rationale
If the declarations of an object or function in two different translation units have
incompatible types, the behavior is undefined.

Message in Report
All declarations of an object or function shall have compatible types.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Basic Concepts
Category: Required

Introduced in R2013b

 MISRA C++:2008 Rule 3-2-1

6-61

MISRA C++:2008 Rule 3-2-2
The One Definition Rule shall not be violated

Description

Rule Definition
The One Definition Rule shall not be violated.

Rationale
Violations of the One Definition Rule leads to undefined behavior.

Polyspace Specification
The checker flags situations where the same function or object has multiple definitions
and the definitions differ by some token.

Message in Report
The One Definition Rule shall not be violated.

Declaration of class className violates the One Definition Rule:

it conflicts with other declaration (fileName lineNumber).

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

6 MISRA C++: 2008

6-62

Examples

Different Tokens in Same Type Definition
This example uses two files:

• file1.cpp:

struct S
{
 int x;
 int y;
};

• file2.cpp:

struct S
{
 int y;
 int x;
};

In this example, both file1.cpp and file2.cpp define the structure S. However, the
definitions switch the order of the structure fields.

Check Information
Group: Basic Concepts
Category: Required

Introduced in R2013b

 MISRA C++:2008 Rule 3-2-2

6-63

MISRA C++:2008 Rule 3-2-3
A type, object or function that is used in multiple translation units shall be declared in one
and only one file

Description

Rule Definition
A type, object or function that is used in multiple translation units shall be declared in one
and only one file.

Rationale
If you declare an identifier in a header file, you can include the header file in any
translation unit where the identifier is defined or used. In this way, you ensure
consistency between:

• The declaration and the definition.
• The declarations in different translation units.

The rule enforces the practice of declaring external objects or functions in header files.

Message in Report
A type, object or function that is used in multiple translation units shall be declared in one
and only one file.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

6 MISRA C++: 2008

6-64

Check Information
Group: Basic Concepts
Category: Required

Introduced in R2013b

 MISRA C++:2008 Rule 3-2-3

6-65

MISRA C++:2008 Rule 3-2-4
An identifier with external linkage shall have exactly one definition

Description

Rule Definition
An identifier with external linkage shall have exactly one definition.

Rationale
If an identifier has multiple definitions or no definitions, it can lead to undefined behavior.

Message in Report
An identifier with external linkage shall have exactly one definition.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Examples

Multiple Definitions of Identifier
This example uses two files:

• file1.cpp:

int x = 0;

• file2.cpp:

6 MISRA C++: 2008

6-66

int x = 1;

The same identifier x is defined in both files.

Check Information
Group: Basic Concepts
Category: Required

Introduced in R2013b

 MISRA C++:2008 Rule 3-2-4

6-67

MISRA C++:2008 Rule 3-3-1
Objects or functions with external linkage shall be declared in a header file

Description

Rule Definition
Objects or functions with external linkage shall be declared in a header file.

Rationale
If you declare a function or object in a header file, it is clear that the function or object is
meant to be accessed in multiple translation units. If you intend to access the function or
object from a single translation unit, declare it static or in an unnamed namespace.

Message in Report
Objects or functions with external linkage shall be declared in a header file.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Examples

Declaration in Header File Missing
This example uses two files:

• decls.h:

extern int x;

6 MISRA C++: 2008

6-68

• file.cpp:

#include "decls.h"

int x = 0;
int y = 0; //Noncompliant
static int z = 0;

In this example, the variable x is declared in a header file but the variable y is not. The
variable z is also not declared in a header file but it is declared with the static specifier
and does not have external linkage.

Check Information
Group: Basic Concepts
Category: Required

Introduced in R2013b

 MISRA C++:2008 Rule 3-3-1

6-69

MISRA C++:2008 Rule 3-3-2
If a function has internal linkage then all re-declarations shall include the static storage
class specifier

Description

Rule Definition
If a function has internal linkage then all re-declarations shall include the static storage
class specifier.

Rationale
If a function declaration has the static storage class specifier, it has internal linkage.
Subsequent redeclarations of the function have internal linkage even without the static
specifier.

However, if you do not specify the static keyword explicitly, it is not immediately clear
from a declaration whether the function has internal linkage.

Message in Report
If a function has internal linkage then all re-declarations shall include the static storage
class specifier.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

6 MISRA C++: 2008

6-70

Examples

Missing static Specifier from Redeclaration
static void func1 ();
static void func2 ();

void func1() {} //Noncompliant
static void func2() {}

In this example, the function func1 is declared static but defined without the static
specifier.

Check Information
Group: Basic Concepts
Category: Required

Introduced in R2013b

 MISRA C++:2008 Rule 3-3-2

6-71

MISRA C++:2008 Rule 3-4-1
An identifier declared to be an object or type shall be defined in a block that minimizes its
visibility

Description

Rule Definition
An identifier declared to be an object or type shall be defined in a block that minimizes its
visibility.

Rationale
Defining variables with the minimum possible block scope reduces the possibility that
they might later be accessed unintentionally.

For instance, if an object is meant to be accessed in one function only, declare the object
local to the function.

Polyspace Specification
The rule checker determines if an object is used in one block only. If the object is used in
one block but defined outside the block, the checker raises a violation.

Message in Report
An identifier declared to be an object or type shall be defined in a block that minimizes its
visibility.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

6 MISRA C++: 2008

6-72

Examples

Use of Global Variable in Single Function
static int countReset; //Noncompliant

volatile int check;

void increaseCount() {
 int count = countReset;
 while(check%2) {
 count++;
 }
}

In this example, the variable countReset is declared global used in one function only. A
compliant solution declares the variable local to the function to reduce its visibility.

Check Information
Group: Basic Concepts
Category: Required

Introduced in R2013b

 MISRA C++:2008 Rule 3-4-1

6-73

MISRA C++:2008 Rule 3-9-1
The types used for an object, a function return type, or a function parameter shall be
token-for-token identical in all declarations and re-declarations

Description

Rule Definition
The types used for an object, a function return type, or a function parameter shall be
token-for-token identical in all declarations and re-declarations.

Rationale
If a redeclaration is not token-for-token identical to the previous declaration, it is not
clear from visual inspection which object or function is being redeclared.

Polyspace Specification
The rule checker compares the current declaration with the last seen declaration.

Message in Report
The types used for an object, a function return type, or a function parameter shall be
token-for-token identical in all declarations and re-declarations.

Variable varName is not compatible with previous declaration.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

6 MISRA C++: 2008

6-74

Examples

Identical Declarations That Do Not Match Token for Token
typedef int* intptr;

int* map;
extern intptr map; //Noncompliant

intptr table;
extern intptr table; //Compliant

In this example, the variable map is declared twice. The second declaration uses a
typedef which resolves to the type of the first declaration. Because of the typedef, the
second declaration is not token-for-token identical to the first.

Check Information
Group: Basic Concepts
Category: Required

Introduced in R2013b

 MISRA C++:2008 Rule 3-9-1

6-75

MISRA C++:2008 Rule 3-9-2
typedefs that indicate size and signedness should be used in place of the basic numerical
types

Description

Rule Definition
typedefs that indicate size and signedness should be used in place of the basic numerical
types.

Rationale
When the amount of memory being allocated is important, using specific-length types
makes it clear how much storage is being reserved for each object.

Polyspace Specification
The rule checker does not raise violations in templates that are not instantiated.

Message in Report
typedefs that indicate size and signedness should be used in place of the basic numerical
types.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

6 MISRA C++: 2008

6-76

Examples

Direct Use of Basic Numerical Types
typedef unsigned int uint32_t;

unsigned int x = 0; //Noncompliant
uint32_t y = 0; //Compliant

In this example, the declaration of x is noncompliant because it uses the basic type int
directly.

Check Information
Group: Basic Concepts
Category: Advisory

Introduced in R2013b

 MISRA C++:2008 Rule 3-9-2

6-77

MISRA C++:2008 Rule 3-9-3
The underlying bit representations of floating-point values shall not be used

Description

Rule Definition
The underlying bit representations of floating-point values shall not be used.

Rationale
The underlying bit representations of floating point values vary across compilers. If you
directly use the underlying representation of floating point values, your program is not
portable across implementations.

Polyspace Specification
The rule checker flags conversions from pointers to floating point types into pointers to
integer types, and vice versa.

Message in Report
The underlying bit representations of floating-point values shall not be used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

6 MISRA C++: 2008

6-78

Examples

Using Underlying Representation of Floating-Point Values
float fabs2(float f) {
 unsigned int* ptr = reinterpret_cast <unsigned int*> (&f); //Noncompliant
 *(ptr + 3) &= 0x7f;
 return f;
}

In this example, the reinterpret_cast attempts to cast a floating-point value to an
integer and access the underlying bit representation of the floating point value.

Check Information
Group: Basic Concepts
Category: Required

Introduced in R2013b

 MISRA C++:2008 Rule 3-9-3

6-79

MISRA C++:2008 Rule 4-5-1
Expressions with type bool shall not be used as operands to built-in operators other than
the assignment operator =, the logical operators &&, ||, !, the equality operators ==
and !=, the unary & operator, and the conditional operator

Description

Rule Definition
Expressions with type bool shall not be used as operands to built-in operators other than
the assignment operator =, the logical operators &&, ||, !, the equality operators ==
and !=, the unary & operator, and the conditional operator.

Message in Report
Expressions with type bool shall not be used as operands to built-in operators other than
the assignment operator =, the logical operators &&, ||, !, the equality operators ==
and !=, the unary & operator, and the conditional operator.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Standard Conversions
Category: Required

Introduced in R2013b

6 MISRA C++: 2008

6-80

MISRA C++:2008 Rule 4-5-2
Expressions with type enum shall not be used as operands to built- in operators other
than the subscript operator [], the assignment operator =, the equality operators ==
and !=, the unary & operator, and the relational operators <, <=, >, >=

Description

Rule Definition
Expressions with type enum shall not be used as operands to built- in operators other
than the subscript operator [], the assignment operator =, the equality operators ==
and !=, the unary & operator, and the relational operators <, <=, >, >=.

Message in Report
Expressions with type enum shall not be used as operands to built- in operators other
than the subscript operator [], the assignment operator =, the equality operators ==
and !=, the unary & operator, and the relational operators <, <=, >, >=.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Standard Conversions
Category: Required

Introduced in R2013b

 MISRA C++:2008 Rule 4-5-2

6-81

MISRA C++:2008 Rule 4-5-3
Expressions with type (plain) char and wchar_t shall not be used as operands to built-in
operators other than the assignment operator =, the equality operators == and !=, and
the unary & operator N

Description

Rule Definition
Expressions with type (plain) char and wchar_t shall not be used as operands to built-in
operators other than the assignment operator =, the equality operators == and !=, and
the unary & operator. N

Message in Report
Expressions with type (plain) char and wchar_t shall not be used as operands to built-in
operators other than the assignment operator =, the equality operators == and !=, and
the unary & operator. N

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Standard Conversions
Category: Required

Introduced in R2013b

6 MISRA C++: 2008

6-82

MISRA C++:2008 Rule 4-10-1
NULL shall not be used as an integer value

Description

Rule Definition
NULL shall not be used as an integer value.

Polyspace Specification
The checker flags assignment of NULL to an integer variable or binary operations
involving NULL and an integer. Assignments can be direct or indirect such as passing
NULL as integer argument to a function.

Message in Report
NULL shall not be used as an integer value.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Standard Conversions
Category: Required

Introduced in R2018a

 MISRA C++:2008 Rule 4-10-1

6-83

MISRA C++:2008 Rule 4-10-2
Literal zero (0) shall not be used as the null-pointer-constant

Description

Rule Definition
Literal zero (0) shall not be used as the null-pointer-constant.

Polyspace Specification
The checker flags assignment of 0 to a pointer variable or binary operations involving 0
and a pointer. Assignments can be direct or indirect such as passing 0 as pointer
argument to a function.

Message in Report
Literal zero (0) shall not be used as the null-pointer-constant.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Standard Conversions
Category: Required

Introduced in R2018a

6 MISRA C++: 2008

6-84

MISRA C++:2008 Rule 5-0-1
The value of an expression shall be the same under any order of evaluation that the
standard permits

Description

Rule Definition
The value of an expression shall be the same under any order of evaluation that the
standard permits.

Rationale
If an expression results in different values depending on the order of evaluation, its value
becomes implementation-defined.

Polyspace Specification
An expression can have different values under the following conditions:

• The same variable is modified more than once in the expression, or is both read and
written.

• The expression allows more than one order of evaluation.

Therefore, the rule checker forbids expressions where a variable is modified more than
once and can cause different results under different orders of evaluation.

Message in Report
The value of an expression shall be the same under any order of evaluation that the
standard permits.

 MISRA C++:2008 Rule 5-0-1

6-85

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Examples

Variable Modified More Than Once in Expression
int a[10], b[10];
#define COPY_ELEMENT(index) (a[(index)]=b[(index)])

void main () {
 int i=0, k=0;

 COPY_ELEMENT (k); /* Compliant */
 COPY_ELEMENT (i++); /* Non-compliant */
}

In this example, the rule is violated by the statement COPY_ELEMENT(i++) because i++
occurs twice and the order of evaluation of the two expressions is unspecified.

Variable Modified and Used in Multiple Function Arguments
void f (unsigned int param1, unsigned int param2) {}

void main () {
 unsigned int i=0;
 f (i++, i); /* Non-compliant */
}

In this example, the rule is violated because it is unspecified whether the operation i++
occurs before or after the second argument is passed to f. The call f(i++,i) can
translate to either f(0,0) or f(0,1).

Check Information
Group: Expressions
Category: Required

6 MISRA C++: 2008

6-86

Introduced in R2013b

 MISRA C++:2008 Rule 5-0-1

6-87

MISRA C++:2008 Rule 5-0-2
Limited dependence should be placed on C++ operator precedence rules in expressions

Description

Rule Definition
Limited dependence should be placed on C++ operator precedence rules in expressions.

Rationale
Use parentheses to clearly indicate the order of evaluation.

Message in Report
Limited dependence should be placed on C++ operator precedence rules in expressions.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Expressions
Category: Advisory

Introduced in R2013b

6 MISRA C++: 2008

6-88

MISRA C++:2008 Rule 5-0-3
A cvalue expression shall not be implicitly converted to a different underlying type

Description

Rule Definition
A cvalue expression shall not be implicitly converted to a different underlying type.

Polyspace Specification
The checker assumes that ptrdiff_t is signed integer.

Message in Report
A cvalue expression shall not be implicitly converted to a different underlying type.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Expressions
Category: Required

Introduced in R2013b

 MISRA C++:2008 Rule 5-0-3

6-89

MISRA C++:2008 Rule 5-0-4
An implicit integral conversion shall not change the signedness of the underlying type

Description

Rule Definition
An implicit integral conversion shall not change the signedness of the underlying type.

Rationale
Some conversions from signed to unsigned data types can lead to implementation-defined
behavior. You can see unexpected results from the conversion.

Polyspace Specification
The checker assumes that ptrdiff_t is a signed integer.

If the conversion is to a narrower integer with a different sign, then rule 5-0-4 takes
precedence over rule 5-0-6. Only rule 5-0-4 is shown.

Message in Report
An implicit integral conversion shall not change the signedness of the underlying type.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Expressions

6 MISRA C++: 2008

6-90

Category: Required

Introduced in R2013b

 MISRA C++:2008 Rule 5-0-4

6-91

MISRA C++:2008 Rule 5-0-5
There shall be no implicit floating-integral conversions

Description

Rule Definition
There shall be no implicit floating-integral conversions.

Polyspace Specification
This rule takes precedence over 5-0-4 and 5-0-6 if they apply at the same time.

Message in Report
There shall be no implicit floating-integral conversions.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Expressions
Category: Required

Introduced in R2013b

6 MISRA C++: 2008

6-92

MISRA C++:2008 Rule 5-0-6
An implicit integral or floating-point conversion shall not reduce the size of the underlying
type

Description

Rule Definition
An implicit integral or floating-point conversion shall not reduce the size of the underlying
type.

Rationale
A conversion that reduces the size of the underlying type can result in loss of information.

Polyspace Specification
If the conversion is to a narrower integer with a different sign then C++ 5-0-4 takes
precedence over C++ 5-0-6.

Message in Report
An implicit integral or floating-point conversion shall not reduce the size of the underlying
type.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Expressions

 MISRA C++:2008 Rule 5-0-6

6-93

Category: Required

Introduced in R2013b

6 MISRA C++: 2008

6-94

MISRA C++:2008 Rule 5-0-7
There shall be no explicit floating-integral conversions of a cvalue expression

Description
Rule Definition
There shall be no explicit floating-integral conversions of a cvalue expression.

Rationale
If you evaluate an expression and later cast the result to a different type, the cast has no
effect on the underlying type of the evaluation. For instance, in this example, the result of
an integer division is then cast to a floating-point type.

short num;
short den;
float res;
res= static_cast<float> (num/den);

However, a developer or code reviewer can expect that the evaluation uses the data type
to which the result is cast later. For instance, one can expect a floating-point division
because of the later cast.

Message in Report
There shall be no explicit floating-integral conversions of a cvalue expression.

Complex expression of underlying type typeBeforeConversion may only be cast to
narrower integer type of same signedness, however the destination type is
typeAfterconversion.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

 MISRA C++:2008 Rule 5-0-7

6-95

Examples

Conversion of Division Result from Integer to Floating Point
void func() {
 short num;
 short den;
 short res_short;
 float res_float;

 res_float = static_cast<float> (num/den); //Noncompliant

 res_short = num/den;
 res_short = static_cast<float> (res_float); //Compliant

}

In this example, the first cast on the division result violates the rule but the second cast
does not.

• The first cast can lead to the incorrect expectation that the expression is evaluated
with an underlying type float.

• The second cast makes it clear that the expression is evaluated with the underlying
type short. The result is then cast to the type float.

Check Information
Group: Expressions
Category: Required

Introduced in R2013b

6 MISRA C++: 2008

6-96

MISRA C++:2008 Rule 5-0-8
An explicit integral or floating-point conversion shall not increase the size of the
underlying type of a cvalue expression

Description

Rule Definition
An explicit integral or floating-point conversion shall not increase the size of the
underlying type of a cvalue expression.

Rationale
If you evaluate an expression and later cast the result to a different type, the cast has no
effect on the underlying type of the evaluation. For instance, in this example, the sum of
two short operands is cast to the wider type int.

short op1;
short op2;
int res;
res= static_cast<int> (op1 + op2);

However, a developer or code reviewer can expect that the evaluation uses the data type
to which the result is cast later. For instance, one can expect a sum with the underlying
type int because of the later cast.

Message in Report
An explicit integral or floating-point conversion shall not increase the size of the
underlying type of a cvalue expression.

Complex expression of underlying type typeBeforeConversion may only be cast to
narrower integer type of same signedness, however the destination type is
typeAfterconversion.

 MISRA C++:2008 Rule 5-0-8

6-97

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Examples

Conversion of Sum to Wider Integer Type
void func() {
 short op1;
 short op2;
 int res;

 res = static_cast<int> (op1 + op2); //Noncompliant
 res = static_cast<int> (op1) + op2; //Compliant

}

In this example, the first cast on the sum violates the rule but the second cast does not.

• The first cast can lead to the incorrect expectation that the sum is evaluated with an
underlying type int.

• The second cast first converts one of the operands to int so that the sum is actually
evaluated with the underlying type int.

Check Information
Group: Expressions
Category: Required

Introduced in R2013b

6 MISRA C++: 2008

6-98

MISRA C++:2008 Rule 5-0-9
An explicit integral conversion shall not change the signedness of the underlying type of a
cvalue expression

Description

Rule Definition
An explicit integral conversion shall not change the signedness of the underlying type of a
cvalue expression.

Message in Report
An explicit integral conversion shall not change the signedness of the underlying type of a
cvalue expression.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Expressions
Category: Required

Introduced in R2013b

 MISRA C++:2008 Rule 5-0-9

6-99

MISRA C++:2008 Rule 5-0-10
If the bitwise operators ~ and << are applied to an operand with an underlying type of
unsigned char or unsigned short, the result shall be immediately cast to the underlying
type of the operand

Description

Rule Definition
If the bitwise operators ~ and << are applied to an operand with an underlying type of
unsigned char or unsigned short, the result shall be immediately cast to the underlying
type of the operand.

Message in Report
If the bitwise operators ~ and << are applied to an operand with an underlying type of
unsigned char or unsigned short, the result shall be immediately cast to the underlying
type of the operand.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Expressions
Category: Required

Introduced in R2013b

6 MISRA C++: 2008

6-100

MISRA C++:2008 Rule 5-0-11
The plain char type shall only be used for the storage and use of character values

Description

Rule Definition
The plain char type shall only be used for the storage and use of character values.

Polyspace Specification
The checker raises a violation when a value of signed or unsigned integer type is
implicitly converted to the plain char type.

Message in Report
The plain char type shall only be used for the storage and use of character values.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Expressions
Category: Required

Introduced in R2015a

 MISRA C++:2008 Rule 5-0-11

6-101

MISRA C++:2008 Rule 5-0-12
Signed char and unsigned char type shall only be used for the storage and use of numeric
values

Description

Rule Definition
Signed char and unsigned char type shall only be used for the storage and use of numeric
values.

Message in Report
Signed char and unsigned char type shall only be used for the storage and use of numeric
values.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Expressions
Category: Required

Introduced in R2015a

6 MISRA C++: 2008

6-102

MISRA C++:2008 Rule 5-0-13
The condition of an if-statement and the condition of an iteration- statement shall have
type bool

Description

Rule Definition
The condition of an if-statement and the condition of an iteration- statement shall have
type bool.

Message in Report
The condition of an if-statement and the condition of an iteration- statement shall have
type bool.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Expressions
Category: Required

Introduced in R2013b

 MISRA C++:2008 Rule 5-0-13

6-103

MISRA C++:2008 Rule 5-0-14
The first operand of a conditional-operator shall have type bool

Description

Rule Definition
The first operand of a conditional-operator shall have type bool.

Message in Report
The first operand of a conditional-operator shall have type bool.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Expressions
Category: Required

Introduced in R2013b

6 MISRA C++: 2008

6-104

MISRA C++:2008 Rule 5-0-15
Array indexing shall be the only form of pointer arithmetic

Description

Rule Definition
Array indexing shall be the only form of pointer arithmetic.

Polyspace Specification
The checker flags:

• Arithmetic operations on all pointers, for instance p+I, I+p and p-I, where p is a
pointer and I an integer..

• Array indexing on nonarray pointers.

Message in Report
Array indexing shall be the only form of pointer arithmetic.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Expressions
Category: Required

Introduced in R2013b

 MISRA C++:2008 Rule 5-0-15

6-105

MISRA C++:2008 Rule 5-0-17
Subtraction between pointers shall only be applied to pointers that address elements of
the same array

Description

Rule Definition
Subtraction between pointers shall only be applied to pointers that address elements of
the same array.

Polyspace Specification
Use Bug Finder for this checker. The rule checker performs the same checks as
Subtraction or comparison between pointers to different arrays. Code
Prover can fail to detect some violations.

Message in Report
Subtraction between pointers shall only be applied to pointers that address elements of
the same array.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Expressions
Category: Required

Introduced in R2013b

6 MISRA C++: 2008

6-106

MISRA C++:2008 Rule 5-0-18
>, >=, <, <= shall not be applied to objects of pointer type, except where they point to
the same array

Description

Rule Definition
>, >=, <, <= shall not be applied to objects of pointer type, except where they point to
the same array.

Polyspace Specification
Use Bug Finder for this checker. The rule checker performs the same checks as
Subtraction or comparison between pointers to different arrays. Code
Prover can fail to detect some violations.

The checker ignores casts when showing the violation on relational operator use with
pointers types.

Message in Report
>, >=, <, <= shall not be applied to objects of pointer type, except where they point to
the same array.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Expressions
Category: Required

 MISRA C++:2008 Rule 5-0-18

6-107

Introduced in R2013b

6 MISRA C++: 2008

6-108

MISRA C++:2008 Rule 5-0-19
The declaration of objects shall contain no more than two levels of pointer indirection

Description

Rule Definition
The declaration of objects shall contain no more than two levels of pointer indirection.

Message in Report
The declaration of objects shall contain no more than two levels of pointer indirection.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Expressions
Category: Required

Introduced in R2013b

 MISRA C++:2008 Rule 5-0-19

6-109

MISRA C++:2008 Rule 5-0-20
Non-constant operands to a binary bitwise operator shall have the same underlying type

Description

Rule Definition
Non-constant operands to a binary bitwise operator shall have the same underlying type.

Message in Report
Non-constant operands to a binary bitwise operator shall have the same underlying type.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Expressions
Category: Required

Introduced in R2013b

6 MISRA C++: 2008

6-110

MISRA C++:2008 Rule 5-0-21
Bitwise operators shall only be applied to operands of unsigned underlying type

Description

Rule Definition
Bitwise operators shall only be applied to operands of unsigned underlying type.

Message in Report
Bitwise operators shall only be applied to operands of unsigned underlying type.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Expressions
Category: Required

Introduced in R2013b

 MISRA C++:2008 Rule 5-0-21

6-111

MISRA C++:2008 Rule 5-2-1
Each operand of a logical && or || shall be a postfix - expression

Description

Rule Definition
Each operand of a logical && or || shall be a postfix - expression.

Polyspace Specification
During preprocessing, violations of this rule are detected on the expressions in #if
directives.

The checker allows exceptions on associativity (a && b && c), (a || b || c).

Message in Report
Each operand of a logical && or || shall be a postfix - expression.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Expressions
Category: Required

Introduced in R2013b

6 MISRA C++: 2008

6-112

MISRA C++:2008 Rule 5-2-2
A pointer to a virtual base class shall only be cast to a pointer to a derived class by means
of dynamic_cast

Description

Rule Definition
A pointer to a virtual base class shall only be cast to a pointer to a derived class by means
of dynamic_cast.

Message in Report
A pointer to a virtual base class shall only be cast to a pointer to a derived class by means
of dynamic_cast.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Expressions
Category: Required

Introduced in R2013b

 MISRA C++:2008 Rule 5-2-2

6-113

MISRA C++:2008 Rule 5-2-3
Casts from a base class to a derived class should not be performed on polymorphic types

Description

Rule Definition
Casts from a base class to a derived class should not be performed on polymorphic types.

Message in Report
Casts from a base class to a derived class should not be performed on polymorphic types.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Expressions
Category: Advisory

Introduced in R2013b

6 MISRA C++: 2008

6-114

MISRA C++:2008 Rule 5-2-4
C-style casts (other than void casts) and functional notation casts (other than explicit
constructor calls) shall not be used

Description

Rule Definition
C-style casts (other than void casts) and functional notation casts (other than explicit
constructor calls) shall not be used.

Message in Report
C-style casts (other than void casts) and functional notation casts (other than explicit
constructor calls) shall not be used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Expressions
Category: Required

Introduced in R2013b

 MISRA C++:2008 Rule 5-2-4

6-115

MISRA C++:2008 Rule 5-2-5
A cast shall not remove any const or volatile qualification from the type of a pointer or
reference

Description

Rule Definition
A cast shall not remove any const or volatile qualification from the type of a pointer or
reference.

Message in Report
A cast shall not remove any const or volatile qualification from the type of a pointer or
reference.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Expressions
Category: Required

Introduced in R2013b

6 MISRA C++: 2008

6-116

MISRA C++:2008 Rule 5-2-6
A cast shall not convert a pointer to a function to any other pointer type, including a
pointer to function type

Description

Rule Definition
A cast shall not convert a pointer to a function to any other pointer type, including a
pointer to function type.

Message in Report
A cast shall not convert a pointer to a function to any other pointer type, including a
pointer to function type.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Expressions
Category: Required

Introduced in R2013b

 MISRA C++:2008 Rule 5-2-6

6-117

MISRA C++:2008 Rule 5-2-7
An object with pointer type shall not be converted to an unrelated pointer type, either
directly or indirectly

Description

Rule Definition
An object with pointer type shall not be converted to an unrelated pointer type, either
directly or indirectly.

Polyspace Specification
The checker flags all pointer conversions including between a pointer to a struct object
and a pointer to the first member of the same struct type.

Indirect conversions from a pointer to non-pointer type are not detected.

Message in Report
An object with pointer type shall not be converted to an unrelated pointer type, either
directly or indirectly.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Expressions
Category: Required

6 MISRA C++: 2008

6-118

Introduced in R2013b

 MISRA C++:2008 Rule 5-2-7

6-119

MISRA C++:2008 Rule 5-2-8
An object with integer type or pointer to void type shall not be converted to an object with
pointer type

Description

Rule Definition
An object with integer type or pointer to void type shall not be converted to an object with
pointer type.

Polyspace Specification
The checker allows an exception on zero constants.

Objects with pointer type include objects with pointer-to-function type.

Message in Report
An object with integer type or pointer to void type shall not be converted to an object with
pointer type.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Expressions
Category: Required

Introduced in R2013b

6 MISRA C++: 2008

6-120

MISRA C++:2008 Rule 5-2-9
A cast should not convert a pointer type to an integral type

Description

Rule Definition
A cast should not convert a pointer type to an integral type.

Message in Report
A cast should not convert a pointer type to an integral type.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Expressions
Category: Advisory

Introduced in R2013b

 MISRA C++:2008 Rule 5-2-9

6-121

MISRA C++:2008 Rule 5-2-10
The increment (++) and decrement (--) operators should not be mixed with other
operators in an expression

Description

Rule Definition
The increment (++) and decrement (--) operators should not be mixed with other
operators in an expression.

Message in Report
The increment (++) and decrement (--) operators should not be mixed with other
operators in an expression.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Expressions
Category: Advisory

Introduced in R2013b

6 MISRA C++: 2008

6-122

MISRA C++:2008 Rule 5-2-11
The comma operator, && operator and the || operator shall not be overloaded

Description

Rule Definition
The comma operator, && operator and the || operator shall not be overloaded.

Message in Report
The comma operator, && operator and the || operator shall not be overloaded.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Expressions
Category: Required

Introduced in R2013b

 MISRA C++:2008 Rule 5-2-11

6-123

MISRA C++:2008 Rule 5-2-12
An identifier with array type passed as a function argument shall not decay to a pointer

Description

Rule Definition
An identifier with array type passed as a function argument shall not decay to a pointer.

Message in Report
An identifier with array type passed as a function argument shall not decay to a pointer.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Expressions
Category: Required

Introduced in R2013b

6 MISRA C++: 2008

6-124

MISRA C++:2008 Rule 5-3-1
Each operand of the ! operator, the logical && or the logical || operators shall have type
bool

Description

Rule Definition
Each operand of the ! operator, the logical && or the logical || operators shall have type
bool.

Message in Report
Each operand of the ! operator, the logical && or the logical || operators shall have type
bool.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Expressions
Category: Required

Introduced in R2013b

 MISRA C++:2008 Rule 5-3-1

6-125

MISRA C++:2008 Rule 5-3-2
The unary minus operator shall not be applied to an expression whose underlying type is
unsigned

Description

Rule Definition
The unary minus operator shall not be applied to an expression whose underlying type is
unsigned.

Message in Report
The unary minus operator shall not be applied to an expression whose underlying type is
unsigned.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Expressions
Category: Required

Introduced in R2013b

6 MISRA C++: 2008

6-126

MISRA C++:2008 Rule 5-3-3
The unary & operator shall not be overloaded

Description

Rule Definition
The unary & operator shall not be overloaded.

Message in Report
The unary & operator shall not be overloaded.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Expressions
Category: Required

Introduced in R2013b

 MISRA C++:2008 Rule 5-3-3

6-127

MISRA C++:2008 Rule 5-3-4
Evaluation of the operand to the sizeof operator shall not contain side effects

Description

Rule Definition
Evaluation of the operand to the sizeof operator shall not contain side effects.

Polyspace Specification
The checker does not show a warning on volatile accesses and function calls

Message in Report
Evaluation of the operand to the sizeof operator shall not contain side effects.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Expressions
Category: Required

Introduced in R2013b

6 MISRA C++: 2008

6-128

MISRA C++:2008 Rule 5-8-1
The right hand operand of a shift operator shall lie between zero and one less than the
width in bits of the underlying type of the left hand operand

Description

Rule Definition
The right hand operand of a shift operator shall lie between zero and one less than the
width in bits of the underlying type of the left hand operand.

Message in Report
The right hand operand of a shift operator shall lie between zero and one less than the
width in bits of the underlying type of the left hand operand.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Expressions
Category: Required

Introduced in R2013b

 MISRA C++:2008 Rule 5-8-1

6-129

MISRA C++:2008 Rule 5-14-1
The right hand operand of a logical && or || operator shall not contain side effects

Description

Rule Definition
The right hand operand of a logical && or || operator shall not contain side effects.

Polyspace Specification
The checker does not show a warning on volatile accesses and function calls.

Message in Report
The right hand operand of a logical && or || operator shall not contain side effects.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Expressions
Category: Required

Introduced in R2013b

6 MISRA C++: 2008

6-130

MISRA C++:2008 Rule 5-18-1
The comma operator shall not be used

Description

Rule Definition
The comma operator shall not be used.

Message in Report
The comma operator shall not be used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Expressions
Category: Required

Introduced in R2013b

 MISRA C++:2008 Rule 5-18-1

6-131

MISRA C++:2008 Rule 5-19-1
Evaluation of constant unsigned integer expressions should not lead to wrap-around

Description

Rule Definition
Evaluation of constant unsigned integer expressions should not lead to wrap-around.

Message in Report
Evaluation of constant unsigned integer expressions should not lead to wrap-around.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Expressions
Category: Required

Introduced in R2013b

6 MISRA C++: 2008

6-132

MISRA C++:2008 Rule 6-2-1
Assignment operators shall not be used in sub-expressions

Description

Rule Definition
Assignment operators shall not be used in sub-expressions.

Message in Report
Assignment operators shall not be used in sub-expressions.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Statements
Category: Required

Introduced in R2013b

 MISRA C++:2008 Rule 6-2-1

6-133

MISRA C++:2008 Rule 6-2-2
Floating-point expressions shall not be directly or indirectly tested for equality or
inequality

Description

Rule Definition
Floating-point expressions shall not be directly or indirectly tested for equality or
inequality.

Message in Report
Floating-point expressions shall not be directly or indirectly tested for equality or
inequality.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Statements
Category: Required

Introduced in R2013b

6 MISRA C++: 2008

6-134

MISRA C++:2008 Rule 6-2-3
Before preprocessing, a null statement shall only occur on a line by itself; it may be
followed by a comment, provided that the first character following the null statement is a
white - space character

Description

Rule Definition
Before preprocessing, a null statement shall only occur on a line by itself; it may be
followed by a comment, provided that the first character following the null statement is a
white - space character.

Message in Report
Before preprocessing, a null statement shall only occur on a line by itself; it may be
followed by a comment, provided that the first character following the null statement is a
white - space character.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Statements
Category: Required

Introduced in R2013b

 MISRA C++:2008 Rule 6-2-3

6-135

MISRA C++:2008 Rule 6-3-1
The statement forming the body of a switch, while, do while or for statement shall be a
compound statement

Description

Rule Definition
The statement forming the body of a switch, while, do ... while or for statement shall be a
compound statement.

Message in Report
The statement forming the body of a switch, while, do ... while or for statement shall be a
compound statement.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Statements
Category: Required

Introduced in R2013b

6 MISRA C++: 2008

6-136

MISRA C++:2008 Rule 6-4-1
An if (condition) construct shall be followed by a compound statement The else keyword
shall be followed by either a compound statement, or another if statement

Description

Rule Definition
An if (condition) construct shall be followed by a compound statement. The else keyword
shall be followed by either a compound statement, or another if statement.

Message in Report
An if (condition) construct shall be followed by a compound statement. The else keyword
shall be followed by either a compound statement, or another if statement.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Statements
Category: Required

Introduced in R2013b

 MISRA C++:2008 Rule 6-4-1

6-137

MISRA C++:2008 Rule 6-4-2
All if else if constructs shall be terminated with an else clause

Description

Rule Definition
All if ... else if constructs shall be terminated with an else clause.

Message in Report
All if ... else if constructs shall be terminated with an else clause.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Statements
Category: Required

Introduced in R2013b

6 MISRA C++: 2008

6-138

MISRA C++:2008 Rule 6-4-3
A switch statement shall be a well-formed switch statement

Description

Rule Definition
A switch statement shall be a well-formed switch statement.

Polyspace Specification
The checker considers return statements as jump statements and does not allow them in
the switch block.

Message in Report
A switch statement shall be a well-formed switch statement.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Statements
Category: Required

Introduced in R2013b

 MISRA C++:2008 Rule 6-4-3

6-139

MISRA C++:2008 Rule 6-4-4
A switch-label shall only be used when the most closely-enclosing compound statement is
the body of a switch statement

Description

Rule Definition
A switch-label shall only be used when the most closely-enclosing compound statement is
the body of a switch statement.

Message in Report
A switch-label shall only be used when the most closely-enclosing compound statement is
the body of a switch statement.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Statements
Category: Required

Introduced in R2013b

6 MISRA C++: 2008

6-140

MISRA C++:2008 Rule 6-4-5
An unconditional throw or break statement shall terminate every non - empty switch-
clause

Description

Rule Definition
An unconditional throw or break statement shall terminate every non - empty switch-
clause.

Message in Report
An unconditional throw or break statement shall terminate every non - empty switch-
clause.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Statements
Category: Required

Introduced in R2013b

 MISRA C++:2008 Rule 6-4-5

6-141

MISRA C++:2008 Rule 6-4-6
The final clause of a switch statement shall be the default-clause

Description

Rule Definition
The final clause of a switch statement shall be the default-clause.

Message in Report
The final clause of a switch statement shall be the default-clause.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Statements
Category: Required

Introduced in R2013b

6 MISRA C++: 2008

6-142

MISRA C++:2008 Rule 6-4-7
The condition of a switch statement shall not have bool type

Description

Rule Definition
The condition of a switch statement shall not have bool type.

Message in Report
The condition of a switch statement shall not have bool type.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Statements
Category: Required

Introduced in R2013b

 MISRA C++:2008 Rule 6-4-7

6-143

MISRA C++:2008 Rule 6-4-8
Every switch statement shall have at least one case-clause

Description

Rule Definition
Every switch statement shall have at least one case-clause.

Message in Report
Every switch statement shall have at least one case-clause.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Statements
Category: Required

Introduced in R2013b

6 MISRA C++: 2008

6-144

MISRA C++:2008 Rule 6-5-1
A for loop shall contain a single loop-counter which shall not have floating type

Description

Rule Definition
A for loop shall contain a single loop-counter which shall not have floating type.

Message in Report
A for loop shall contain a single loop-counter which shall not have floating type.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Statements
Category: Required

Introduced in R2013b

 MISRA C++:2008 Rule 6-5-1

6-145

MISRA C++:2008 Rule 6-5-2
If loop-counter is not modified by -- or ++, then, within condition, the loop-counter shall
only be used as an operand to <=, <, > or >=

Description

Rule Definition
If loop-counter is not modified by -- or ++, then, within condition, the loop-counter shall
only be used as an operand to <=, <, > or >=.

Message in Report
If loop-counter is not modified by -- or ++, then, within condition, the loop-counter shall
only be used as an operand to <=, <, > or >=.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Statements
Category: Required

Introduced in R2013b

6 MISRA C++: 2008

6-146

MISRA C++:2008 Rule 6-5-3
The loop-counter shall not be modified within condition or statement

Description

Rule Definition
The loop-counter shall not be modified within condition or statement.

Rationale
The for loop has a specific syntax for modifying the loop counter. A code reviewer
expects modification using that syntax. Modifying the loop counter elsewhere can make
the code harder to review.

Polyspace Specification
The checker flags modification of a for loop counter in the loop body or the loop
condition.

Message in Report
The loop-counter shall not be modified within condition or statement.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Statements
Category: Required

 MISRA C++:2008 Rule 6-5-3

6-147

Introduced in R2013b

6 MISRA C++: 2008

6-148

MISRA C++:2008 Rule 6-5-4
The loop-counter shall be modified by one of: --, ++, -=n, or +=n ; where n remains
constant for the duration of the loop

Description

Rule Definition
The loop-counter shall be modified by one of: --, ++, -=n, or +=n ; where n remains
constant for the duration of the loop.

Message in Report
The loop-counter shall be modified by one of: --, ++, -=n, or +=n ; where n remains
constant for the duration of the loop.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Statements
Category: Required

Introduced in R2013b

 MISRA C++:2008 Rule 6-5-4

6-149

MISRA C++:2008 Rule 6-5-5
A loop-control-variable other than the loop-counter shall not be modified within condition
or expression

Description

Rule Definition
A loop-control-variable other than the loop-counter shall not be modified within condition
or expression.

Message in Report
A loop-control-variable other than the loop-counter shall not be modified within condition
or expression.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Statements
Category: Required

Introduced in R2013b

6 MISRA C++: 2008

6-150

MISRA C++:2008 Rule 6-5-6
A loop-control-variable other than the loop-counter which is modified in statement shall
have type bool

Description

Rule Definition
A loop-control-variable other than the loop-counter which is modified in statement shall
have type bool.

Message in Report
A loop-control-variable other than the loop-counter which is modified in statement shall
have type bool.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Statements
Category: Required

Introduced in R2013b

 MISRA C++:2008 Rule 6-5-6

6-151

MISRA C++:2008 Rule 6-6-1
Any label referenced by a goto statement shall be declared in the same block, or in a
block enclosing the goto statement

Description

Rule Definition
Any label referenced by a goto statement shall be declared in the same block, or in a
block enclosing the goto statement.

Message in Report
Any label referenced by a goto statement shall be declared in the same block, or in a
block enclosing the goto statement.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Statements
Category: Required

Introduced in R2013b

6 MISRA C++: 2008

6-152

MISRA C++:2008 Rule 6-6-2
The goto statement shall jump to a label declared later in the same function body

Description

Rule Definition
The goto statement shall jump to a label declared later in the same function body.

Message in Report
The goto statement shall jump to a label declared later in the same function body.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Statements
Category: Required

Introduced in R2013b

 MISRA C++:2008 Rule 6-6-2

6-153

MISRA C++:2008 Rule 6-6-3
The continue statement shall only be used within a well-formed for loop

Description

Rule Definition
The continue statement shall only be used within a well-formed for loop.

Polyspace Specification
The checker flags the use of continue statements in:

• for loops that are not well-formed, that is, loops that violate rules 6-5-x.
• while loops.

Message in Report
The continue statement shall only be used within a well-formed for loop.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Statements
Category: Required

Introduced in R2013b

6 MISRA C++: 2008

6-154

MISRA C++:2008 Rule 6-6-4
For any iteration statement there shall be no more than one break or goto statement used
for loop termination

Description

Rule Definition
For any iteration statement there shall be no more than one break or goto statement used
for loop termination.

Message in Report
For any iteration statement there shall be no more than one break or goto statement used
for loop termination.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Statements
Category: Required

Introduced in R2013b

 MISRA C++:2008 Rule 6-6-4

6-155

MISRA C++:2008 Rule 6-6-5
A function shall have a single point of exit at the end of the function

Description

Rule Definition
A function shall have a single point of exit at the end of the function.

Rationale
This rule requires that a return statement must occur as the last statement in the
function body. Otherwise, the following issues can occur:

• Code following a return statement can be unintentionally omitted.
• If a function that modifies some of its arguments has early return statements, when

reading the code, it is not immediately clear which modifications actually occur.

Polyspace Specification
The checker flags these situations:

• A function has more than one return statement.
• A non-void function has one return statement only but the return statement is not

the last statement in the function.

A void function need not have a return statement. If a return statement exists, it need
not be the last statement in the function.

Message in Report
A function shall have a single point of exit at the end of the function.

6 MISRA C++: 2008

6-156

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Statements
Category: Required

Introduced in R2013b

 MISRA C++:2008 Rule 6-6-5

6-157

MISRA C++:2008 Rule 7-1-1
A variable which is not modified shall be const qualified

Description

Rule Definition
A variable which is not modified shall be const qualified.

Polyspace Specification
The checker flags function parameters or local variables that are not const-qualified but
never modified in the function body. Function parameters of integer, float, enum and
boolean types are not flagged.

If a variable is passed to another function by reference or pointers, the checker assumes
that the variable can be modified. These variables are not flagged.

Message in Report
A variable which is not modified shall be const qualified.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Declarations
Category: Required

Introduced in R2018a

6 MISRA C++: 2008

6-158

MISRA C++:2008 Rule 7-1-2
A pointer or reference parameter in a function shall be declared as pointer to const or
reference to const if the corresponding object is not modified

Description

Rule Definition
A pointer or reference parameter in a function shall be declared as pointer to const or
reference to const if the corresponding object is not modified.

Polyspace Specification
The checker flags pointers where the underlying object is not const-qualified but never
modified in the function body.

If a variable is passed to another function by reference or pointers, the checker assumes
that the variable can be modified. Pointers that point to these variables are not flagged.

Message in Report
A pointer or reference parameter in a function shall be declared as pointer to const or
reference to const if the corresponding object is not modified.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Declarations
Category: Required

 MISRA C++:2008 Rule 7-1-2

6-159

Introduced in R2018a

6 MISRA C++: 2008

6-160

MISRA C++:2008 Rule 7-3-1
The global namespace shall only contain main, namespace declarations and extern "C"
declarations

Description

Rule Definition
The global namespace shall only contain main, namespace declarations and extern "C"
declarations.

Message in Report
The global namespace shall only contain main, namespace declarations and extern "C"
declarations.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Declarations
Category: Required

Introduced in R2013b

 MISRA C++:2008 Rule 7-3-1

6-161

MISRA C++:2008 Rule 7-3-2
The identifier main shall not be used for a function other than the global function main

Description

Rule Definition
The identifier main shall not be used for a function other than the global function main.

Message in Report
The identifier main shall not be used for a function other than the global function main.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Declarations
Category: Required

Introduced in R2013b

6 MISRA C++: 2008

6-162

MISRA C++:2008 Rule 7-3-3
There shall be no unnamed namespaces in header files

Description

Rule Definition
There shall be no unnamed namespaces in header files.

Message in Report
There shall be no unnamed namespaces in header files.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Declarations
Category: Required

Introduced in R2013b

 MISRA C++:2008 Rule 7-3-3

6-163

MISRA C++:2008 Rule 7-3-4
using-directives shall not be used

Description

Rule Definition
using-directives shall not be used.

Message in Report
using-directives shall not be used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Declarations
Category: Required

Introduced in R2013b

6 MISRA C++: 2008

6-164

MISRA C++:2008 Rule 7-3-5
Multiple declarations for an identifier in the same namespace shall not straddle a using-
declaration for that identifier

Description

Rule Definition
Multiple declarations for an identifier in the same namespace shall not straddle a using-
declaration for that identifier.

Message in Report
Multiple declarations for an identifier in the same namespace shall not straddle a using-
declaration for that identifier.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Declarations
Category: Required

Introduced in R2013b

 MISRA C++:2008 Rule 7-3-5

6-165

MISRA C++:2008 Rule 7-3-6
using-directives and using-declarations (excluding class scope or function scope using-
declarations) shall not be used in header files

Description

Rule Definition
using-directives and using-declarations (excluding class scope or function scope using-
declarations) shall not be used in header files.

Message in Report
using-directives and using-declarations (excluding class scope or function scope using-
declarations) shall not be used in header files.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Declarations
Category: Required

Introduced in R2013b

6 MISRA C++: 2008

6-166

MISRA C++:2008 Rule 7-4-2
Assembler instructions shall only be introduced using the asm declaration

Description

Rule Definition
Assembler instructions shall only be introduced using the asm declaration.

Message in Report
Assembler instructions shall only be introduced using the asm declaration.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Declarations
Category: Required

Introduced in R2013b

 MISRA C++:2008 Rule 7-4-2

6-167

MISRA C++:2008 Rule 7-4-3
Assembly language shall be encapsulated and isolated

Description

Rule Definition
Assembly language shall be encapsulated and isolated.

Message in Report
Assembly language shall be encapsulated and isolated.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Declarations
Category: Required

Introduced in R2013b

6 MISRA C++: 2008

6-168

MISRA C++:2008 Rule 7-5-1
A function shall not return a reference or a pointer to an automatic variable (including
parameters), defined within the function

Description

Rule Definition
A function shall not return a reference or a pointer to an automatic variable (including
parameters), defined within the function.

Message in Report
A function shall not return a reference or a pointer to an automatic variable (including
parameters), defined within the function.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Declarations
Category: Required

Introduced in R2013b

 MISRA C++:2008 Rule 7-5-1

6-169

MISRA C++:2008 Rule 7-5-2
The address of an object with automatic storage shall not be assigned to another object
that may persist after the first object has ceased to exist

Description

Rule Definition
The address of an object with automatic storage shall not be assigned to another object
that may persist after the first object has ceased to exist.

Message in Report
The address of an object with automatic storage shall not be assigned to another object
that may persist after the first object has ceased to exist.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Declarations
Category: Required

Introduced in R2013b

6 MISRA C++: 2008

6-170

MISRA C++:2008 Rule 7-5-3
A function shall not return a reference or a pointer to a parameter that is passed by
reference or const reference

Description

Rule Definition
A function shall not return a reference or a pointer to a parameter that is passed by
reference or const reference.

Message in Report
A function shall not return a reference or a pointer to a parameter that is passed by
reference or const reference.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Declarations
Category: Required

Introduced in R2013b

 MISRA C++:2008 Rule 7-5-3

6-171

MISRA C++:2008 Rule 7-5-4
Functions should not call themselves, either directly or indirectly

Description

Rule Definition
Functions should not call themselves, either directly or indirectly.

Message in Report
Functions should not call themselves, either directly or indirectly.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Declarations
Category: Advisory

Introduced in R2013b

6 MISRA C++: 2008

6-172

MISRA C++:2008 Rule 8-0-1
An init-declarator-list or a member-declarator-list shall consist of a single init-declarator
or member-declarator respectively

Description

Rule Definition
An init-declarator-list or a member-declarator-list shall consist of a single init-declarator
or member-declarator respectively.

Message in Report
An init-declarator-list or a member-declarator-list shall consist of a single init-declarator
or member-declarator respectively.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Declarators
Category: Required

Introduced in R2013b

 MISRA C++:2008 Rule 8-0-1

6-173

MISRA C++:2008 Rule 8-3-1
Parameters in an overriding virtual function shall either use the same default arguments
as the function they override, or else shall not specify any default arguments

Description

Rule Definition
Parameters in an overriding virtual function shall either use the same default arguments
as the function they override, or else shall not specify any default arguments.

Message in Report
Parameters in an overriding virtual function shall either use the same default arguments
as the function they override, or else shall not specify any default arguments.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Declarators
Category: Required

Introduced in R2013b

6 MISRA C++: 2008

6-174

MISRA C++:2008 Rule 8-4-1
Functions shall not be defined using the ellipsis notation

Description

Rule Definition
Functions shall not be defined using the ellipsis notation.

Message in Report
Functions shall not be defined using the ellipsis notation.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Declarators
Category: Required

Introduced in R2013b

 MISRA C++:2008 Rule 8-4-1

6-175

MISRA C++:2008 Rule 8-4-2
The identifiers used for the parameters in a re-declaration of a function shall be identical
to those in the declaration

Description

Rule Definition
The identifiers used for the parameters in a re-declaration of a function shall be identical
to those in the declaration.

Message in Report
The identifiers used for the parameters in a re-declaration of a function shall be identical
to those in the declaration.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Declarators
Category: Required

Introduced in R2013b

6 MISRA C++: 2008

6-176

MISRA C++:2008 Rule 8-4-3
All exit paths from a function with non- void return type shall have an explicit return
statement with an expression

Description

Rule Definition
All exit paths from a function with non- void return type shall have an explicit return
statement with an expression.

Message in Report
All exit paths from a function with non- void return type shall have an explicit return
statement with an expression.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Declarators
Category: Required

Introduced in R2013b

 MISRA C++:2008 Rule 8-4-3

6-177

MISRA C++:2008 Rule 8-4-4
A function identifier shall either be used to call the function or it shall be preceded by &

Description

Rule Definition
A function identifier shall either be used to call the function or it shall be preceded by &.

Message in Report
A function identifier shall either be used to call the function or it shall be preceded by &.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Declarators
Category: Required

Introduced in R2013b

6 MISRA C++: 2008

6-178

MISRA C++:2008 Rule 8-5-1
All variables shall have a defined value before they are used

Description

Rule Definition
All variables shall have a defined value before they are used.

Message in Report
All variables shall have a defined value before they are used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Declarators
Category: Required

Introduced in R2013b

 MISRA C++:2008 Rule 8-5-1

6-179

MISRA C++:2008 Rule 8-5-2
Braces shall be used to indicate and match the structure in the non- zero initialization of
arrays and structures

Description

Rule Definition
Braces shall be used to indicate and match the structure in the non- zero initialization of
arrays and structures.

Message in Report
Braces shall be used to indicate and match the structure in the non- zero initialization of
arrays and structures.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Declarators
Category: Required

Introduced in R2013b

6 MISRA C++: 2008

6-180

MISRA C++:2008 Rule 8-5-3
In an enumerator list, the = construct shall not be used to explicitly initialize members
other than the first, unless all items are explicitly initialized

Description

Rule Definition
In an enumerator list, the = construct shall not be used to explicitly initialize members
other than the first, unless all items are explicitly initialized.

Message in Report
In an enumerator list, the = construct shall not be used to explicitly initialize members
other than the first, unless all items are explicitly initialized.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Declarators
Category: Required

Introduced in R2013b

 MISRA C++:2008 Rule 8-5-3

6-181

MISRA C++:2008 Rule 9-3-1
const member functions shall not return non-const pointers or references to class-data

Description

Rule Definition
const member functions shall not return non-const pointers or references to class-data.

Polyspace Specification
The checker flags a rule violation only if a const member function returns a non-const
reference to a nonstatic data member. The rule does not apply to static data members.

Message in Report
const member functions shall not return non-const pointers or references to class-data.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Classes
Category: Required

Introduced in R2013b

6 MISRA C++: 2008

6-182

MISRA C++:2008 Rule 9-3-2
Member functions shall not return non-const handles to class-data

Description

Rule Definition
Member functions shall not return non-const handles to class-data.

Polyspace Specification
The checker flags a rule violation only if a const member function returns a non-const
reference to a nonstatic data member. The rule does not apply to static data members.

Message in Report
Member functions shall not return non-const handles to class-data.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Classes
Category: Required

Introduced in R2013b

 MISRA C++:2008 Rule 9-3-2

6-183

MISRA C++:2008 Rule 9-3-3
If a member function can be made static then it shall be made static, otherwise if it can be
made const then it shall be made const

Description

Rule Definition
If a member function can be made static then it shall be made static, otherwise if it can be
made const then it shall be made const.

Polyspace Specification
The checker flags member functions that are not declared static but do not access a data
member of the class. Such a function can be potentially declared static.

The checker flags member functions that are not declared const but do not modify a data
member of the class. Such a function can be potentially declared const.

Message in Report
If a member function can be made static then it shall be made static, otherwise if it can be
made const then it shall be made const.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Classes
Category: Required

6 MISRA C++: 2008

6-184

Introduced in R2018a

 MISRA C++:2008 Rule 9-3-3

6-185

MISRA C++:2008 Rule 9-5-1
Unions shall not be used

Description

Rule Definition
Unions shall not be used.

Message in Report
Unions shall not be used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Classes
Category: Required

Introduced in R2013b

6 MISRA C++: 2008

6-186

MISRA C++:2008 Rule 9-6-2
Bit-fields shall be either bool type or an explicitly unsigned or signed integral type

Description

Rule Definition
Bit-fields shall be either bool type or an explicitly unsigned or signed integral type.

Message in Report
Bit-fields shall be either bool type or an explicitly unsigned or signed integral type.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Classes
Category: Required

Introduced in R2013b

 MISRA C++:2008 Rule 9-6-2

6-187

MISRA C++:2008 Rule 9-6-3
Bit-fields shall not have enum type

Description

Rule Definition
Bit-fields shall not have enum type.

Message in Report
Bit-fields shall not have enum type.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Classes
Category: Required

Introduced in R2013b

6 MISRA C++: 2008

6-188

MISRA C++:2008 Rule 9-6-4
Named bit-fields with signed integer type shall have a length of more than one bit

Description

Rule Definition
Named bit-fields with signed integer type shall have a length of more than one bit.

Message in Report
Named bit-fields with signed integer type shall have a length of more than one bit.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Classes
Category: Required

Introduced in R2013b

 MISRA C++:2008 Rule 9-6-4

6-189

MISRA C++:2008 Rule 10-1-1
Classes should not be derived from virtual bases

Description

Rule Definition
Classes should not be derived from virtual bases.

Rationale
The use of virtual bases can lead to many confusing behaviors.

For instance, in an inheritance hierarchy involving a virtual base, the most derived class
calls the constructor of the virtual base. Intermediate calls to the virtual base constructor
are ignored.

Message in Report
Classes should not be derived from virtual bases.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Examples

Use of Virtual Bases
class Base {};
class Intermediate: public virtual Base {}; //Noncompliant
class Final: public Intermediate {};

6 MISRA C++: 2008

6-190

In this example, the rule checker raises a violation when the Intermediate class is
derived from the class Base with the virtual keyword.

The following behavior can be a potential source of confusion. When you create an object
of type Final, the constructor of Final directly calls the constructor of Base. Any call to
the Base constructor from the Intermediate constructor are ignored. You might see
unexpected results if you do not take into account this behavior.

Check Information
Group: Derived Classes
Category: Advisory

See Also
MISRA C++:2008 Rule 10-1-2 | MISRA C++:2008 Rule 10-1-2

Introduced in R2013b

 MISRA C++:2008 Rule 10-1-1

6-191

MISRA C++:2008 Rule 10-1-2
A base class shall only be declared virtual if it is used in a diamond hierarchy

Description

Rule Definition
A base class shall only be declared virtual if it is used in a diamond hierarchy.

Rationale
This rule is less restrictive than MISRA C++:2008 Rule 10-1-1. Rule 10-1-1 forbids
the use of a virtual base anywhere in your code because a virtual base can lead to
potentially confusing behavior.

Rule 10-1-2 allows the use of virtual bases in the one situation where they are useful, that
is, as a common base class in diamond hierarchies.

For instance, the following diamond hierarchy violates rule 10-1-1 but not rule 10-1-2.

class Base {};
class Intermediate1: public virtual Base {};
class Intermediate2: public virtual Base {};
class Final: public Intermediate1, public Intermediate2 {};

Message in Report
A base class shall only be declared virtual if it is used in a diamond hierarchy.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

6 MISRA C++: 2008

6-192

Check Information
Group: Derived Classes
Category: Required

Introduced in R2013b

 MISRA C++:2008 Rule 10-1-2

6-193

MISRA C++:2008 Rule 10-1-3
An accessible base class shall not be both virtual and non-virtual in the same hierarchy

Description

Rule Definition
An accessible base class shall not be both virtual and non-virtual in the same hierarchy.

Rationale
The checker flags situations where the same class is inherited as a virtual base class and
a non-virtual base class in the same derived class. These situations defeat the purpose of
virtual inheritance and causes multiple copies of the base class sub-object in the derived
class object.

Message in Report
An accessible base class shall not be both virtual and non-virtual in the same hierarchy.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Examples

Base Class Both Virtual and Non-Virtual in Same Hierarchy
class Base {};
class Intermediate1: virtual public Base {};
class Intermediate2: virtual public Base {};

6 MISRA C++: 2008

6-194

class Intermediate3: public Base {};
class Final: public Intermediate1, Intermediate2, Intermediate3 {}; //Noncompliant

In this example, the class Base is inherited in Final both as a virtual and non-virtual
base class. The Final object contains at least two copies of a Base sub-object.

Check Information
Group: Derived Classes
Category: Required

Introduced in R2013b

 MISRA C++:2008 Rule 10-1-3

6-195

MISRA C++:2008 Rule 10-2-1
All accessible entity names within a multiple inheritance hierarchy should be unique

Description

Rule Definition
All accessible entity names within a multiple inheritance hierarchy should be unique.

Polyspace Specification
The checker does not perform a detection between entities of different kinds, for
instance, member functions against data members.

Message in Report
All accessible entity names within a multiple inheritance hierarchy should be unique.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Derived Classes
Category: Required

Introduced in R2013b

6 MISRA C++: 2008

6-196

MISRA C++:2008 Rule 10-3-1
There shall be no more than one definition of each virtual function on each path through
the inheritance hierarchy

Description

Rule Definition
There shall be no more than one definition of each virtual function on each path through
the inheritance hierarchy.

Rationale
The checker flags virtual member functions that have multiple definitions on the same
path in an inheritance hierarchy. If a function is defined multiple times, it can be
ambiguous which implementation is used in a given function call.

Polyspace Specification
The checker also raises a violation if a base class member function is redefined in the
derived class without the virtual keyword.

Message in Report
There shall be no more than one definition of each virtual function on each path through
the inheritance hierarchy.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

 MISRA C++:2008 Rule 10-3-1

6-197

Examples

Virtual Function Redefined in Derived Class
class Base {
 public:
 virtual void foo() {
 }
};

class Intermediate1: public virtual Base {
 public:
 virtual void foo() { //Noncompliant
 }
};

class Intermediate2: public virtual Base {
 public:
 void bar() {
 foo(); // Calls Base::foo()
 }
};

class Final: public Intermediate1, public Intermediate2 {
};

void main() {
 Intermediate2 intermediate2Obj;
 intermediate2Obj.bar(); // Calls Base::foo()
 Final finalObj;
 finalObj.bar(); //Calls Intermediate1::foo()
 //but you might expect Base::foo()
}

In this example, the virtual function foo is defined in the base class Base and also in
the derived class Intermediate1.

A potential source of confusion can be the following. The class Final derives from
Intermediate1 and also derives from Base through another path using
Intermediate2.

6 MISRA C++: 2008

6-198

• When an Intermediate2 object calls the function bar that calls the function foo,
the implementation of foo in Base is called. An Intermediate2 object does not
know of the implementation in Intermediate1.

• However, when a Final object calls the same function bar that calls the function foo,
the implementation of foo in Intermediate1 is called because of dominance of the
more derived class.

You might see unexpected results if you do not take this behavior into account.

To prevent this issue, declare a function as pure virtual in the base class. For instance,
you can declare the class Base as follows:

class Base {
 public:
 virtual void foo()=0;
};

void Base::foo() {
 //You can still define Base::foo()
}

Check Information
Group: Derived Classes
Category: Required

Introduced in R2013b

 MISRA C++:2008 Rule 10-3-1

6-199

MISRA C++:2008 Rule 10-3-2
Each overriding virtual function shall be declared with the virtual keyword

Description

Rule Definition
Each overriding virtual function shall be declared with the virtual keyword.

Message in Report
Each overriding virtual function shall be declared with the virtual keyword.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Derived Classes
Category: Required

Introduced in R2013b

6 MISRA C++: 2008

6-200

MISRA C++:2008 Rule 10-3-3
A virtual function shall only be overridden by a pure virtual function if it is itself declared
as pure virtual

Description

Rule Definition
A virtual function shall only be overridden by a pure virtual function if it is itself declared
as pure virtual.

Message in Report
A virtual function shall only be overridden by a pure virtual function if it is itself declared
as pure virtual.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Derived Classes
Category: Required

Introduced in R2013b

 MISRA C++:2008 Rule 10-3-3

6-201

MISRA C++:2008 Rule 11-0-1
Member data in non- POD class types shall be private

Description

Rule Definition
Member data in non- POD class types shall be private.

Message in Report
Member data in non- POD class types shall be private.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Member Access Control
Category: Required

Introduced in R2013b

6 MISRA C++: 2008

6-202

MISRA C++:2008 Rule 12-1-1
An object's dynamic type shall not be used from the body of its constructor or destructor

Description

Rule Definition
An object's dynamic type shall not be used from the body of its constructor or destructor.

Message in Report
An object's dynamic type shall not be used from the body of its constructor or destructor.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Special Member Functions
Category: Required

Introduced in R2013b

 MISRA C++:2008 Rule 12-1-1

6-203

MISRA C++:2008 Rule 12-1-2
All constructors of a class should explicitly call a constructor for all of its immediate base
classes and all virtual base classes

Description

Rule Definition
All constructors of a class should explicitly call a constructor for all of its immediate base
classes and all virtual base classes.

Message in Report
All constructors of a class should explicitly call a constructor for all of its immediate base
classes and all virtual base classes.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Special Member Functions
Category: Advisory

Introduced in R2013b

6 MISRA C++: 2008

6-204

MISRA C++:2008 Rule 12-1-3
All constructors that are callable with a single argument of fundamental type shall be
declared explicit

Description

Rule Definition
All constructors that are callable with a single argument of fundamental type shall be
declared explicit.

Message in Report
All constructors that are callable with a single argument of fundamental type shall be
declared explicit.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Special Member Functions
Category: Required

Introduced in R2013b

 MISRA C++:2008 Rule 12-1-3

6-205

MISRA C++:2008 Rule 12-8-1
A copy constructor shall only initialize its base classes and the non- static members of the
class of which it is a member

Description

Rule Definition
A copy constructor shall only initialize its base classes and the non- static members of the
class of which it is a member.

Message in Report
A copy constructor shall only initialize its base classes and the non- static members of the
class of which it is a member.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Special Member Functions
Category: Required

Introduced in R2013b

6 MISRA C++: 2008

6-206

MISRA C++:2008 Rule 12-8-2
The copy assignment operator shall be declared protected or private in an abstract class

Description

Rule Definition
The copy assignment operator shall be declared protected or private in an abstract class.

Message in Report
The copy assignment operator shall be declared protected or private in an abstract class.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Special Member Functions
Category: Required

Introduced in R2013b

 MISRA C++:2008 Rule 12-8-2

6-207

MISRA C++:2008 Rule 14-5-2
A copy constructor shall be declared when there is a template constructor with a single
parameter that is a generic parameter

Description

Rule Definition
A copy constructor shall be declared when there is a template constructor with a single
parameter that is a generic parameter.

Message in Report
A copy constructor shall be declared when there is a template constructor with a single
parameter that is a generic parameter.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Templates
Category: Required

Introduced in R2013b

6 MISRA C++: 2008

6-208

MISRA C++:2008 Rule 14-5-3
A copy assignment operator shall be declared when there is a template assignment
operator with a parameter that is a generic parameter

Description

Rule Definition
A copy assignment operator shall be declared when there is a template assignment
operator with a parameter that is a generic parameter.

Message in Report
A copy assignment operator shall be declared when there is a template assignment
operator with a parameter that is a generic parameter.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Templates
Category: Required

Introduced in R2013b

 MISRA C++:2008 Rule 14-5-3

6-209

MISRA C++:2008 Rule 14-6-1
In a class template with a dependent base, any name that may be found in that dependent
base shall be referred to using a qualified-id or this->

Description

Rule Definition
In a class template with a dependent base, any name that may be found in that dependent
base shall be referred to using a qualified-id or this->

Message in Report
In a class template with a dependent base, any name that may be found in that dependent
base shall be referred to using a qualified-id or this->

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Templates
Category: Required

Introduced in R2013b

6 MISRA C++: 2008

6-210

MISRA C++:2008 Rule 14-6-2
The function chosen by overload resolution shall resolve to a function declared previously
in the translation unit

Description

Rule Definition
The function chosen by overload resolution shall resolve to a function declared previously
in the translation unit.

Message in Report
The function chosen by overload resolution shall resolve to a function declared previously
in the translation unit.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Templates
Category: Required

Introduced in R2013b

 MISRA C++:2008 Rule 14-6-2

6-211

MISRA C++:2008 Rule 14-7-3
All partial and explicit specializations for a template shall be declared in the same file as
the declaration of their primary template

Description

Rule Definition
All partial and explicit specializations for a template shall be declared in the same file as
the declaration of their primary template.

Message in Report
All partial and explicit specializations for a template shall be declared in the same file as
the declaration of their primary template.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Templates
Category: Required

Introduced in R2013b

6 MISRA C++: 2008

6-212

MISRA C++:2008 Rule 14-8-1
Overloaded function templates shall not be explicitly specialized

Description

Rule Definition
Overloaded function templates shall not be explicitly specialized.

Polyspace Specification
The checker first checks within file scope to find overloads. The checker later looks for
call to a specialized template function later. As a result, the checker flags all
specializations of overloaded templates even if overloading occurs after the call.

Message in Report
Overloaded function templates shall not be explicitly specialized.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Templates
Category: Required

Introduced in R2013b

 MISRA C++:2008 Rule 14-8-1

6-213

MISRA C++:2008 Rule 14-8-2
The viable function set for a function call should either contain no function
specializations, or only contain function specializations

Description

Rule Definition
The viable function set for a function call should either contain no function
specializations, or only contain function specializations.

Message in Report
The viable function set for a function call should either contain no function
specializations, or only contain function specializations.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Templates
Category: Advisory

Introduced in R2013b

6 MISRA C++: 2008

6-214

MISRA C++:2008 Rule 15-0-2
An exception object should not have pointer type

Description

Rule Definition
An exception object should not have pointer type.

Polyspace Specification
The checker does not detect NULL (see rule 15-1-2).

Message in Report
An exception object should not have pointer type.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Exception Handling
Category: Advisory

Introduced in R2013b

 MISRA C++:2008 Rule 15-0-2

6-215

MISRA C++:2008 Rule 15-0-3
Control shall not be transferred into a try or catch block using a goto or a switch
statement

Description

Rule Definition
Control shall not be transferred into a try or catch block using a goto or a switch
statement.

Message in Report
Control shall not be transferred into a try or catch block using a goto or a switch
statement.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Exception Handling
Category: Required

Introduced in R2013b

6 MISRA C++: 2008

6-216

MISRA C++:2008 Rule 15-1-2
NULL shall not be thrown explicitly

Description

Rule Definition
NULL shall not be thrown explicitly.

Message in Report
NULL shall not be thrown explicitly.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Exception Handling
Category: Required

Introduced in R2013b

 MISRA C++:2008 Rule 15-1-2

6-217

MISRA C++:2008 Rule 15-1-3
An empty throw (throw;) shall only be used in the compound- statement of a catch
handler

Description

Rule Definition
An empty throw (throw;) shall only be used in the compound- statement of a catch
handler.

Message in Report
An empty throw (throw;) shall only be used in the compound- statement of a catch
handler.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Exception Handling
Category: Required

Introduced in R2013b

6 MISRA C++: 2008

6-218

MISRA C++:2008 Rule 15-3-2
There should be at least one exception handler to catch all otherwise unhandled
exceptions

Description

Rule Definition
There should be at least one exception handler to catch all otherwise unhandled
exceptions.

Polyspace Specification
The checker shows a violation if there is no try/catch in the main function or the catch
does not handle all exceptions (with ellipsis ...). The rule is not checked if a main
function does not exist.

The checker does not determine if an exception of an unhandled type actually propagates
to main.

Bug Finder and Code Prover check this coding rule differently. The analyses can produce
different results.

Message in Report
There should be at least one exception handler to catch all otherwise unhandled
exceptions.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

 MISRA C++:2008 Rule 15-3-2

6-219

Check Information
Group: Exception Handling
Category: Advisory

Introduced in R2013b

6 MISRA C++: 2008

6-220

MISRA C++:2008 Rule 15-3-3
Handlers of a function-try-block implementation of a class constructor or destructor shall
not reference non-static members from this class or its bases

Description

Rule Definition
Handlers of a function-try-block implementation of a class constructor or destructor shall
not reference non-static members from this class or its bases.

Message in Report
Handlers of a function-try-block implementation of a class constructor or destructor shall
not reference non-static members from this class or its bases.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Exception Handling
Category: Required

Introduced in R2013b

 MISRA C++:2008 Rule 15-3-3

6-221

MISRA C++:2008 Rule 15-3-5
A class type exception shall always be caught by reference

Description

Rule Definition
A class type exception shall always be caught by reference.

Message in Report
A class type exception shall always be caught by reference.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Exception Handling
Category: Required

Introduced in R2013b

6 MISRA C++: 2008

6-222

MISRA C++:2008 Rule 15-3-6
Where multiple handlers are provided in a single try-catch statement or function-try-block
for a derived class and some or all of its bases, the handlers shall be ordered most-derived
to base class

Description

Rule Definition
Where multiple handlers are provided in a single try-catch statement or function-try-block
for a derived class and some or all of its bases, the handlers shall be ordered most-derived
to base class.

Message in Report
Where multiple handlers are provided in a single try-catch statement or function-try-block
for a derived class and some or all of its bases, the handlers shall be ordered most-derived
to base class.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Exception Handling
Category: Required

Introduced in R2013b

 MISRA C++:2008 Rule 15-3-6

6-223

MISRA C++:2008 Rule 15-3-7
Where multiple handlers are provided in a single try-catch statement or function-try-
block, any ellipsis (catch-all) handler shall occur last

Description

Rule Definition
Where multiple handlers are provided in a single try-catch statement or function-try-
block, any ellipsis (catch-all) handler shall occur last.

Message in Report
Where multiple handlers are provided in a single try-catch statement or function-try-
block, any ellipsis (catch-all) handler shall occur last.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Exception Handling
Category: Required

Introduced in R2013b

6 MISRA C++: 2008

6-224

MISRA C++:2008 Rule 15-4-1
If a function is declared with an exception-specification, then all declarations of the same
function (in other translation units) shall be declared with the same set of type-ids

Description

Rule Definition
If a function is declared with an exception-specification, then all declarations of the same
function (in other translation units) shall be declared with the same set of type-ids.

Message in Report
If a function is declared with an exception-specification, then all declarations of the same
function (in other translation units) shall be declared with the same set of type-ids.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Exception Handling
Category: Required

Introduced in R2013b

 MISRA C++:2008 Rule 15-4-1

6-225

MISRA C++:2008 Rule 15-5-1
A class destructor shall not exit with an exception

Description

Rule Definition
A class destructor shall not exit with an exception.

Polyspace Specification
The checker limits detection to throw statements that are in the body of the destructor. If
the destructor calls another function, the checker does not detect if that function throws
an exception.

The checker does not detect these situations:

• A catch statement does not catch exceptions of all types that are thrown.

The checker considers the presence of a catch statement corresponding to a try
block as indication that an exception is caught.

• throw statements inside catch blocks

Message in Report
A class destructor shall not exit with an exception.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

6 MISRA C++: 2008

6-226

Check Information
Group: Exception Handling
Category: Required

Introduced in R2013b

 MISRA C++:2008 Rule 15-5-1

6-227

MISRA C++:2008 Rule 15-5-2
Where a function's declaration includes an exception-specification, the function shall only
be capable of throwing exceptions of the indicated type(s)

Description

Rule Definition
Where a function's declaration includes an exception-specification, the function shall only
be capable of throwing exceptions of the indicated type(s).

Polyspace Specification
The checker limits detection to throw statements that are in the body of the function. If
the function calls another function, the checker does not detect if the called function
throws an exception.

The checker does not detect throw statements inside catch blocks.

Message in Report
Where a function's declaration includes an exception-specification, the function shall only
be capable of throwing exceptions of the indicated type(s).

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Exception Handling
Category: Required

6 MISRA C++: 2008

6-228

Introduced in R2013b

 MISRA C++:2008 Rule 15-5-2

6-229

MISRA C++:2008 Rule 15-5-3
The terminate() function shall not be called implicitly

Description

Rule Definition
The terminate() function shall not be called implicitly.

Polyspace Specification
The checker flags these situations when the terminate() function can be called implicitly:

• An exception escapes uncaught. This also violates rule 15-3-2. For instance:

• Before an exception is caught, it escapes through another function that throws an
uncaught exception. For instance, a catch statement or exception handler invokes a
copy constructor that throws an uncaught exception.

• A throw expression with no operand rethrows an uncaught exception.
• A class destructor throws an exception. This also violates rule 15-5-1.

Message in Report
The terminate() function shall not be called implicitly.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Exception Handling

6 MISRA C++: 2008

6-230

Category: Required

Introduced in R2018a

 MISRA C++:2008 Rule 15-5-3

6-231

MISRA C++:2008 Rule 16-0-1
#include directives in a file shall only be preceded by other preprocessor directives or
comments

Description

Rule Definition
#include directives in a file shall only be preceded by other preprocessor directives or
comments.

Message in Report
#include directives in a file shall only be preceded by other preprocessor directives or
comments.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Preprocessing Directives
Category: Required

Introduced in R2013b

6 MISRA C++: 2008

6-232

MISRA C++:2008 Rule 16-0-2
Macros shall only be #define 'd or #undef 'd in the global namespace

Description

Rule Definition
Macros shall only be #define 'd or #undef 'd in the global namespace.

Message in Report
Macros shall only be #define 'd or #undef 'd in the global namespace.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Preprocessing Directives
Category: Required

Introduced in R2013b

 MISRA C++:2008 Rule 16-0-2

6-233

MISRA C++:2008 Rule 16-0-3
#undef shall not be used

Description

Rule Definition
#undef shall not be used.

Message in Report
#undef shall not be used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Preprocessing Directives
Category: Required

Introduced in R2013b

6 MISRA C++: 2008

6-234

MISRA C++:2008 Rule 16-0-4
Function-like macros shall not be defined

Description

Rule Definition
Function-like macros shall not be defined.

Message in Report
Function-like macros shall not be defined.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Preprocessing Directives
Category: Required

Introduced in R2013b

 MISRA C++:2008 Rule 16-0-4

6-235

MISRA C++:2008 Rule 16-0-5
Arguments to a function-like macro shall not contain tokens that look like preprocessing
directives

Description

Rule Definition
Arguments to a function-like macro shall not contain tokens that look like preprocessing
directives.

Message in Report
Arguments to a function-like macro shall not contain tokens that look like preprocessing
directives.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Preprocessing Directives
Category: Required

Introduced in R2013b

6 MISRA C++: 2008

6-236

MISRA C++:2008 Rule 16-0-6
In the definition of a function-like macro, each instance of a parameter shall be enclosed
in parentheses, unless it is used as the operand of # or ##

Description

Rule Definition
In the definition of a function-like macro, each instance of a parameter shall be enclosed
in parentheses, unless it is used as the operand of # or ##.

Message in Report
In the definition of a function-like macro, each instance of a parameter shall be enclosed
in parentheses, unless it is used as the operand of # or ##.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Preprocessing Directives
Category: Required

Introduced in R2013b

 MISRA C++:2008 Rule 16-0-6

6-237

MISRA C++:2008 Rule 16-0-7
Undefined macro identifiers shall not be used in #if or #elif preprocessor directives,
except as operands to the defined operator

Description

Rule Definition
Undefined macro identifiers shall not be used in #if or #elif preprocessor directives,
except as operands to the defined operator.

Message in Report
Undefined macro identifiers shall not be used in #if or #elif preprocessor directives,
except as operands to the defined operator.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Preprocessing Directives
Category: Required

Introduced in R2013b

6 MISRA C++: 2008

6-238

MISRA C++:2008 Rule 16-0-8
If the # token appears as the first token on a line, then it shall be immediately followed by
a preprocessing token

Description

Rule Definition
If the # token appears as the first token on a line, then it shall be immediately followed by
a preprocessing token.

Message in Report
If the # token appears as the first token on a line, then it shall be immediately followed by
a preprocessing token.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Preprocessing Directives
Category: Required

Introduced in R2013b

 MISRA C++:2008 Rule 16-0-8

6-239

MISRA C++:2008 Rule 16-1-1
The defined preprocessor operator shall only be used in one of the two standard forms

Description

Rule Definition
The defined preprocessor operator shall only be used in one of the two standard forms.

Message in Report
The defined preprocessor operator shall only be used in one of the two standard forms.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Preprocessing Directives
Category: Required

Introduced in R2013b

6 MISRA C++: 2008

6-240

MISRA C++:2008 Rule 16-1-2
All #else, #elif and #endif preprocessor directives shall reside in the same file as the #if
or #ifdef directive to which they are related

Description

Rule Definition
All #else, #elif and #endif preprocessor directives shall reside in the same file as the #if
or #ifdef directive to which they are related.

Message in Report
All #else, #elif and #endif preprocessor directives shall reside in the same file as the #if
or #ifdef directive to which they are related.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Preprocessing Directives
Category: Required

Introduced in R2013b

 MISRA C++:2008 Rule 16-1-2

6-241

MISRA C++:2008 Rule 16-2-1
The preprocessor shall only be used for file inclusion and include guards

Description

Rule Definition
The preprocessor shall only be used for file inclusion and include guards.

Polyspace Specification
The checker raises a violation if a #define is not in an include guard. The checker also
flags #ifdef-s and #define-s in files that are not include files.

Message in Report
The preprocessor shall only be used for file inclusion and include guards.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Preprocessing Directives
Category: Required

Introduced in R2013b

6 MISRA C++: 2008

6-242

MISRA C++:2008 Rule 16-2-2
C++ macros shall only be used for: include guards, type qualifiers, or storage class
specifiers

Description

Rule Definition
C++ macros shall only be used for: include guards, type qualifiers, or storage class
specifiers.

Message in Report
C++ macros shall only be used for: include guards, type qualifiers, or storage class
specifiers.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Preprocessing Directives
Category: Required

Introduced in R2013b

 MISRA C++:2008 Rule 16-2-2

6-243

MISRA C++:2008 Rule 16-2-3
Include guards shall be provided

Description

Rule Definition
Include guards shall be provided.

Message in Report
Include guards shall be provided.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Preprocessing Directives
Category: Required

Introduced in R2013b

6 MISRA C++: 2008

6-244

MISRA C++:2008 Rule 16-2-4
The ', ", /* or // characters shall not occur in a header file name

Description

Rule Definition
The ', ", /* or // characters shall not occur in a header file name.

Message in Report
The ', ", /* or // characters shall not occur in a header file name.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Preprocessing Directives
Category: Required

Introduced in R2013b

 MISRA C++:2008 Rule 16-2-4

6-245

MISRA C++:2008 Rule 16-2-5
The \ character should not occur in a header file name

Description

Rule Definition
The \ character should not occur in a header file name.

Message in Report
The \ character should not occur in a header file name.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Preprocessing Directives
Category: Advisory

Introduced in R2013b

6 MISRA C++: 2008

6-246

MISRA C++:2008 Rule 16-2-6
The #include directive shall be followed by either a <filename> or "filename" sequence

Description

Rule Definition
The #include directive shall be followed by either a <filename> or "filename" sequence.

Message in Report
The #include directive shall be followed by either a <filename> or "filename" sequence.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Preprocessing Directives
Category: Required

Introduced in R2013b

 MISRA C++:2008 Rule 16-2-6

6-247

MISRA C++:2008 Rule 16-3-1
There shall be at most one occurrence of the # or ## operators in a single macro
definition

Description

Rule Definition
There shall be at most one occurrence of the # or ## operators in a single macro
definition.

Message in Report
There shall be at most one occurrence of the # or ## operators in a single macro
definition.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Preprocessing Directives
Category: Required

Introduced in R2013b

6 MISRA C++: 2008

6-248

MISRA C++:2008 Rule 16-3-2
The # and ## operators should not be used

Description

Rule Definition
The # and ## operators should not be used.

Message in Report
The # and ## operators should not be used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Preprocessing Directives
Category: Advisory

Introduced in R2013b

 MISRA C++:2008 Rule 16-3-2

6-249

MISRA C++:2008 Rule 16-6-1
All uses of the #pragma directive shall be documented

Description

Rule Definition
All uses of the #pragma directive shall be documented.

Polyspace Specification
To check this rule, you must list the pragmas that are allowed in source files by using the
option Allowed pragmas (-allowed-pragmas). If Polyspace finds a pragma not in
the allowed pragma list, a violation is raised.

Message in Report
All uses of the #pragma directive shall be documented.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Preprocessing Directives
Category: Document

Introduced in R2016b

6 MISRA C++: 2008

6-250

MISRA C++:2008 Rule 17-0-1
Reserved identifiers, macros and functions in the standard library shall not be defined,
redefined or undefined

Description

Rule Definition
Reserved identifiers, macros and functions in the standard library shall not be defined,
redefined or undefined.

Message in Report
Reserved identifiers, macros and functions in the standard library shall not be defined,
redefined or undefined.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Library Introduction
Category: Required

Introduced in R2013b

 MISRA C++:2008 Rule 17-0-1

6-251

MISRA C++:2008 Rule 17-0-2
The names of standard library macros and objects shall not be reused

Description

Rule Definition
The names of standard library macros and objects shall not be reused.

Message in Report
The names of standard library macros and objects shall not be reused.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Library Introduction
Category: Required

Introduced in R2013b

6 MISRA C++: 2008

6-252

MISRA C++:2008 Rule 17-0-3
The names of standard library functions shall not be overridden

Description

Rule Definition
The names of standard library functions shall not be overridden.

Message in Report
The names of standard library functions shall not be overridden.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Library Introduction
Category: Required

Introduced in R2018a

 MISRA C++:2008 Rule 17-0-3

6-253

MISRA C++:2008 Rule 17-0-5
The setjmp macro and the longjmp function shall not be used

Description

Rule Definition
The setjmp macro and the longjmp function shall not be used.

Message in Report
The setjmp macro and the longjmp function shall not be used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Library Introduction
Category: Required

Introduced in R2013b

6 MISRA C++: 2008

6-254

MISRA C++:2008 Rule 18-0-1
The C library shall not be used

Description

Rule Definition
The C library shall not be used.

Message in Report
The C library shall not be used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Language Support Library
Category: Required

Introduced in R2013b

 MISRA C++:2008 Rule 18-0-1

6-255

MISRA C++:2008 Rule 18-0-2
The library functions atof, atoi and atol from library <cstdlib> shall not be used

Description

Rule Definition
The library functions atof, atoi and atol from library <cstdlib> shall not be used.

Message in Report
The library functions atof, atoi and atol from library <cstdlib> shall not be used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Language Support Library
Category: Required

Introduced in R2013b

6 MISRA C++: 2008

6-256

MISRA C++:2008 Rule 18-0-3
The library functions abort, exit, getenv and system from library <cstdlib> shall not be
used

Description

Rule Definition
The library functions abort, exit, getenv and system from library <cstdlib> shall not be
used.

Message in Report
The library functions abort, exit, getenv and system from library <cstdlib> shall not be
used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Language Support Library
Category: Required

Introduced in R2013b

 MISRA C++:2008 Rule 18-0-3

6-257

MISRA C++:2008 Rule 18-0-4
The time handling functions of library <ctime> shall not be used

Description

Rule Definition
The time handling functions of library <ctime> shall not be used.

Message in Report
The time handling functions of library <ctime> shall not be used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Language Support Library
Category: Required

Introduced in R2013b

6 MISRA C++: 2008

6-258

MISRA C++:2008 Rule 18-0-5
The unbounded functions of library <cstring> shall not be used

Description

Rule Definition
The unbounded functions of library <cstring> shall not be used.

Message in Report
The unbounded functions of library <cstring> shall not be used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Language Support Library
Category: Required

Introduced in R2013b

 MISRA C++:2008 Rule 18-0-5

6-259

MISRA C++:2008 Rule 18-2-1
The macro offsetof shall not be used

Description

Rule Definition
The macro offsetof shall not be used.

Message in Report
The macro offsetof shall not be used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Language Support Library
Category: Required

Introduced in R2013b

6 MISRA C++: 2008

6-260

MISRA C++:2008 Rule 18-4-1
Dynamic heap memory allocation shall not be used

Description

Rule Definition
Dynamic heap memory allocation shall not be used.

Message in Report
Dynamic heap memory allocation shall not be used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Language Support Library
Category: Required

Introduced in R2013b

 MISRA C++:2008 Rule 18-4-1

6-261

MISRA C++:2008 Rule 18-7-1
The signal handling facilities of <csignal> shall not be used

Description

Rule Definition
The signal handling facilities of <csignal> shall not be used.

Rationale
Signal handling functions such as signal contains undefined and implementation-
specific behavior.

You have to be very careful when using signal to avoid these behaviors.

Message in Report
The signal handling facilities of <csignal> shall not be used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Check Information
Group: Language Support Library
Category: Required

6 MISRA C++: 2008

6-262

See Also
Function called from signal handler not asynchronous-safe | Return
from computational exception signal handler | Shared data access
within signal handler | Signal call in multithreaded program

Introduced in R2013b

 MISRA C++:2008 Rule 18-7-1

6-263

MISRA C++:2008 Rule 19-3-1
The error indicator errno shall not be used

Description

Rule Definition
The error indicator errno shall not be used.

Rationale
Observing this rule encourages the good practice of not relying on errno to check error
conditions.

Checking errno is not sufficient to guarantee absence of errors. Functions such as
fopen might not set errno on error conditions. Often, you have to check the return value
of such functions for error conditions.

Message in Report
The error indicator errno shall not be used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

Examples

Use of errno
#include <cstdlib>
#include <cerrno>

6 MISRA C++: 2008

6-264

void func (const char* str) {
 errno = 0; // Noncompliant
 int i = atoi(str);
 if(errno != 0) { // Noncompliant
 //Handle Error
 }
}

The use of errno violates this rule. The function atoi is not required to set errno if the
input string cannot be converted to an integer. Checking errno later does not safeguard
against possible failures in conversion.

Check Information
Group: Diagnostic Library
Category: Required

See Also
Misuse of errno | Misuse of errno in a signal handler

Introduced in R2013b

 MISRA C++:2008 Rule 19-3-1

6-265

MISRA C++:2008 Rule 27-0-1
The stream input/output library <cstdio> shall not be used

Description

Rule Definition
The stream input/output library <cstdio> shall not be used.

Rationale
Functions in cstdio such as gets, fgetpos, fopen, ftell, etc. have unspecified,
undefined and implementation-defined behavior.

For instance:

• The gets function:

char * gets (char * buf);

does not check if the number of characters provided at the standard input exceeds the
buffer buf. The function can have unexpected behavior when the input exceeds the
buffer.

• The fopen function has implementation-specific behavior related to whether it sets
errno on errors or whether it accepts additional characters following the standard
mode specifiers.

Message in Report
The stream input/output library <cstdio> shall not be used.

Troubleshooting
If you expect a rule violation but do not see it, refer to “Coding Rule Violations Not
Displayed”.

6 MISRA C++: 2008

6-266

Examples

Use of gets
#include <cstdio>

void func() {
 char array[10];
 gets(array);
}

The use of gets violates this rule.

Check Information
Group: Input/output Library
Category: Required

Introduced in R2013b

 MISRA C++:2008 Rule 27-0-1

6-267

Custom Coding Rules

7

Group 1: Files
The custom rules 1.x in Polyspace enforce naming conventions for files and folders. For
information on how to enable these rules, see Check custom rules (-custom-
rules).

Number Rule Applied Other details
1.1 All source file names must follow

the specified pattern.
Only the base name is checked. A
source file is a file that is not
included.

1.2 All source folder names must follow
the specified pattern.

Only the folder name is checked. A
source file is a file that is not
included.

1.3 All include file names must follow
the specified pattern.

Only the base name is checked. An
include file is a file that is included.

1.4 All include folder names must
follow the specified pattern.

Only the folder name is checked.
An include file is a file that is
included.

7 Custom Coding Rules

7-2

Group 2: Preprocessing
The custom rules 2.x in Polyspace enforce naming conventions for macros. For
information on how to enable these rules, see Check custom rules (-custom-
rules).

Number Rule Applied Other details
2.1 All macros must follow the

specified pattern.
Macro names are checked before
preprocessing.

2.2 All macro parameters must follow
the specified pattern.

Macro parameters are checked
before preprocessing.

 Group 2: Preprocessing

7-3

Group 3: Type definitions
The custom rules 3.x in Polyspace enforce naming conventions for fundamental data
types. For information on how to enable these rules, see Check custom rules (-
custom-rules).

Number Rule Applied Other details
3.1 All integer types must follow the

specified pattern.
Applies to integer types specified
by typedef statements. Does not
apply to enumeration types. For
example: typedef signed int
int32_t;

3.2 All float types must follow the
specified pattern.

Applies to float types specified by
typedef statements. For example:
typedef float f32_t;

3.3 All pointer types must follow the
specified pattern.

Applies to pointer types specified
by typedef statements. For
example: typedef int* p_int;

3.4 All array types must follow the
specified pattern.

Applies to array types specified by
typedef statements. For example:
typedef int[3] a_int_3;

3.5 All function pointer types must
follow the specified pattern.

Applies to function pointer types
specified by typedef statements.
For example: typedef void
(*pf_callback) (int);

7 Custom Coding Rules

7-4

Group 4: Structures
The custom rules 4.x in Polyspace enforce naming conventions for structured data types.
For information on how to enable these rules, see Check custom rules (-custom-
rules).

Number Rule Applied Other details
4.1 All struct tags must follow the

specified pattern.

4.2 All struct types must follow the
specified pattern.

This is the typedef name.

4.3 All struct fields must follow the
specified pattern.

4.4 All struct bit fields must follow
the specified pattern.

 Group 4: Structures

7-5

Group 5: Classes (C++)
The custom rules 5.x in Polyspace enforce naming conventions for classes and class
members. For information on how to enable these rules, see Check custom rules (-
custom-rules).

Number Rule Applied Other details
5.1 All class names must follow the

specified pattern.

5.2 All class types must follow the
specified pattern.

This is the typedef name.

5.3 All data members must follow the
specified pattern.

5.4 All function members must follow
the specified pattern.

5.5 All static data members must follow
the specified pattern.

5.6 All static function members must
follow the specified pattern.

5.7 All bitfield members must follow
the specified pattern.

7 Custom Coding Rules

7-6

Group 6: Enumerations
The custom rules 6.x in Polyspace enforce naming conventions for enumerations. For
information on how to enable these rules, see Check custom rules (-custom-
rules).

Number Rule Applied Other details
6.1 All enumeration tags must follow

the specified pattern.

6.2 All enumeration types must follow
the specified pattern.

This is the typedef name.

6.3 All enumeration constants must
follow the specified pattern.

 Group 6: Enumerations

7-7

Group 7: Functions
The custom rules 7.x in Polyspace enforce naming conventions for functions and function
parameters. For information on how to enable these rules, see Check custom rules
(-custom-rules).

Number Rule Applied Other details
7.1 All global functions must follow the

specified pattern.
A global function is a function with
external linkage.

7.2 All static functions must follow the
specified pattern.

A static function is a function with
internal linkage.

7.3 All function parameters must follow
the specified pattern.

In C++, applies to non-member
functions.

7 Custom Coding Rules

7-8

Group 8: Constants
The custom rules 8.x in Polyspace enforce naming conventions for constants. For
information on how to enable these rules, see Check custom rules (-custom-
rules).

Number Rule Applied Other details
8.1 All global constants must follow the

specified pattern.
A global constant is a constant with
external linkage.

8.2 All static constants must follow the
specified pattern.

A static constant is a constant with
internal linkage.

8.3 All local constants must follow the
specified pattern.

A local constant is a constant
without linkage.

8.4 All static local constants must
follow the specified pattern.

A static local constant is a constant
declared static in a function.

 Group 8: Constants

7-9

Group 9: Variables
The custom rules 9.x in Polyspace enforce naming conventions for variables. For
information on how to enable these rules, see Check custom rules (-custom-
rules).

Number Rule Applied Other details
9.1 All global variables must follow the

specified pattern.
A global variable is a variable with
external linkage.

9.2 All static variables must follow the
specified pattern.

A static variable is a variable with
internal linkage.

9.3 All local variables must follow the
specified pattern.

A local variable is a variable
without linkage.

9.4 All static local variables must follow
the specified pattern.

A static local variable is a variable
declared static in a function.

7 Custom Coding Rules

7-10

Group 10: Name spaces (C++)
The custom rules 10.x in Polyspace enforce naming conventions for namespaces. For
information on how to enable these rules, see Check custom rules (-custom-
rules).

Number Rule Applied
10.1 All names spaces must follow the specified pattern.

 Group 10: Name spaces (C++)

7-11

Group 11: Class templates (C++)
The custom rules 11.x in Polyspace enforce naming conventions for class templates. For
information on how to enable these rules, see Check custom rules (-custom-
rules).

Number Rule Applied Other details
11.1 All class templates must follow the

specified pattern.

11.2 All class template parameters must
follow the specified pattern.

7 Custom Coding Rules

7-12

Group 12: Function templates (C++)
The custom rules 12.x in Polyspace enforce naming conventions for function templates.
For information on how to enable these rules, see Check custom rules (-custom-
rules).

Number Rule Applied Other details
12.1 All function templates must follow

the specified pattern.
Applies to non-member functions.

12.2 All function template parameters
must follow the specified pattern.

Applies to non-member functions.

12.3 All function template members
must follow the specified pattern.

 Group 12: Function templates (C++)

7-13

Group 20: Style
The custom rules 20.x in Polyspace enforce coding style conventions such as number of
characters per line. For information on how to enable these rules, see Check custom
rules (-custom-rules).

Number Rule Applied Other details
20.1 Source line

length must
not exceed
specified
number of
characters.

When configuring the checker, specify:

• A number for the character limit. Use the Pattern
column on the configuration or the pattern= line in the
custom rules text file.

• A violation message such as:

Line exceeds n characters.

Use the Convention column on the configuration or the
convention= line in the custom rules text file.

7 Custom Coding Rules

7-14

Code Metrics

8

Comment Density
Ratio of number of comments to number of statements

Description
The metric specifies the ratio of comments to statements expressed as a percentage.

Based on HIS specifications:

• Multi-line comments count as one comment.

For instance, the following constitutes one comment:

// This function implements
// regular maintenance on an internal database

• Comments that start with the source code line do not count as comments.

For instance, this comment does not count as a comment for the metric but counts as a
statement instead:

 remove(i); // Remove employee record

• A statement typically ends with a semi-colon with some exceptions. Exceptions include
semi-colons in for loops or structure field declarations.

For instance, the initialization, condition and increment within parentheses in a for
loop is counted as one statement. The following counts as one statement:

for(i=0; i <100; i++)

If you also declare the loop counter at initialization, it counts as two statements.

The recommended lower limit for this metric is 20. For better readability of your code, try
to place at least one comment for every five statements.

To enforce limits on metrics, see “Compute Code Complexity Metrics”.

8 Code Metrics

8-2

Examples

Comment Density Calculation
struct record {
 char name[40];
 long double salary;
 int isEmployed;
};

struct record dataBase[100];

struct record fetch(void);
void remove(int);

void maintenanceRoutines() {
// This function implements
// regular maintenance on an internal database
 int i;
 struct record tempRecord;

 for(i=0; i <100; i++) {
 tempRecord = fetch(); // This function fetches a record
 // from the database
 if(tempRecord.isEmployed == 0)
 remove(i); // Remove employee record
 //from the database
 }
}

In this example, the comment density is 38. The calculation is done as follows:

Code Running
Total of
Comments

Running
Total of
Statements

struct record {
 char name[40];
 long double salary;
 int isEmployed;
};

0 1

 Comment Density

8-3

Code Running
Total of
Comments

Running
Total of
Statements

struct record dataBase[100];
struct record fetch(void);
void remove(int);

0 4

void maintenanceRoutines() { 0 4
// This function implements
// regular maintenance on an internal database

1 4

int i;
struct record tempRecord;

1 6

for(i=0; i <100; i++) { 1 6
 tempRecord = fetch(); // This
 function fetches a record
 // from the database

2 7

if(tempRecord.isEmployed == 0)
 remove(i);
 // Remove employee record
 //from the database
 }
}

3 8

There are 3 comments and 8 statements. The comment density is 3/8*100 = 38.

Metric Information
Group: File
Acronym: COMF
HIS Metric: Yes

See Also
Calculate code metrics (-code-metrics)

8 Code Metrics

8-4

Cyclomatic Complexity
Number of linearly independent paths in function body

Description
This metric calculates the number of decision points in a function and adds one to the
total. A decision point is a statement that causes your program to branch into two paths.

The recommended upper limit for this metric is 10. If the cyclomatic complexity is high,
the code is both difficult to read and can cause more orange checks. Therefore, try to
limit the value of this metric.

To enforce limits on metrics, see “Compute Code Complexity Metrics”.

Computation Details
The metric calculation uses the following rules to identify decision points:

• An if statement is one decision point.
• The statements for and while count as one decision point, even when no condition is

evaluated, for example, in infinite loops.
• Boolean combinations (&&, ||) do not count as decision points.
• case statements do not count as decision points unless they are followed by a break

statement. For instance, this code has a cyclomatic complexity of two:

switch(num) {
 case 0:
 case 1:
 case 2:
 break;
 case 3:
 case 4:
 }

• The calculation is done after preprocessing:

 Cyclomatic Complexity

8-5

• Macros are expanded.
• Conditional compilation is applied. The blocks hidden by preprocessing directives

are ignored.

Examples

Function with Nested if Statements
int foo(int x,int y)
{
 int flag;
 if (x <= 0)
 /* Decision point 1*/
 flag = 1;
 else
 {
 if (x < y)
 /* Decision point 2*/
 flag = 1;
 else if (x==y)
 /* Decision point 3*/
 flag = 0;
 else
 flag = -1;
 }
 return flag;
}

In this example, the cyclomatic complexity of foo is 4.

Function with ? Operator
int foo (int x, int y) {
 if((x <0) ||(y < 0))
 /* Decision point 1*/
 return 0;
 else
 return (x > y ? x: y);
 /* Decision point 2*/
}

8 Code Metrics

8-6

In this example, the cyclomatic complexity of foo is 3. The ? operator is the second
decision point.

Function with switch Statement
#include <stdio.h>

int foo(int x,int y, int ch)
{
 int val = 0;
 switch(ch) {
 case 1:
 /* Decision point 1*/
 val = x + y;
 break;
 case 2:
 /* Decision point 2*/
 val = x - y;
 break;
 default:
 printf("Invalid choice.");
 }
 return val;
}

In this example, the cyclomatic complexity of foo is 3.

Function with Nesting of Different Control-Flow Statements
int foo(int x,int y, int bound)
{
 int count = 0;
 if (x <= y)
 /* Decision point 1*/
 count = 1;
 else
 while(x>y) {
 /* Decision point 2*/
 x--;
 if(count< bound) {
 /* Decision point 3*/
 count++;
 }

 Cyclomatic Complexity

8-7

 }
 return count;
}

In this example, the cyclomatic complexity of foo is 4.

Metric Information
Group: Function
Acronym: VG
HIS Metric: Yes

See Also
Calculate code metrics (-code-metrics)

8 Code Metrics

8-8

Higher Estimate of Local Variable Size
Total size of all local variables in function

Description
This metric provides a conservative estimate of the total size of local variables in a
function. The metric is the sum of the following sizes in bytes:

• Size of function return value
• Sizes of function parameters
• Sizes of local variables
• Additional padding introduced for memory alignment

Your actual stack usage due to local variables can be different from the metric value.

• Some of the variables are stored in registers instead of on the stack.
• Your compiler performs variable liveness analysis to enable certain memory

optimizations. For instance, compilers store the address to which the execution
returns following the function call. When computing this metric, Polyspace does not
consider these optimizations.

• Your compiler uses additional memory during a function call. When computing this
metric, Polyspace does not consider this hidden memory usage.

• (C++ only) Destructors and try-catch statements can introduce hidden contributions
to the metric value.

However, the metric provides a reasonable estimate of the stack usage due to local
variables.

To determine the sizes of basic types, the software uses your specifications for Target
processor type (-target). The metric also takes into account #pragma pack
directives in your code.

 Higher Estimate of Local Variable Size

8-9

Examples

All Variables of Same Type
int flag();

int func(int param) {
 int var_1;
 int var_2;
 if (flag()) {
 int var_3;
 int var_4;
 } else {
 int var_5;
 }
}

In this example, assuming 4 bytes for int, the higher estimate of local variable size is 28.
The breakup of the size is shown in this table.

Variable Size (in Bytes) Running Total
Return value 4 4
Parameter param 4 8
Local variables var_1 and
var_2

4+4=8 16

Local variables defined in
the if condition

(4+4)+4=12

The size of variables in the
first branch is eight bytes.
The size in the second
branch is four bytes. The
sum of the two branches is
12 bytes.

28

No padding is introduced for memory alignment because all the variables involved have
the same type.

8 Code Metrics

8-10

Variables of Different Types
char func(char param) {
 int var_1;
 char var_2;
 double var_3;
}

In this example, assuming one byte for char, four bytes for int and eight bytes for
double and four bytes for alignment, the higher estimate of local variable size is 20. The
alignment is usually the word size on your platform. In your Polyspace project, you specify
the alignment through your target processor. For more information, see the Alignment
column in Target processor type (-target). The breakup of the size is shown in
this table.

Variable Size (in Bytes) Running Total
Return value 1 1
Additional padding
introduced before param is
stored

0

No memory alignment is
required because the next
variable param has the
same size.

1

Parameter param 1 2
Additional padding
introduced before var_1 is
stored

2

Memory must be aligned
using padding because the
next variable var_1
requires four bytes. The
storage must start from a
memory address at a
multiple of four.

4

var_1 4 8

 Higher Estimate of Local Variable Size

8-11

Variable Size (in Bytes) Running Total
Additional padding
introduced before var_2 is
stored

0

No memory alignment is
required because the next
variable var_2 has smaller
size.

8

var_2 1 9
Additional padding
introduced before var_3 is
stored

3

Memory must be aligned
using padding because the
next variable var_3 has
eight bytes. The storage
must start from a memory
address at a multiple of the
alignment, four bytes.

12

var_3 8 20

The rules for the amount of padding are:

• If the next variable stored has the same or smaller size, no padding is required.
• If the next variable has a greater size:

• If the variable size is the same as or less than the alignment on the platform, the
amount of padding must be sufficient so that the storage address is a multiple of its
size.

• If the variable size is greater than the alignment on the platform, the amount of
padding must be sufficient so that the storage address is a multiple of the
alignment.

C++ Methods and Objects
class MySimpleClass {
 public:
 MySimpleClass() {};
 MySimpleClass(int) {};
 ~MySimpleClass() {};
};

8 Code Metrics

8-12

int main() {
 MySimpleClass c;
 return 0;
}

In this example, the estimated local variable sizes are:

• Constructor MySimpleClass::MySimpleClass(): Four bytes.

The size comes from the this pointer, which is an implicit argument to the
constructor. You specify the pointer size using the option Target processor type
(-target).

• Constructor MySimpleClass::MySimpleClass(int): Eight bytes.

The size comes from the this pointer and the int argument.
• Destructor MySimpleClass::~MySimpleClass(): Eight bytes.

The size comes from the this pointer and a hidden contribution from an internal
variable.

• main(): Five bytes.

The size comes from the int return value and the size of object c. The minimum size
of an object is the alignment that you specify using the option Target processor
type (-target).

C++ Functions with Object Arguments
class MyClass {
 public:
 MyClass() {};
 MyClass(int) {};
 ~MyClass() {};
 private:
 int i[10];
};
void func1(const MyClass& c) {
}

void func2() {
 func1(4);
}

 Higher Estimate of Local Variable Size

8-13

In this example, the estimated local variable size for func2() is 40 bytes. When func2()
calls func1(), a temporary object of the class MyClass is created. The object has ten
int variables, each with a size of four bytes.

Metric Information
Group: Function
Acronym: LOCAL_VARS_MAX
HIS Metric: No

See Also
Lower Estimate of Local Variable Size | Calculate code metrics (-code-
metrics)

Introduced in R2016b

8 Code Metrics

8-14

Language Scope
Language scope

Description
This metric measures the cost of maintaining or changing a function. It is calculated as:

(N1 + N2)/(n1 + n2)

Here:

• N1 is the number of occurrences of operators.

Other than identifiers (variable or function names) and literal constants, everything
else counts as operators.

• N2 is the number of occurrences of operands.
• n1 is the number of distinct operators.
• n2 is the number of distinct operands.

Tip To find N1 + N2, count the total number of tokens. To find n1 + n2, count the
number of unique tokens.

The recommended upper limit for this metric is 4. For lower maintenance cost for a
function, try to enforce an upper limit on this metric. For instance, if the same operand
occurs many times, to change the operand name, you have to make many substitutions.

To enforce limits on metrics, see “Compute Code Complexity Metrics”.

Examples
Language Scope Calculation
int f(int i)
{

 Language Scope

8-15

 if (i == 1)
 return i;
 else
 return i * g(i-1);
}

In this example:

• N1 = 19.
• N2 = 9.
• n1 = 12.

The distinct operators are int, (,), {, if, ==, return, else, *, -, ;, }.
• n2 = 4.

The distinct operands are f, i, 1 and g.

The language scope of f is (17 + 9) / (12 + 4) = 1.8.

C++ Namespaces in Language Scope Calculation
namespace std {
 int func2() {
 return 123;
 }
};

namespace my_namespace {
 using namespace std;
 int func1(int a, int b) {
 return func2();
 }
};

In this example, the namespace std is implicitly associated with func2. The language
scope computation treats func2() as std::func2(). Likewise, the computation treats
func1() as my_namespace::func1().

For instance, the language scope value for func1 is 1.3. To break down this calculation:

• N1 + N2 = 20.

8 Code Metrics

8-16

• n1 + n2 = 15.

The distinct operators are int, ::, (, comma,), {, return, ;, and }.

The distinct operands are my_namespace, func1, a, b, std, and func2.

Metric Information
Group: Function
Acronym: VOCF
HIS Metric: Yes

See Also
Calculate code metrics (-code-metrics)

 Language Scope

8-17

Lower Estimate of Local Variable Size
Total size of local variables in function taking nested scopes into account

Description
This metric provides an optimistic estimate of the total size of local variables in a
function. The metric is the sum of the following sizes in bytes:

• Size of function return value
• Sizes of function parameters
• Sizes of local variables

Suppose that the function has variable definitions in nested scopes as follows:

type func (type param_1, ...) {

 {
 /* Scope 1 */
 type var_1, ...;
 }
 {
 /* Scope 2 */
 type var_2, ...;
 }
}

The software computes the total variable size in each scope and uses whichever total
is greatest. For instance, if a conditional statement has variable definitions, the
software computes the total variable size in each branch, and then uses whichever
total is greatest. If a nested scope itself has further nested scopes, the same process is
repeated for the inner scopes.

A variable defined in a nested scope is not visible outside the scope. Therefore, some
compilers reuse stack space for variables defined in separate scopes. This metric
provides a more accurate estimate of stack usage for such compilers. Otherwise, use
the metric Higher Estimate of Local Variable Size. This metric adds the size
of all local variables, whether or not they are defined in nested scopes.

8 Code Metrics

8-18

• Additional padding introduced for memory alignment

Your actual stack usage due to local variables can be different from the metric value.

• Some of the variables are stored in registers instead of on the stack.
• Your compiler performs variable liveness analysis to enable certain memory

optimizations. When computing this metric, Polyspace does not consider these
optimizations.

• Your compiler uses additional memory during a function call. For instance, compilers
store the address to which the execution returns following the function call. When
computing this metric, Polyspace does not consider this hidden memory usage.

• (C++ only) Destructors and try-catch statements can introduce hidden contributions
to the metric value.

However, the metric provides a reasonable estimate of the stack usage due to local
variables.

To determine the sizes of basic types, the software uses your specifications for Target
processor type (-target). The metric also takes into account #pragma pack
directives in your code.

Examples
All Variables of Same Type
int flag();

int func(int param) {
 int var_1;
 int var_2;
 if (flag()) {
 int var_3;
 int var_4;
 } else {
 int var_5;
 }
}

In this example, assuming four bytes for int, the lower estimate of local variable size is
24. The breakup of the metric is shown in this table.

 Lower Estimate of Local Variable Size

8-19

Variable Size (in Bytes) Running Total
Return value 4 4
Parameter param 4 8
Local variables var_1 and
var_2

4+4=8 16

Local variables defined in
the if condition

max(4+4,4)= 8

The size of variables in the
first branch is eight bytes.
The size in the second
branch is four bytes. The
maximum of the two
branches is eight bytes.

24

No padding is introduced for memory alignment because all the variables involved have
the same type.

Variables of Different Types
char func(char param) {
 int var_1;
 char var_2;
 double var_3;
}

In this example, assuming one byte for char, four bytes for int, eight bytes for double
and four bytes for alignment, the lower estimate of local variable size is 20. The
alignment is usually the word size on your platform. In your Polyspace project, you specify
the alignment through your target processor. For more information, see the Alignment
column in Target processor type (-target). The breakup of the size is shown in
this table.

Variable Size (in Bytes) Running Total
Return value 1 1

8 Code Metrics

8-20

Variable Size (in Bytes) Running Total
Additional padding
introduced before param is
stored

0

No memory alignment is
required because the next
variable param has the
same size.

1

Parameter param 1 2
Additional padding
introduced before var_1 is
stored

2

Memory must be aligned
using padding because the
next variable var_1
requires four bytes. The
storage must start from a
memory address at a
multiple of four.

4

var_1 4 8
Additional padding
introduced before var_2 is
stored

0

No memory alignment is
required because the next
variable var_2 has smaller
size.

8

var_2 1 9
Additional padding
introduced before var_3 is
stored

3

Memory must be aligned
using padding because the
next variable var_3
requires eight bytes. The
storage must start from a
memory address at a
multiple of the alignment,
four bytes.

12

var_3 8 20

 Lower Estimate of Local Variable Size

8-21

The rules for the amount of padding are:

• If the next variable stored has the same or smaller size, no padding is required.
• If the next variable has a greater size:

• If the variable size is the same as or less than the alignment on the platform, the
amount of padding must be sufficient so that the storage address is a multiple of its
size.

• If the variable size is greater than the alignment on the platform, the amount of
padding must be sufficient so that the storage address is a multiple of the
alignment.

C++ Methods and Objects
class MySimpleClass {
 public:
 MySimpleClass() {};
 MySimpleClass(int) {};
 ~MySimpleClass() {};
};

int main() {
 MySimpleClass c;
 return 0;
}

In this example, the estimated local variable sizes are:

• Constructor MySimpleClass::MySimpleClass(): Four bytes.

The size comes from the this pointer, which is an implicit argument to the
constructor. You specify the pointer size using the option Target processor type
(-target).

• Constructor MySimpleClass::MySimpleClass(int): Eight bytes.

The size comes from the this pointer and the int argument.
• Destructor MySimpleClass::~MySimpleClass(): Eight bytes.

The size comes from the this pointer and a hidden contribution from an internal
variable.

8 Code Metrics

8-22

• main(): Five bytes.

The size comes from the int return value and the size of object c. The minimum size
of an object is the alignment that you specify using the option Target processor
type (-target).

C++ Functions with Object Arguments
class MyClass {
 public:
 MyClass() {};
 MyClass(int) {};
 ~MyClass() {};
 private:
 int i[10];
};
void func1(const MyClass& c) {
}

void func2() {
 func1(4);
}

In this example, the estimated local variable size for func2() is 40 bytes. When func2()
calls func1(), a temporary object of the class MyClass is created. The object has ten
int variables, each with a size of four bytes.

Metric Information
Group: Function
Acronym: LOCAL_VARS_MIN
HIS Metric: No

See Also
Higher Estimate of Local Variable Size | Calculate code metrics (-
code-metrics)

Introduced in R2016b

 Lower Estimate of Local Variable Size

8-23

Estimated Function Coupling
Measure of complexity between levels of call tree

Description
This metric provides an approximate measure of complexity between different levels of
the call tree. The metric is defined as:

number of call occurrences – number of function definitions + 1

If there are more function definitions than function calls, the estimated function coupling
result is negative.

This metric:

• Counts function calls and function definitions in the current file only.

It does not count function definitions in a header file included in the current file.
• Treats static and inline functions like any other function.

Examples

Same Function Called Multiple Times
void checkBounds(int *);
int getUnboundedValue();

int getBoundedValue(void) {
 int num = getUnboundedValue();
 checkBounds(&num);
 return num;
}

void main() {
 int input1=getBoundedValue(), input2= getBoundedValue(), prod;
 prod = input1 * input2;

8 Code Metrics

8-24

 checkBounds(&prod);
}

In this example, there are:

• 5 call occurrences. Both getBoundedValue and checkBounds are called twice and
getUnboundedValue is called once.

• 2 function definitions. main and getBoundedValue are defined.

Therefore, the Estimated function coupling is 5 - 2 + 1 = 4.

Negative Estimated Function Coupling
int foobar(int a, int b){
 return a+b;
}

int bar(int b){
 return b+2;
}

int foo(int a){
 return a<<2;
}

int main(int x){
 foobar(x,x+2);
 return 0;
}

This example shows how you can get a negative estimated function coupling result. In this
example, you see:

• 1 function call in main.
• 4 defined functions: foobar, bar, foo, and main.

Therefore, the estimated function coupling is 1 - 4 + 1 = -2.

Metric Information
Group: File

 Estimated Function Coupling

8-25

Acronym: FCO
HIS Metric: No

See Also
Number of Call Occurrences | Calculate code metrics (-code-metrics)

8 Code Metrics

8-26

Number of Call Levels
Maximum depth of nesting of control flow structures

Description
This metric specifies the maximum nesting depth of control flow statements such as if,
switch, for, or while in a function. A function without control-flow statements has a
call level 1.

The recommended upper limit for this metric is 4. For better readability of your code, try
to enforce an upper limit for this metric.

To enforce limits on metrics, see “Compute Code Complexity Metrics”.

Examples

Function with Nested if Statements
int foo(int x,int y)
{
 int flag = 0;
 if (x <= 0)
 /* Call level 1*/
 flag = 1;
 else
 {
 if (x <= y)
 /* Call level 2*/
 flag = 1;
 else
 flag = -1;
 }
 return flag;
}

In this example, the number of call levels of foo is 2.

 Number of Call Levels

8-27

Function with Nesting of Different Control-Flow Statements
int foo(int x,int y, int bound)
{
 int count = 0;
 if (x <= y)
 /* Call level 1*/
 count = 1;
 else
 while(x>y) {
 /* Call level 2*/
 x--;
 if(count< bound) {
 /* Call level 3*/
 count++;
 }
 }
 return count;
}

In this example, the number of call levels of foo is 3.

Metric Information
Group: Function
Acronym: LEVEL
HIS Metric: Yes

See Also
Calculate code metrics (-code-metrics)

8 Code Metrics

8-28

Number of Call Occurrences
Number of calls in function body

Description
This metric specifies the number of function calls in the body of a function.

Calls through a function pointer are not counted. Calls in unreachable code and calls to
standard library functions are counted. assert is considered as a macro and not a
function, so it is not counted.

Examples

Same Function Called Multiple Times
int func1(void);
int func2(void);

int foo() {
 return (func1() + func1()*func1() + 2*func2());
}

In this example, the number of call occurrences in foo is 4.

Function Called in a Loop
#include<stdio.h>

void fillArraySize10(int *arr) {
 for(int i=0; i<10; i++)
 arr[i]=getVal();
}

int getVal(void) {
 int val;
 printf("Enter a value:");

 Number of Call Occurrences

8-29

 scanf("%d", &val);
 return val;
}

In this example, the number of call occurrences in fillArraySize10 is 1.

Recursive Function
#include <stdio.h>

void main() {
 int count;
 printf("How many numbers ?");
 scanf("%d",&count);
 fibonacci(count);
}

int fibonacci(int num)
{
 if (num == 0)
 return 0;
 else if (num == 1)
 return 1;
 else
 return (fibonacci(num-1) + fibonacci(num-2));
}

In this example, the number of call occurrences in fibonacci is 2.

Metric Information
Group: Function
Acronym: NCALLS
HIS Metric: No

See Also
Number of Called Functions | Calculate code metrics (-code-metrics)

8 Code Metrics

8-30

Number of Called Functions
Number of callees of a function

Description
This metric specifies the number of callees of a function.

Calls through a function pointer are not counted. Calls in unreachable code and calls to
standard library functions are counted. assert is considered as a macro and not a
function, so it is not counted. For C++ templates, the first instantiation of the template is
used to calculate this metric.

The recommended upper limit for this metric is 7. For more self-contained code, try to
enforce an upper limit on this metric.

To enforce limits on metrics, see “Compute Code Complexity Metrics”.

Examples

Same Function Called Multiple Times
int func1(void);
int func2(void);

int foo() {
 return (func1() + func1()*func1() + 2*func2());
}

In this example, the number of called functions in foo is 2. The called functions are
func1 and func2.

Recursive Function
#include <stdio.h>

void main() {

 Number of Called Functions

8-31

 int count;
 printf("How many numbers ?");
 scanf("%d",&count);
 fibonacci(count);
}

int fibonacci(int num)
{
 if (num == 0)
 return 0;
 else if (num == 1)
 return 1;
 else
 return (fibonacci(num-1) + fibonacci(num-2));
}

In this example, the number of called functions in fibonacci is 1. The called function is
fibonacci itself.

Metric Information
Group: Function
Acronym: CALLS
HIS Metric: Yes

See Also
Number of Call Occurrences | Number of Calling Functions | Calculate
code metrics (-code-metrics)

8 Code Metrics

8-32

Number of Calling Functions
Number of distinct callers of a function

Description
This metric measures the number of distinct callers of a function.

Calls through a function pointer are not counted. Calls in unreachable code are counted.
Even if a caller calls a function more than once, it is counted only once when this metric
is calculated. For C++ templates, the first instantiation of the template is used to
calculate this metric.

The recommended upper limit for this metric is 5. For more self-contained code, try to
enforce an upper limit on this metric.

To enforce limits on metrics, see “Compute Code Complexity Metrics”.

Examples
Same Function Calling a Function Multiple Times
#include <stdio.h>

int getVal() {
 int myVal;
 printf("Enter a value:");
 scanf("%d", &myVal);
 return myVal;
}

int func() {
 int val=getVal();
 if(val<0)
 return 0;
 else
 return val;
}

 Number of Calling Functions

8-33

int func2() {
 int val=getVal();
 while(val<0)
 val=getVal();
 return val;
}

In this example, the number of calling functions for getVal is 2. The calling functions are
func and func2.

Recursive Function
#include <stdio.h>

void main() {
 int count;
 printf("How many numbers ?");
 scanf("%d",&count);
 fibonacci(count);
}

int fibonacci(int num)
{
 if (num == 0)
 return 0;
 else if (num == 1)
 return 1;
 else
 return (fibonacci(num-1) + fibonacci(num-2));
}

In this example, the number of calling functions for fibonacci is 2. The calling functions
are main and fibonacci itself.

Metric Information
Group: Function
Acronym: CALLING
HIS Metric: Yes

8 Code Metrics

8-34

See Also
Number of Called Functions | Calculate code metrics (-code-metrics)

 Number of Calling Functions

8-35

Number of Direct Recursions
Number of instances of a function calling itself directly

Description
This metric specifies the number of direct recursions in your project.

A direct recursion is a recursion where a function calls itself in its own body. If indirect
recursions do not occur, the number of direct recursions is equal to the number of
recursive functions.

The recommended upper limit for this metric is 0. To avoid the possibility of exceeding
available stack space, do not use recursions in your code. To detect use of recursions,
check for violations of MISRA C:2012 Rule 17.2.

Examples

Direct Recursion
int getVal(void);

void main() {
 int count = getVal(), total;
 assert(count > 0 && count <100);
 total = sum(count);
}

int sum(int val) {
 if(val<0)
 return 0;
 else
 return (val + sum(val-1));
}

In this example, the number of direct recursions is 1.

8 Code Metrics

8-36

Metric Information
Group: Project
Acronym: AP_CG_DIRECT_CYCLE
HIS Metric: Yes

See Also
MISRA C:2012 Rule 17.2 | Calculate code metrics (-code-metrics)

 Number of Direct Recursions

8-37

Number of Executable Lines
Number of executable lines in function body

Description
This metric measures the number of executable lines in a function body. When calculating
the value of this metric, Polyspace excludes declarations without static initializers,
comments, blank lines, braces or preprocessing directives.

If the function body contains a #include directive, the included file source code is also
calculated as part of this metric.

This metric is not calculated for C++ templates.

Examples

Function with Declarations, Braces and Comments
void func(int);

int getSign(int arg) {
 int sign;
 if(arg<0) {
 sign=-1;
 func(-arg);
 /* func takes positive arguments */
 }
 else if(arg==0)
 sign=0;
 else {
 sign=1;
 func(arg);
 }
 return sign;
}

8 Code Metrics

8-38

In this example, the number of executable lines of getSign is 9. The calculation
excludes:

• The declaration int sign;.
• The comment /* ... */.
• The two lines with braces only.

Metric Information
Group: Function
Acronym: FXLN
HIS Metric: No

See Also
Number of Lines Within Body | Number of Instructions | Calculate code
metrics (-code-metrics)

 Number of Executable Lines

8-39

Number of Files
Number of source files

Description
This metric calculates the number of source files in your project.

Metric Information
Group: Project
Acronym: FILES
HIS Metric: No

See Also
Number of Header Files | Calculate code metrics (-code-metrics)

8 Code Metrics

8-40

Number of Function Parameters
Number of function arguments

Description
This metric measures the number of function arguments.

If ellipsis is used to denote variable number of arguments, when calculating this metric,
the ellipsis is not counted.

The recommended upper limit for this metric is 5. For less dependency between functions
and fewer side effects, try to enforce an upper limit on this metric.

To enforce limits on metrics, see “Compute Code Complexity Metrics”.

Examples

Function with Fixed Arguments
int initializeArray(int* arr, int size) {
}

In this example, initializeArray has two parameters.

Function with Type Definition in Arguments
int getValueInLoc(struct {int* arr; int size;}myArray, int loc) {
}

In this example, getValueInLoc has two parameters.

Function with Variable Arguments
double average (int num, ...)
{

 Number of Function Parameters

8-41

 va_list arg;
 double sum = 0;

 va_start (arg, num);

 for (int x = 0; x < num; x++)
 {
 sum += va_arg (arg, double);
 }
 va_end (arg);

 return sum / num;
}

In this example, average has one parameter. The ellipsis denoting variable number of
arguments is not counted.

Metric Information
Group: Function
Acronym: PARAM
HIS Metric: Yes

See Also
Calculate code metrics (-code-metrics)

8 Code Metrics

8-42

Number of Goto Statements
Number of goto statements

Description
This metric measures the number of goto statements in a function.

break and continue statements are not counted.

The recommended upper limit on this metric is 0. For better readability of your code,
avoid goto statements in your code. To detect use of goto statements, check for
violations of MISRA C:2012 Rule 15.1.

To enforce limits on metrics, see “Compute Code Complexity Metrics”.

Examples

Function with goto Statements
#define SIZE 10
int initialize(int **arr, int loc);
void printString(char *);
void printErrorMessage(void);
void printExecutionMessage(void);

int main()
{
 int *arrayOfStrings[SIZE],len[SIZE],i;
 for (i = 0; i < SIZE; i++)
 {
 len[i] = initialize(arrayOfStrings,i);
 }

 for (i = 0; i < SIZE; i++)
 {
 if(len[i] == 0)
 goto emptyString;

 Number of Goto Statements

8-43

 else
 goto nonEmptyString;
 loop: printExecutionMessage();
 }

emptyString:
 printErrorMessage();
 goto loop;
nonEmptyString:
 printString(arrayOfStrings[i]);
 goto loop;
}

In this example, the function main has 4 goto statements.

Metric Information
Group: Function
Acronym: GOTO
HIS Metric: Yes

See Also
Calculate code metrics (-code-metrics)

8 Code Metrics

8-44

Number of Header Files
Number of included header files

Description
This metric measures the number of header files in the project. Both directly and
indirectly included header files are counted.

The metric gives a slightly higher number than the actual number of header files that you
use because Polyspace® internal header files and header files included by those files are
also counted. For the same reason, the metric can vary slightly even if you do not
explicitly include new header files or remove inclusion of header files from your code. For
instance, the number of Polyspace® internal header files can vary if you change your
analysis options.

Metric Information
Group: Project
Acronym: INCLUDES
HIS Metric: No

See Also
Number of Files | Calculate code metrics (-code-metrics)

 Number of Header Files

8-45

Number of Instructions
Number of instructions per function

Description
This metric measures the number of instructions in a function body.

The recommended upper limit for this metric is 50. For more modular code, try to enforce
an upper limit for this metric.

To enforce limits on metrics, see “Compute Code Complexity Metrics”.

Computation Details
The metric is calculated using the following rules:

• A simple statement ending with a ; is one instruction.

If the statement is empty, it does not count as an instruction.
• A variable declaration counts as one instruction only if the variable is also initialized.
• Control flow statements such as if, for, break, goto, return, switch, while, do-

while count as one instruction.
• The following do not count as instructions by themselves:

• Beginning of a block of code

For instance, the following counts as one instruction:

{
 var = 1;
}

• Labels

For instance, the following counts as two instructions. The case labels do not
count as instructions.

switch (1) { // Instruction 1: switch
 case 0:

8 Code Metrics

8-46

 case 1:
 case 2:
 default:
 break; // Instruction 2: break
 }

Examples

Calculation of Number of Instructions
int func(int* arr, int size) {
 int i, countPos=0, countNeg=0, countZero = 0;
 for(i=0; i<size; i++) {
 if(arr[i] >0)
 countPos++;
 else if(arr[i] ==0)
 countZero++;
 else
 countNeg++;
 }
}

In this example, the number of instructions in func is 9. The instructions are:

1 countPos=0
2 countNeg=0
3 countZero=0
4 for(i=0;i<size;i++) { ... }
5 if(arr[i] >=0)
6 countPos++
7 else if(arr[i]==0)

The ending else is counted as part of the if-else instruction.
8 countZero++
9 countNeg++

Note This metric is different from the number of executable lines. For instance:

 Number of Instructions

8-47

• for(i=0;i<size;i++) has 1 instruction and 1 executable line.
• The following code has 1 instruction but 3 executable lines.

for(i=0;
 i<size;
 i++)

Metric Information
Group: Function
Acronym: STMT
HIS Metric: Yes

See Also
Calculate code metrics (-code-metrics)

8 Code Metrics

8-48

Number of Lines
Total number of lines in a file

Description
This metric calculates the number of lines in a file. When calculating the value of this
metric, Polyspace includes comments and blank lines.

This metric is calculated for source files and header files in the same folders as source
files. If you want:

• The metric reported for other header files, change the default value of the option
Generate results for sources and (-generate-results-for).

• The metric not reported for header files at all, change the value of the option Do not
generate results for (-do-not-generate-results-for) to all-headers.

Metric Information
Group: File
Acronym: TOTAL_LINES
HIS Metric: No

See Also
Number of Lines Without Comment | Calculate code metrics (-code-
metrics)

 Number of Lines

8-49

Number of Lines Within Body
Number of lines in function body

Description
This metric calculates the number of lines in function body. When calculating the value of
this metric, Polyspace includes declarations, comments, blank lines, braces and
preprocessing directives.

If the function body contains a #include directive, the included file source code is also
calculated as part of this metric.

This metric is not calculated for C++ templates.

Examples

Function with Declarations, Braces and Comments
void func(int);

int getSign(int arg) {
 int sign;
 if(arg<0) {
 sign=-1;
 func(-arg);
 /* func takes positive arguments */
 }
 else if(arg==0)
 sign=0;
 else {
 sign=1;
 func(arg);
 }
 return sign;
}

8 Code Metrics

8-50

In this example, the number of executable lines of getSign is 13. The calculation
includes:

• The declaration int sign;.
• The comment /* ... */.
• The two lines with braces only.

Metric Information
Group: Function
Acronym: FLIN
HIS Metric: No

See Also
Number of Executable Lines | Calculate code metrics (-code-metrics)

 Number of Lines Within Body

8-51

Number of Lines Without Comment
Number of lines of code excluding comments

Description
This metric calculates the number of lines in a file. When calculating the value of this
metric, Polyspace excludes comments and blank lines.

This metric is calculated for source files and header files in the same folders as source
files. If you want:

• The metric reported for other header files, change the default value of the option
Generate results for sources and (-generate-results-for).

• The metric not reported for header files at all, change the value of the option Do not
generate results for (-do-not-generate-results-for) to all-headers.

Metric Information
Group: File
Acronym: LINES_WITHOUT_CMT
HIS Metric: No

See Also
Number of Lines | Calculate code metrics (-code-metrics)

8 Code Metrics

8-52

Number of Local Non-Static Variables
Total number of local variables in function

Description
This metric provides the number of local variables in a function.

The metric excludes static variables. To find number of static variables, use the metric
Number of Local Static Variables.

Examples

Non-Structured Variables
int flag();

int func(int param) {
 int var_1;
 int var_2;
 if (flag()) {
 int var_3;
 int var_4;
 } else {
 int var_5;
 }
}

In this example, the number of local non-static variables in func is 5. The number does
not include the function arguments and return value.

Arrays and Structured Variables
typedef struct myStruct{
 char arr1[50];
 char arr2[50];
 int val;

 Number of Local Non-Static Variables

8-53

} myStruct;

void func(void) {
 myStruct var;
 char localArr[50];
}

In this example, the number of local non-static variables in func is 2: the structured
variable var and the array localArr.

Variables in Class Methods
class Rectangle {
 int width, height;
 public:
 void set (int,int);
 int area (void);
} rect;

int Rectangle::area (void) {
 int temp;
 temp = width * height;
 return(temp);
}

In this example, the number of local non-static variables in Rectangle::area is 1: the
variable temp.

Metric Information
Group: Function
Acronym: LOCAL_VARS
HIS Metric: No

See Also
Number of Local Static Variables | Higher Estimate of Local Variable
Size | Lower Estimate of Local Variable Size | Calculate code metrics
(-code-metrics)

8 Code Metrics

8-54

Introduced in R2017a

 Number of Local Non-Static Variables

8-55

Number of Local Static Variables
Total number of local static variables in function

Description
This metric provides the number of local static variables in a function.

Examples

Number of Static Variables
void func(void) {
 static int var_1 = 0;
 int var_2;
}

In this example, the number of static variables in func is 1. For examples of different
types of variables, see Number of Local Non-Static Variables.

Metric Information
Group: Function
Acronym: LOCAL_STATIC_VARS
HIS Metric: No

See Also
Higher Estimate of Local Variable Size | Number of Local Non-Static
Variables | Calculate code metrics (-code-metrics)

Introduced in R2017a

8 Code Metrics

8-56

Number of Paths
Estimated static path count

Description
This metric measures the number of paths in a function.

If goto statements are present in your code, Polyspace cannot calculate the number of
paths. The software displays a metric value of -1.

The recommended upper limit for this metric is 80. If the number of paths is high, the
code is difficult to read and can cause more orange checks. Try to limit the value of this
metric.

To enforce limits on metrics, see “Compute Code Complexity Metrics”.

Computation Details
The number of paths is calculated according to these rules:

• If the statements in a function do not break the control flow, the number of paths is
one.

Even an empty statement such as ; or empty block such as {} counts as one path.
• The number of paths for a control flow statement is calculated as follows:

• if-else if-else: The number of paths is the sum of paths calculated in the if
block, each else if block, and the concluding else block. When the concluding
else block is omitted, the path count is increased by 1.

For instance, the statement if(..) {} else if(..) {} else {} counts as
three paths. The statement if() {} counts as two paths, one for the if block and
one for the omitted else block.

• switch-case: Every case with break statement adds one to the path count. The
default statement counts as one path, even if it is omitted.

 Number of Paths

8-57

For instance, the statement switch (var) { case 1: .. break; case
2: .. break; default: .. } counts as three paths.

• for, while, and do-while: The number of paths is equal to the number of paths
in the loop body + 1.

For instance, the statement while(0) {;} counts as two paths.
• Ternary operators: A statement with a ternary operator such as

result = a > b ? a : b;

is counted as one statement that does not break the control flow. The number of
paths is considered as one.

• If more than one control flow statement are present in a sequence, the number of
paths is the product of the path count for each control flow statement.

For instance, if a function has three for loops and two if-else statements, the
number of paths is 2 × 2 × 2 × 2 × 2 = 32.

If many control flow statements are present in a function, the number of paths can be
large. Nested control flow statements reduce the number of paths at the cost of
increasing the depth of nesting. For an example, see “Function with Nested Control
Flow Statements” on page 8-59.

Examples

Function with One Path
void func(int ch) {
 switch (ch)
 {
 case 1:
 case 2:
 case 3:
 case 4:
 default:
 }
}

In this example, func has one path.

8 Code Metrics

8-58

Function with Control Flow Statement Causing Multiple Paths
void func(int ch) {
 switch (ch)
 {
 case 1:
 break;
 case 2:
 break;
 case 3:
 break;
 case 4:
 break;
 default:
 }
}

In this example, func has five paths. Apart from the path that goes through the cases
and default, each break causes the creation of a new path.

Function with Nested Control Flow Statements
void func()
{
 int i = 0, j = 0, k = 0;
 for (i=0; i<10; i++)
 {
 for (j=0; j<10; j++)
 {
 for (k=0; k<10; k++)
 {
 if (i < 2)
 ;
 else
 {
 if (i > 5)
 ;
 else
 ;
 }
 }
 }
 }
}

 Number of Paths

8-59

In this example, func has six paths. The number is calculated as follows:

• The innermost if-else block counts as two paths.
• The outer if-else block counts as three paths, one path for the if block and the

previous two paths for the else block.
• The innermost for loop counts as four paths, one path for the loop and the previous

three paths for the if-else blocks.
• The next two outer loops add one path each.

Therefore, the number of paths in func is six.

Metric Information
Group: Function
Acronym: PATH
HIS Metric: Yes

See Also
Calculate code metrics (-code-metrics)

8 Code Metrics

8-60

Number of Return Statements
Number of return statements in a function

Description
This metric measures the number of return statements in a function.

The recommended upper limit for this metric is 1. If one return statement is present,
when reading the code, you can easily identify what the function returns.

To enforce limits on metrics, see “Compute Code Complexity Metrics”.

Examples

Function with Return Points
int getSign (int arg) {
 if(arg <0)
 return -1;
 else if(arg > 0)
 return 1;
 return 0;
}

In this example, getSign has 3 return statements.

Metric Information
Group: Function
Acronym: RETURN
HIS Metric: Yes

See Also
Calculate code metrics (-code-metrics)

 Number of Return Statements

8-61

Topics
“Compute Code Complexity Metrics” (Polyspace Code Prover)
“Compare Metrics Against Software Quality Objectives” (Polyspace Code Prover)

8 Code Metrics

8-62

Number of Recursions
Number of call graph cycles over one or more functions

Description
This metric specifies the number of recursions in your project. Even if more than one
function is involved in one recursive cycle, the number of recursions is counted as one.

Calls through a function pointer are not considered.

The recommended upper limit for this metric is 0. To avoid the possibility of exceeding
available stack space, do not use recursions in your code. To detect use of recursions,
check for violations of MISRA C:2012 Rule 17.2.

To enforce limits on metrics, see “Compute Code Complexity Metrics”.

Examples

Direct Recursion
int getVal(void);

void main() {
 int count = getVal(), total;
 assert(count > 0 && count <100);
 total = sum(count);
}

int sum(int val) {
 if(val<0)
 return 0;
 else
 return (val + sum(val-1));
}

In this example, the number of recursions is 1.

 Number of Recursions

8-63

A direct recursion is a recursion where a function calls itself in its own body. For direct
recursions, the number of recursions is equal to the number of recursive functions.

Indirect Recursion with One Call Graph Cycle
volatile int signal;

void operation1() {
 int stop = signal%2;
 if(!stop)
 operation2();
}

void operation2() {
 operation1();
}

void main() {
 operation1();
}

In this example, the number of recursions is 1. Although two functions operation1 and
operation2 indirectly call themselves, they are involved in the same call graph cycle
operation1 → operation2 → operation1.

An indirect function is a recursion where a function calls itself through other functions.
For indirect recursions, the number of recursions can be different from the number of
recursive functions.

Indirect Recursion with Two Call Graph Cycles
volatile int signal;

void operation1() {
 int stop = signal%3;
 if(stop==1)
 operation2();
 else if(stop==2)
 operation3();
}

void operation2() {

8 Code Metrics

8-64

 operation1();
}

void operation3() {
 operation3();
}

void main() {
 operation1();
}

In this example, the number of recursions is 2.

There are two call graph cycles:

• operation1 → operation2 → operation1
• operation1 → operation3 → operation1

Same Function Called in Direct and Indirect Recursion
volatile int signal;

void operation1() {
 int stop = signal%3;
 if(stop==1)
 operation1();
 else if(stop==2)
 operation2();
}

void operation2() {
 operation1();
}

void main() {
 operation1();
}

In this example, the number of call graph cycles is 1.

If the same function calls itself both directly and indirectly, the two cycles are counted as
1.

 Number of Recursions

8-65

Metric Information
Group: Project
Acronym: AP_CG_CYCLE
HIS Metric: Yes

See Also
MISRA C:2012 Rule 17.2 | Calculate code metrics (-code-metrics)

8 Code Metrics

8-66

Polyspace Report Components —
Alphabetical List

9

Acronym Definitions
Create table of Polyspace acronyms used in report and their full forms

Description
This component creates a table containing the acronyms used in the report and their full
forms. Acronyms are used for Polyspace checks and result status.

See Also

Topics
“Customize Existing Bug Finder Report Template”

9 Polyspace Report Components — Alphabetical List

9-2

Call Hierarchy
Create table showing call graph in source code

Description
This component creates a table showing the call hierarchy in your source code. For each
function call in your source code, the table displays the following information:

• Level of call hierarchy, where the function is called.

Each level is denoted by |. If a function call appears in the table as |||->
file_name.function_name, the function call occurs at the third level of the
hierarchy. Beginning from main or an entry point, there are three function calls
leading to the current call.

• File containing the function call.

In Code Prover, the line and column is also displayed.
• File containing the function definition.

In Code Prover, the line and column where the function definition begins is also
displayed.

In addition, the table also displays uncalled functions.

This table captures the information available on the Call Hierarchy pane in the
Polyspace user interface.

See Also

Topics
“Customize Existing Bug Finder Report Template”

 Call Hierarchy

9-3

Code and Verification Information
Create table of verification times and code characteristics

Description
This component creates tables containing verification times and code characteristics such
as number of lines.

Properties

Include Verification Time Information
If you select this option, the report contains verification times broken down by phase.

• For Polyspace Bug Finder, the phases are compilation, pass0, pass1, etc.
• For Polyspace Code Prover, the phases are compilation, global, function, etc.

Include Code Details
If you select this option, the report contains the following code characteristics:

• Number of files
• Number of lines
• Number of lines without comment

See Also

Topics
“Customize Existing Bug Finder Report Template”

9 Polyspace Report Components — Alphabetical List

9-4

Code Metrics Details
Create table of Polyspace metrics broken down by file and function

Description
This component creates a table containing metrics from a Polyspace project. The metrics
appear broken down by file and function.

Properties
Project Metrics
If you select this option, the report contains the following metrics about the project:

• Number of direct recursions
• Number of files
• Number of headers
• Number of protected and unprotected shared variables

File Metrics
If you select this option, the report contains the following metrics about each file in the
project:

• Estimated function coupling
• Lines without comment
• Comment density
• Total lines

Function Metrics
If you select this option, the report contains the following metrics about each function in
the project:

 Code Metrics Details

9-5

• Cyclomatic complexity
• Language scope
• Lower and higher estimates of local variable size
• Number of lines within body
• Number of executable lines
• Number of goto statements
• Number of call levels
• Number of called functions
• Number of call occurrences
• Number of function parameters
• Number of paths
• Number of return statements
• Number of instructions
• Number of calling functions

See Also

Topics
“Customize Existing Bug Finder Report Template”

9 Polyspace Report Components — Alphabetical List

9-6

Code Metrics Summary
Create table of Polyspace metrics

Description
This component creates a table containing metrics from a Polyspace project. The metrics
are the same as those displayed under Code Metrics Details. However, the file and
function metrics are not broken down by individual files and functions. Instead, the table
provides the minimum and maximum value of a file metric over all files and a function
metric over all functions.

See Also

Topics
“Customize Existing Bug Finder Report Template”

 Code Metrics Summary

9-7

Code Verification Summary
Create table of Polyspace analysis results

Description
This component creates tables containing the following results:

• Number of results
• Number of coding rule violations for each coding rule type such as MISRA C
• Number of defects, for Polyspace Bug Finder results
• Number of checks of each color, for Polyspace Code Prover results
• Whether the project passed or failed the software quality objective

Properties

Include Checks from Polyspace Standard Library Stub
Functions
Unless you deselect this option, the tables contain Polyspace Code Prover checks that
appear in Polyspace stubs for the standard library functions.

See Also

Topics
“Customize Existing Bug Finder Report Template”

9 Polyspace Report Components — Alphabetical List

9-8

Coding Rules Details
Create table of coding rule violations broken down by file

Description
This component creates tables containing coding rule violations broken down by each file
in the Polyspace project. For each rule violation, the table contains the following
information:

• Rule number
• Rule description
• Function containing the violation
• (Code Prover only) Line and column number
• Review information such as classification, status and comments

Properties

Select Coding Rules Type
Using this option, you can choose which coding rule violations to display. You can display
violations for the following set of coding rules:

• MISRA C rules
• MISRA AC AGC rules
• MISRA C++ rules
• JSF C++ rules
• Custom coding rules

Display by
Using this option, you can break down the display of coding rule violations by file.

 Coding Rules Details

9-9

See Also

Topics
“Customize Existing Bug Finder Report Template”

9 Polyspace Report Components — Alphabetical List

9-10

Coding Rules Summary
Create table with number of coding rule violations

Description
This component creates a table containing the number of coding rule violations. You can
choose whether to break this information down by rule number or file.

Properties

Select Coding Rules Type
Using this option, you can choose which coding rule violations to display. You can display
violations for the following set of coding rules:

• MISRA C rules
• MISRA AC AGC rules
• MISRA C++ rules
• JSF C++ rules
• Custom coding rules

Include Files/Rules with No Problems Detected
If you select this option, the table displays:

• Files that do not contain coding rule violations
• Rules that your code does not violate

Display by
Using this option, you can break down the display of coding rule violations by:

 Coding Rules Summary

9-11

• Rule number
• File

See Also

Topics
“Customize Existing Bug Finder Report Template”

9 Polyspace Report Components — Alphabetical List

9-12

Configuration Parameters
Create table of analysis options, assumptions and coding rules configuration

Description
This component creates the following tables:

• Polyspace settings: The analysis options that you used to obtain your results. The table
lists command-line version of the options along with their values.

• Analysis assumptions: The assumptions used to obtain your Code Prover results. The
table lists only the modifiable assumptions. For assumptions that you cannot change,
see the Polyspace documentation.

• Coding rules configuration: The coding rules whose violations you checked for. The
table lists the rule number, rule description and other information about the rules.

• Files with compilation errors: If your project has source files with compilation errors,
these files are listed.

See Also

Topics
“Customize Existing Bug Finder Report Template”

 Configuration Parameters

9-13

Defects Summary
Create table of defects (Bug Finder only)

Description
This component creates a table of Polyspace Bug Finder defects. From this table, you can
see the number of defects of each type.

Properties

Include Checkers with No Defects Detected
If you select this option, the table includes all defect types that Polyspace Bug Finder can
detect, including those that do not occur in your code.

See Also

Topics
“Customize Existing Bug Finder Report Template”

9 Polyspace Report Components — Alphabetical List

9-14

Global Variable Checks
Create table of global variables (Code Prover only)

Description
This component creates a table of Polyspace Code Prover global variables. From this
table, you can see the number of global variables of each type.

See Also

Topics
“Customize Existing Bug Finder Report Template”

 Global Variable Checks

9-15

Recursive Functions
Create table of recursive functions

Description
This component creates a table containing the recursive functions in your source code.
For each recursive function, the table lists its immediate caller.

See Also

Topics
“Customize Existing Bug Finder Report Template”

9 Polyspace Report Components — Alphabetical List

9-16

Report Customization (Filtering)
Create filters that apply to your Polyspace reports

Description
This component allows you to filter unwanted information from existing Polyspace report
templates. To apply global filters, place this component immediately below the node
representing the report name.

Properties

Code Metrics Filters
The properties in table below apply to the inclusion of code metrics in your report.

Property Purpose User Action
Include Project Metrics Choose whether to include

metrics about your
Polyspace project.

Select the check box to
include project metrics.

Project metrics to include Specify project metrics to
include or exclude from
report.

Enter a MATLAB regular
expression.

Include File Metrics Choose whether to include
per file metrics in report.

Select the check box to
include per file metrics.

File Metrics > Files to
include

Specify files to include or
exclude when reporting file
metrics.

Enter a MATLAB regular
expression.

File metrics to include Specify file metrics to
include or exclude from
report.

Enter a MATLAB regular
expression.

 Report Customization (Filtering)

9-17

Property Purpose User Action
Include Function Metrics Choose whether to include

per function metrics in
report.

Select the check box to
include per function
metrics.

Function Metrics > Files
to include

Specify files to include or
exclude when reporting
function metrics.

Enter a MATLAB regular
expression.

Functions to include Specify functions to include
or exclude when reporting
function metrics.

Enter a MATLAB regular
expression.

Function metrics to
include

Specify function metrics to
include or exclude from
report.

Enter a MATLAB regular
expression.

Coding Rules Filters
The properties in table below apply to the inclusion of coding rule violations in your
report.

Property Purpose User Action
Files to include Specify files to include or

exclude when reporting
coding rule violations.

Enter a MATLAB regular
expression.

Coding rule numbers to
include

Specify coding rules to
include or exclude when
reporting coding rule
violations.

Enter a MATLAB regular
expression.

Classifications to include Specify classifications to
include or exclude when
reporting coding rule
violations.

Enter a MATLAB regular
expression.

Status types to include Specify statuses to include
or exclude when reporting
coding rule violations.

Enter a MATLAB regular
expression.

9 Polyspace Report Components — Alphabetical List

9-18

Run-time Check Filters
The properties in table below apply to the inclusion of Polyspace Code Prover checks in
your report.

Property Purpose
Red Checks Specify whether to include red checks in

your report. Red checks indicate proven
run-time errors.

Gray Checks Specify whether to include gray checks in
your report. Gray checks indicate
unreachable code.

Orange Checks Specify whether to include orange checks
in your report. Orange checks indicate
possible run-time errors.

Green Checks Specify whether to include green checks in
your report. Green checks indicate that an
operation does not contain a specific run-
time error.

Inspection Point Checks Specify whether to include inspection point
checks in your report. These checks allow
an user to find the values that a variable
can take at a certain point in the code.

Unreachable Functions Specify whether to include unreachable
functions in your report.

Advanced Filters
The properties in table below apply to the inclusion of metrics, coding rule violations and
Polyspace Code Prover checks in your report.

Property Purpose User Action
Justification status Choose whether to report

only justified checks, only
unjustified checks or all
checks.

Choose an option from the
dropdown list.

 Report Customization (Filtering)

9-19

Property Purpose User Action
Files to include Specify files to include or

exclude from your report.
Enter a MATLAB regular
expression.

Check types to include Specify Polyspace Code
Prover checks to include in
your report.

Enter a MATLAB regular
expression.

Function names to
include

Specify functions to include
or exclude from your report.

Enter a MATLAB regular
expression.

Classification types to
include

Specify classifications to
include or exclude from your
report.

Enter a MATLAB regular
expression.

Status types to include Specify statuses to include
or exclude from your report.

Enter a MATLAB regular
expression.

Comments to include Specify comments to include
or exclude from your report.

Enter a MATLAB regular
expression.

See Also

Topics
“Customize Existing Bug Finder Report Template”
“Regular Expressions” (MATLAB)

9 Polyspace Report Components — Alphabetical List

9-20

Run-time Checks Details Ordered by Color/
File
Create overrides for global filters reports (Code Prover only)

Description
This component adds detailed information about the run-time checks to your report. This
component can also be used to override global filters in specific chapters of your report.
Use the following workflow when using filters in your report:

1 To create filters that apply to all chapters of your report, use the Report
Customization (Filtering) component. For more information, see Report
Customization (Filtering).

2 To override some of the filters in individual chapters, use the Run-time Checks
Details Ordered by Color/File component. Select the Override Global Report
filter box.

Properties

Categories To Include
The properties in table below apply to the inclusion of Polyspace Code Prover checks in
your report.

Property Purpose
Red Checks Specify whether to include red checks in

your report. Red checks indicate proven
run-time errors.

Gray Checks Specify whether to include gray checks in
your report. Gray checks indicate
unreachable code.

 Run-time Checks Details Ordered by Color/File

9-21

Property Purpose
Orange Checks Specify whether to include orange checks

in your report. Orange checks indicate
possible run-time errors.

Green Checks Specify whether to include green checks in
your report. Green checks indicate that an
operation does not contain a specific run-
time error.

Inspection Point Checks Specify whether to include inspection point
checks in your report. These checks allow
an user to find the values that a variable
can take at a certain point in the code.

Unreachable Functions Specify whether to include unreachable
functions in your report.

Advanced Filters
The properties in table below apply to the inclusion of metrics, coding rule violations and
Polyspace Code Prover checks in your report.

Property Purpose User Action
Justification status Choose whether to report

only justified checks, only
unjustified checks or all
checks.

Choose an option from the
dropdown list.

Files to include Specify files to include or
exclude from your report.

Enter a regular MATLAB
expression.

Check types to include Specify Polyspace Code
Prover checks to include in
your report.

Enter a regular MATLAB
expression.

Function names to
include

Specify functions to include
or exclude from your report.

Enter a regular MATLAB
expression.

Classification types to
include

Specify classifications to
include or exclude from your
report.

Enter a regular MATLAB
expression.

9 Polyspace Report Components — Alphabetical List

9-22

Property Purpose User Action
Status types to include Specify statuses to include

or exclude from your report.
Enter a regular MATLAB
expression.

Comments to include Specify comments to include
or exclude from your report.

Enter a regular MATLAB
expression.

See Also

Topics
“Customize Existing Bug Finder Report Template”

 Run-time Checks Details Ordered by Color/File

9-23

Run-time Checks Details Ordered by Review
Information
Create table with checks ordered by review information (Code Prover only)

Description
This component creates tables displaying the Polyspace Code Prover checks in your code.
All checks with same combination of Severity and Status appear in the same table.

See Also

Topics
“Customize Existing Bug Finder Report Template”

9 Polyspace Report Components — Alphabetical List

9-24

Run-time Checks Summary Ordered by File
Create table with checks ordered by file (Code Prover only)

Description
This component creates a table displaying the number of Polyspace Code Prover checks
per file in your code.

Properties

Sort the data
Use this option to sort the rows in the table alphabetically by filename or by percentage of
unproven code.

Display as
Use this option to display the number of checks in a table or in bar charts.

Display ratio of checks in a file
Select this option to display the number of checks of a certain color as a ratio of total
number of checks in the file.

Include checks from Polyspace standard library stub functions
Select this option to include the checks from Polyspace standard library stub functions in
your display.

 Run-time Checks Summary Ordered by File

9-25

See Also

Topics
“Customize Existing Bug Finder Report Template”

9 Polyspace Report Components — Alphabetical List

9-26

Software Quality Objectives - Coding Rules
Summary
Create table of coding rule violations in results downloaded from Polyspace Metrics

Description
This component creates a table containing coding rule violations in results downloaded
from Polyspace Metrics.

See Also

Topics
“Customize Existing Bug Finder Report Template”

 Software Quality Objectives - Coding Rules Summary

9-27

Software Quality Objectives - Run-time
Checks Details
Create table of run-time check distribution in results downloaded from Polyspace Metrics

Description
This component creates tables showing run-time checks in results downloaded from
Polyspace Metrics.

The component Software Quality Objectives - Run-time Checks Summary
shows the distribution of run-time checks. This component shows individual instances of
run-time checks. Each file has a dedicated table showing the run-time checks in the file.

See Also

Topics
“Customize Existing Bug Finder Report Template”

9 Polyspace Report Components — Alphabetical List

9-28

Software Quality Objectives - Run-time
Checks Summary
Create table of run-time check distribution in results downloaded from Polyspace Metrics

Description
This component creates a table showing the distribution of run-time checks in results
downloaded from Polyspace Metrics.

This component shows the distribution of run-time checks. The component Software
Quality Objectives - Run-time Checks Details shows the individual instances
of run-time checks.

See Also

Topics
“Customize Existing Bug Finder Report Template”

 Software Quality Objectives - Run-time Checks Summary

9-29

Summary By File
Create table showing summary of Polyspace results by file

Description
This component creates a table showing a breakdown of Polyspace results by file.

See Also

Topics
“Customize Existing Bug Finder Report Template”

9 Polyspace Report Components — Alphabetical List

9-30

Variable Access
Create table showing global variable access in source code (Code Prover only)

Description
This component creates a table showing the global variable access in your source code.
For each global variable, the table displays the following information:

• Variable name.

The entry for each variable is denoted by |.
• Type of the variable.
• Number of read and write operations on the variable.
• Details of read and write operations. For each read or write operation, the table

displays the following information:

• File and function containing the operation in the form
file_name.function_name.

The entry for each read or write operation is denoted by ||. Write operations are
denoted by < and read operations by >.

• Line and column number of the operation.

This table captures the information available on the Variable Access pane in the
Polyspace user interface.

See Also

Topics
“Customize Existing Bug Finder Report Template”

 Variable Access

9-31

Variable Checks Details Ordered By Review
Information
Create table with global variable results ordered by review information (Code Prover
only)

Description
This component creates tables displaying the Polyspace Code Prover global variable
results in your code. All checks with same combination of Severity and Status appear in
the same table.

See Also

Topics
“Customize Existing Bug Finder Report Template”

9 Polyspace Report Components — Alphabetical List

9-32

Configuration Parameters

• “Product mode” on page 10-2
• “Settings from (C)” on page 10-3
• “Settings from (C++)” on page 10-5
• “Use custom project file” on page 10-7
• “Project configuration” on page 10-8
• “Enable additional file list” on page 10-9
• “Stub lookup tables” on page 10-10
• “Input” on page 10-12
• “Tunable parameters” on page 10-13
• “Output” on page 10-14
• “Model reference verification depth” on page 10-15
• “Model by model verification” on page 10-17
• “Output folder” on page 10-18
• “Make output folder name unique by adding a suffix” on page 10-19
• “Add results to current Simulink project” on page 10-20
• “Open results automatically after verification” on page 10-21
• “Check configuration before verification” on page 10-22
• “Verify all occurrences” on page 10-23

10

Product mode
Select type of Polyspace code analysis to run.

Model Configuration Parameters Category: Polyspace

Settings
Default: Code Prover

Code Prover
Run a Polyspace Code Prover verification.

Bug Finder
Run a Polyspace Bug Finder analysis.

Dependency
You see only the products for which you have a license. If you do not have a Polyspace
Code Prover license, the default product mode is Bug Finder.

Command-Line Information
Use the pslinkoptions property VerificationMode.

See Also
pslinkoptions | pslinkoptions

Related Examples
• “Run Polyspace Analysis on Code Generated with Embedded Coder”

10 Configuration Parameters

10-2

Settings from (C)
Select settings for the analysis configuration. You can quickly activate coding rules
checking for generated C code

Model Configuration Parameters Category: Polyspace

Settings
Default: Project configuration

Project configuration
Run Polyspace with the options specified in the “Project configuration” on page 10-
8 or “Use custom project file” on page 10-7.

You do not check coding rules unless you select a rule set in the configuration.
Project configuration and MISRA AC AGC checking

Run Polyspace with the options specified in the Project configuration plus MISRA
AC-AGC obligatory and recommended rules.

Project configuration and MISRA C 2004 checking
Run Polyspace with the options specified in the Project configuration plus all
MISRA C 2004 rules.

Project configuration and MISRA C 2012 checking
Run Polyspace with the options specified in the Project configuration plus all
MISRA C 2012 rules. This option automatically applies the rule categories for
generated code. See Use generated code requirements (-misra3-agc-
mode).

MISRA AC AGC checking
Check compliance with the MISRA AC-AGC obligatory and recommended rules. After
rules checking, Polyspace stops.

MISRA C 2004 checking
Check compliance with all MISRA C 2004 rules. After rules checking, Polyspace stops.

MISRA C 2012 checking
Check compliance with all MISRA C 2012 rules. This option automatically applies the
rule categories for generated code. See Use generated code requirements (-
misra3-agc-mode). After rules checking, Polyspace stops.

 Settings from (C)

10-3

Dependency
This setting overrides custom configuration settings in “Project configuration” on page
10-8 and “Use custom project file” on page 10-7. If you want to use your custom
coding rule settings, select the Project configuration option.

Command-Line Information
Use the pslinkoptions property VerificationSettings.

See Also
pslinkoptions | pslinkoptions

Related Examples
• “Run Polyspace Analysis on Code Generated with Embedded Coder”

10 Configuration Parameters

10-4

Settings from (C++)
Select settings for the analysis configuration. This option allows you to quickly activate
coding rules checking for generated C++ code.

Model Configuration Parameters Category: Polyspace

Settings
Default: Project configuration

Project configuration
Run Polyspace with the options specified in the “Project configuration” on page 10-
8 or “Use custom project file” on page 10-7.

You do not check coding rules unless you select a rule set in the configuration.
Project configuration and MISRA C++ checking

Run Polyspace with the options specified in the Project configuration plus MISRA C
++ required rules.

Project configuration and JSF C++ checking
Run Polyspace with the options specified in the Project configuration plus JSF C++
shall rules.

MISRA C++ checking
Check compliance with the MISRA C++: 2008 required rules. After rules checking,
Polyspace stops.

JSF C++ checking
Check compliance with the JSF C++ shall rules. After rules checking, Polyspace
stops.

Dependency
This setting overrides custom configuration settings in “Project configuration” on page
10-8 and “Use custom project file” on page 10-7. If you want to use your custom
coding rule settings, select the Project configuration option.

 Settings from (C++)

10-5

Command-Line Information
Use the pslinkoptions property CxxVerificationSettings.

See Also
pslinkoptions | pslinkoptions

Related Examples
• “Run Polyspace Analysis on Code Generated with Embedded Coder”

10 Configuration Parameters

10-6

Use custom project file
Set Polyspace configuration options with a custom .psprj file

Model Configuration Parameters Category: Polyspace

Settings

Default: Off

Off
Analysis uses configuration options from Project configuration on page 10-8
parameters.

On
Analysis uses configuration options from the specified .psprj project file.

Dependency
The Settings from parameter overrides custom configuration settings for coding rules. If
you want to use your custom coding rule settings, set Settings from > Project
configuration.

Command-Line Information
Use the pslinkoptions properties EnablePrjConfigFile and PrjConfigFile. For
details, see pslinkoptionspslinkoptions.

See Also
pslinkoptions | pslinkoptions

Related Examples
• “Run Polyspace Analysis on Code Generated with Embedded Coder”

 Use custom project file

10-7

Project configuration
Set advanced configuration options to customize the analysis.

Settings
Open the Polyspace Configuration window by using the Configure button. Customize
additional settings in this window and save your project configuration. If you added a
custom project file in the parameter “Use custom project file” on page 10-7, that project
file configuration is shown. Otherwise, the default project template is used.

For details about the advanced options, see “Analysis Options”.

Dependency
The Settings from parameter overrides custom configuration settings for coding rules. If
you want to use your custom coding rule settings, set Settings from > Project
configuration.

Command-Line Information
Use polyspace.ModelLinkBugFinderOptions with the pslinkoptions properties
EnablePrjConfigFile and PrjConfigFile.

See Also
polyspace.ModelLinkBugFinderOptions | pslinkoptions | pslinkoptions

More About
• “Run Polyspace Analysis on Code Generated with Embedded Coder”

10 Configuration Parameters

10-8

Enable additional file list
Add additional supporting code files to the analysis.

For instance, suppose you use C files for testing results from the generated code or
providing inputs to the generated code. The analysis of generated code only considers
files generated from the Simulink model. If you want the analysis to consider the C files
that you use for testing or inputs, provide them as additional files.

Model Configuration Parameters Category: Polyspace

Settings
Default: Off

Off
The analysis includes no additional files.

On
Polyspace analyzes the specified C/C++ files with the generated code. Use the Select
files button to specify these additional files.

Command-Line Information
Use the pslinkoptions properties EnableAdditionalFileList and
AdditionalFileList.

See Also
pslinkoptions | pslinkoptions

More About
• “Run Polyspace Analysis on Code Generated with Embedded Coder”

 Enable additional file list

10-9

Stub lookup tables
Specify that the verification must stub auto-generated functions that use certain kinds of
lookup tables in their body. The lookup tables in these functions use linear interpolation
and do not allow extrapolation. That is, the result of using the lookup table always lies
between the lower and upper bounds of the table.

If you use this option, the verification is more precise and has fewer orange checks. The
verification of lookup table functions is usually imprecise. The software has to make
certain assumptions about these functions. To avoid missing a run-time error, the
verification assumes that the result of using the lookup table is within the full range
allowed by the result data type. This assumption can cause many unproven results
(orange checks) when a lookup table function is called. By using this option, you narrow
down the assumption. For functions using lookup tables with linear interpolation and no
extrapolation, the result is at least within the bounds of the table.

The option is relevant only if your model uses Lookup Table blocks.

Model Configuration Parameters Category: Polyspace

Settings

Default: On

On
For autogenerated functions that use lookup tables with linear interpolation and no
extrapolation, the verification:

• Does not check for run-time errors in the function body.
• Calls a function stub instead of the actual function at the function call sites. The

stub ensures that the result of using the lookup table is within the bounds of the
table.

To identify if the lookup table in the function uses linear interpolation and no
extrapolation, the verification uses information provided by the code generation
product. For instance, if you use Embedded Coder to generate code, the lookup table
functions with linear interpolation and no extrapolation follow specific naming
conventions.

10 Configuration Parameters

10-10

Off
The verification does not stub autogenerated functions that use lookup tables.

Tips
• The option applies only to autogenerated functions. If you integrate your own C/C++

S-Function using lookup tables with the model, the option does not cause them to be
stubbed.

• The option is on by default. For certification purposes, if you want your verification
tool to be independent of the code generation tool, turn off the option.

Command-Line Information
Use the pslinkoptions property AutoStubLUT.

See Also
pslinkoptions | pslinkoptions

More About
• “Run Polyspace Analysis on Code Generated with Embedded Coder”

 See Also

10-11

Input
Choose whether to constrain Inport block variables.

Model Configuration Parameters Category: Polyspace

Settings
Default: Use specified minimum and maximum values

Use specified minimum and maximum values
Analysis assumes minimum and maximum values for input variables. These values are
specified in the Inport block dialog box. Use this value to reduce the number of false
positive results.

Unbounded inputs
Analysis assumes full range for input variables. Use this value to run a robust analysis
that includes values outside the expected range.

Command-Line Information
Use the pslinkoptions property InputRangeMode.

See Also
pslinkoptions | pslinkoptions

More About
• “Run Polyspace Analysis on Code Generated with Embedded Coder”
• “External Constraints on Polyspace Analysis of Generated Code”

10 Configuration Parameters

10-12

Tunable parameters
Choose how to treat tunable parameter values during the analysis. Treat values as either
constants or a range of values.

Model Configuration Parameters Category: Polyspace

Settings
Default: Use calibration data

Use calibration data
Analysis assumes constant values for tunable parameters. Use this value to run a
contextual analysis. This option can reduce the number of false positive results.

Use specified minimum and maximum values
Analysis assumes a range of values for the tunable parameter variables. Specify
maximum and minimum values in the model. Use this option to run a robust analysis
that includes values outside the expected parameter value.

Command-Line Information
Use the pslinkoptions property ParamRangeMode.

See Also
pslinkoptions | pslinkoptions

More About
• “Run Polyspace Analysis on Code Generated with Embedded Coder”
• “External Constraints on Polyspace Analysis of Generated Code”

 Tunable parameters

10-13

Output
Choose whether to verify output values.

Code Prover option only. Bug Finder cannot check output values.

Model Configuration Parameters Category: Polyspace

Settings
Default: No verification

No verification
Polyspace does not verify output values.

Verify outputs are within minimum and maximum values
Polyspace checks to see if the output variable values are within the expected
minimum and maximum values. Specify the minimum and maximum values in the
output block dialog boxes.

Command-Line Information
Use the pslinkoptions property OutputRangeMode.

See Also
pslinkoptions | pslinkoptions

More About
• “Run Polyspace Analysis on Code Generated with Embedded Coder”
• “External Constraints on Polyspace Analysis of Generated Code”

10 Configuration Parameters

10-14

Model reference verification depth
Only for models that use Embedded Coder generated code. Indicate how deep into the
model hierarchy to analyze.

Model Configuration Parameters Category: Polyspace

Settings
Default: Current model only

Current model only
Polyspace analyzes only the current model

1
Polyspace analyzes the current model and the referenced models that are one level
below the current model.

2
Polyspace analyzes the current model and the referenced models that are up to two
levels below the current model.

3
Polyspace analyzes the current model and the referenced models that are up to three
levels below the current model.

All
Polyspace analyzes the current model and all referenced models.

Command-Line Information
Use the pslinkoptions property ModelRefVerifDepth.

See Also
pslinkoptions | pslinkoptions

 Model reference verification depth

10-15

More About
• “Run Polyspace Analysis on Code Generated with Embedded Coder”

10 Configuration Parameters

10-16

Model by model verification
Only for models that use Embedded Coder generated code. Analyze each model or
referenced model individually. If you have a large project, this option can help modularize
your analysis .

Model Configuration Parameters Category: Polyspace

Settings
Default: Off

Off
Polyspace analyzes your models together. Model interactions are analyzed.

On
Polyspace analyzes your model and each of its referenced models in isolation. This
option does not analyze model interactions.

Command-Line Information
Use the pslinkoptions property ModelRefByModelRefVerif.

See Also
pslinkoptions | pslinkoptions

More About
• “Run Polyspace Analysis on Code Generated with Embedded Coder”

 Model by model verification

10-17

Output folder
Specify the location and folder name for your analysis results.

Model Configuration Parameters Category: Polyspace

Settings
Default: results_$ModelName$

Enter a path for your results folder. If you do not use a full path, the results folder is
relative to your current MATLAB folder.

If you select “Add results to current Simulink project” on page 10-20, the results folder is
relative to the Simulink project folder.

By default, the software stores your results in Current Folder\results_model_name.

Command-Line Information
Use the pslinkoptions property ResultDir.

See Also
pslinkoptions | pslinkoptions

More About
• “Run Polyspace Analysis on Code Generated with Embedded Coder”

10 Configuration Parameters

10-18

Make output folder name unique by adding a suffix
Add a unique suffix to the results folder for every run to avoid overwriting previous
results.

Model Configuration Parameters Category: Polyspace

Settings
Default: Off

Off
Every time you rerun your analysis, your results are overwritten.

On
For each run of the analysis, Polyspace specifies a new location for the results folder
by appending a unique number to the folder name.

Command-Line Information
Use the pslinkoptions property AddSuffixToResultDir.

See Also
pslinkoptions | pslinkoptions

More About
• “Run Polyspace Analysis on Code Generated with Embedded Coder”

 Make output folder name unique by adding a suffix

10-19

Add results to current Simulink project
Add your Polyspace results to the current Simulink project. To use this option, you must
have a Simulink project open.

Model Configuration Parameters Category: Polyspace

Settings
Default: Off

Off
Results are saved to the current folder.

On
Results are saved to the currently open Simulink project.

Dependencies
You must have a Simulink project open to use this option.

Command-Line Information
Use the pslinkoptions property AddToSimulinkProject.

See Also
pslinkoptions | pslinkoptions

More About
• “Run Polyspace Analysis on Code Generated with Embedded Coder”

10 Configuration Parameters

10-20

Open results automatically after verification
Decide whether to open your results in the Polyspace interface after running analysis
from Simulink.

Model Configuration Parameters Category: Polyspace

Settings
Default: On

On
After you run an analysis, your results open automatically in the Polyspace interface.

Off
You must manually open your results after running an analysis.

Command-Line Information
Use the pslinkoptions property OpenProjectManager.

See Also
pslinkoptions | pslinkoptions

More About
• “Run Polyspace Analysis on Code Generated with Embedded Coder”

 Open results automatically after verification

10-21

Check configuration before verification
Check whether model and code configurations are optimal for code analysis.

Model Configuration Parameters Category: Polyspace

Settings
Default: On (proceed with warnings)

On (proceed with warnings)
The process stops for errors, but continues the code analysis if the configuration has
only warnings.

On (stop for warnings)
If the configuration has errors or warnings, the process stops.

Off
The software does not check the configuration.

Command-Line Information
Use the pslinkoptions property CheckConfigBeforeAnalysis. For details, see
pslinkoptions.

See Also
pslinkoptions

More About
• “Run Polyspace Analysis on Code Generated with Embedded Coder”

10 Configuration Parameters

10-22

Verify all occurrences
For S-Function analyses only. Run an analysis on all instances of the selected S-Function.

Model Configuration Parameters Category: Polyspace

Settings
Default: Off

Off
Analyze only the selected S-Function block. The analysis includes only information
from the selected S-Function block.

On
Analyze all occurrences of the S-function in the model. If the S-Function is included in
the model multiple times, information from all occurrences is included in the analysis.

Command-Line Information
Use the pslinkoptions property VerifALLSFcnInstances.

See Also
pslinkoptions | pslinkoptions

More About
• “Run Polyspace Analysis on Code Generated with Embedded Coder”

 Verify all occurrences

10-23

Approximations Used During Bug
Finder Analysis

11

Inputs in Polyspace Bug Finder
A Bug Finder analysis does not return a defect caused by a special value of an unknown
input, unless the input is bounded. Polyspace makes no assumption about the value of
unbounded inputs when your source code is incomplete. For example, in the following
code Bug Finder detects a division by zero in foo_1(), but not in foo_2():

int foo_1(int p)
{
 int x = 0;
 if (p > -10 && p < 10) /* p is bounded by if statement */
 x = 100/p; /* Division by zero detected */

 return x;
}

int foo_2(int p) /* p is unbounded */
{
 int x = 0;
 x = 100/p; /* Division by zero not detected */

 return x;
}

Note To set bounds on your input, add constraints in your code such as assert or if.

See Also
“Global Variables in Polyspace Bug Finder” on page 11-3 | “Bug Finder Analysis
Assumptions”

11 Approximations Used During Bug Finder Analysis

11-2

Global Variables in Polyspace Bug Finder
When you run a Bug Finder analysis, Polyspace makes certain assumptions about the
initialization of global variables. These assumptions depend on how you declare and
define global variables. For example, in this code

int foo(void) {
 return 1/gvar;
}

Bug Finder detects a division by zero defect with the variable gvar in these cases:

• You define int gvar; in the source code and provide a main function that calls foo.
Bug Finder follows ANSI standards that state the variable is initialized to zero.

• You define int gvar; or declare extern int gvar; in the source code. Another
function calls foo and sets gvar=0. Otherwise, when your source files are incomplete
and do not contain a main function, Bug Finder makes no assumption about the
initialization of gvar.

• You declare const int gvar;. Bug Finder assumes gvar is initialized to zero due to
the const keyword.

See Also
“Inputs in Polyspace Bug Finder” on page 11-2 | “Bug Finder Analysis Assumptions”

 Global Variables in Polyspace Bug Finder

11-3

